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Abstract

Deep neural networks (DNNs) have been applied in solving many complex tasks across
multiple domains, many of which have direct effects on our daily lives: generative models
are replacing traditional search engines for answering questions, cars are being driven by
neural networks, doctors and radiologists are using neural nets to diagnose patients more
efficiently, financial systems are run by automated trading bots, etc. Coupled with the
ever-increasing of DNNs’ complexity, the need for explaining their predictions and verifying
their safety is clear.

Generally speaking, verifying a DNN involves checking if it behaves as expected for
unseen inputs in a particular region, and explaining a DNN involves interpreting the net-
work’s prediction on a given input. Both approaches have their own pros and cons: the
output of any input in a verified region is proven to be correct (with respect to a specifica-
tion), but such regions are minuscule compared to the whole input space, not just because
of the performance of the tools, but because of the inherent limits in ϵ-robustness – the
commonly used verification specifications; and while explanation methods can be applied
to explain the output given any input, they are post-hoc and hard to judge: does an ex-
planation make sense because the DNN is working close to how a human being process
the same input, or because the explanation visualizes the input itself without taking the
model in consideration?

Our main insight: we can combine both verification and explanation, resulting in novel
verification problems towards a robust explanation for neural networks. However, any veri-
fication problem (or specification) can not exist in isolation, but in a symbiosis relationship
with the tools solving it. When we propose a new specification, it is expected that existing
tools cannot solve it effectively, or may not work at all. Interesting problems push devel-
opers to improve the tools, and better tools widen the design space for researchers to come
up with even more interesting specifications. Thus, in this proposal, we are introducing
not just novel specifications, but how to solve them by building better tools.

This thesis presents a series of results and research ideas based on that insight. First, we
show that by extending ϵ-robustness with an explanation function (the activation pattern
of the DNN), we can verify a bigger region of the input space using existing verification
tools. Second, by verifying the explanation functions, we provide a robust way to compare
different explanation methods. Finally, even when the combination of existing DNNs’
verification specifications and explanation functions is friendlier to existing verification
tools, we still run into scalability issues as we increase the size of the networks. Thus, in
this thesis we also present our results on building a distributed SMT solver, which lies at
the heart of many neural network verification tools.
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Chapter 1

Introduction

In recent years, Deep Neural Networks (DNNs) have been applied successfully to a wide
range of fields, including but not limited to computer vision [57, 130], natural language [18],
robotics [112, 65], finance [59, 17], and health care [38, 131]. These applications have the
potential to directly affect our lives, from supporting doctors in medical analysis to making
millions of trading orders per second to responding to our voices, to driving us on highways.
Thanks to their ability to learn complex patterns from a vast amount of data and generalize
to unseen data, deep neural networks are the best-performing computing approach in many
benchmarks, surpassing even human beings in tasks like image recognition [30, 66] or
playing games [116].

However, despite DNNs’ state-of-the-art performance, they occasionally make devas-
tating mistakes: some caused by bias in the dataset (e.g gender or races), some caused by
the inherent brittleness in the model. As DNNs are being used more and more in many
high-stake real-world applications that directly impact various aspects of our lives, the
challenge of validating the prediction of DNNs[68, 7] has attracted much attention from
the research community.

The research area of validating the operation of DNNs, or Safe and Explainable AI,
can be generalized in two camps: explanation (XAI) and verification. The formal aims to
extract an easy-to-understand visualization of the operation of a neural network and then
involve human judgment into the loop to validate why a prediction should be trusted, while
the latter tries to use mathematics to automatically prove the correctness of a prediction
given by a neural network, with respect to some formulations of “correctness”.

Both approaches have their pros and cons. An explanation function (called X-func for
short) is intuitive and user-friendly, and can be used to help human being to choose a
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Figure 1.1: Visualizing the explanation given by some common methods, compared with
visualizing a model-agnostic edge detector.

better model, detect irregularities, or debug the model [101]. However, to the best of our
knowledge, none of the existing explanation techniques attempt to justify their verifiablity
– if a single input x is classified by a neural net N as y because of a predicate reason
P (x) (written P (x) =⇒ N(x) = y), does that mean all inputs that satisfy P will
have the same classification y? As a consequence, explanation methods may fall into the
trap of explaining the input itself, instead of the network’s operation given the input [2].
As an extreme example, Fig. 1.1 shows that an off-the-shelf edge detector that does no
classification at all, looks shockingly convincing as a smart neural network!

On the other hand, verification methods achieve verifiability by construction, but suf-
fer from the difficulty in defining what is “correct”. Most works [69, 70, 62, 60, 133] use
the specification of adversarial robustness as a proxy: a NN should correctly classifies an

2



(a) A testing image
from MNIST, classified
as 1

(b) The closest train-
ing image in MNIST,
whose L∞ distance to
Fig. 1.2a is 0.5294

(c) An adversarial ex-
ample misclassified as
8, whose L∞ distance
to Fig. 1.2b is 0.2

(d) A testing image, on
which our verified NAP
(for digit 1) disagrees
with the ground truth
(i.e., 7)

Figure 1.2: The limitation of “data-as-specification”: First three images show that a test
input can be much further away (in L∞) from its closest train input compared to adversarial
examples (the upper bound of a verifiable local region). The last image shows that even
data itself can be imperfect.

image as a given adversarial label under perturbations with a specific norm (usually l∞).
Generally speaking, existing works use a paradigm of data as specification — the robut-
ness of local neighborhoods of reference data points with ground-truth labels is the only
specification of correct behaviors. However, from a learning perspective, this would lead
to overfitted specification, since only local neighborhoods of reference inputs get certified.
As a concrete example, Figure 1.2 illustrates the fundamental limitation of such overfitted
specifications. Specifically, a testing input like the one shown in Fig. 1.2a can never be
verified even if all local neighborhoods of all training images have been certified using the
L∞ norm. This is because adversarial examples like Fig. 1.2c fall into a much closer region
compared to testing inputs (e.g., Fig. 1.2a), as a result, the truly verifiable region for a
given reference input like Fig. 1.2b can only be smaller.

Given the pros and cons of both approaches, one natural question arises: is this possible
to combine the two to get the best of both worlds? At the heart of this thesis is the
research question: How do we formulate and efficiently solve the problem of verifying the
explanations for a neural network?

Challenges To instantiate the verification of explanation methods for neural networks,
we need to answer three key questions. First, what are the interesting safety proper-

3



ties/specifications for X-funcs? For example, given that a saliency map is often judged
visually, how do we encode the notion of “visually good” for a saliency map? Ideally,
we want the specifications to be meaningful, i.e close to the human interpretation of the
X-funcs, but also solvable (at least in theory) given the current state-of-the-art verification
techniques. This thesis explores multiple such specifications for different explanation func-
tions, namely the Neural Activation Functions (NAPs), the Vanilla Gradient (VG) saliency
map, and Mechanical Interpretation (MI) for Large Language Models.

Second, given the specifications, how can we solve it using the existing tools? Most
verification tools operate in two stages: encoding a problem into an intermediate repre-
sentation and then solving the problem in that intermediate form. Consequently, verifying
X-funcs requires first addressing the encoding problem, which is non-trivial because all
existing neural network verifiers utilize intermediate representations designed for encod-
ing mainly the forward pass of the network. Once the encoding phase is complete, the
challenges of solving the problem emerge: since the verification problem itself is gener-
ally undecidable, the effectiveness of existing tools in practice relies on domain-specific
techniques developed over time. These heuristics may not be applicable to our problem,
necessitating the development of novel techniques tailored to our specific challenge.

Third, how do we construct a more scalable solver when scalability challenges inevitably
arise? State-of-the-art neural network verifiers possess inherent scalability limitations, and
consequently, employing them in their current form to verify novel specifications is likely
to be insufficient. Central to many, if not all, neural network verifiers is the Satisfiability
Modulo Theory (SMT) solver. This thesis introduces our state-of-the-art distributed SMT
solver, which establishes the groundwork for developing more efficient distributed neural
verifiers.

Although seemingly unrelated at first glance, a common thread connecting the three
challenges is the significant difficulty in scaling existing tools to effectively verify a sub-
stantial portion of the input space for a large deep neural network (DNN), considering
commonly utilized specifications and the concept of “safety” (adversarial robustness). This
thesis hypothesizes that by extending the existing specifications with an explanation func-
tion, verifying these new specifications becomes both more meaningful and more compatible
with existing verification tools. However, any novel verification problem also necessitates
the development of improved tools: the problem and its solvers interact symbiotically,
with compelling problems driving developers to enhance tool efficiency, and better tools
expanding the design space for researchers to conceive even more interesting and challeng-
ing specifications.
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Contributions and Organizations In this thesis, we present a series of results that
build up on both fronts – the specification and the tool.

• In Chapter 2, we briefly introduce necessary background on Neural Networks, Neural
Network Explanation and Verification, and SMT solving.

• In Chapter 3, we study the MNIST and CIFAR10 dataset and argue that the widely
used point-wise ϵ-robustness specification is limited: most real datapoints lie outside
of the maximum verifiable region. Consequently, given that specification and any
verification tool, even if we can verify the maximum area surrounding all datapoints
in the dataset, any unseen datapoint will still be in an unverified region! In other
words, no matter how good the tool is, we cannot verify any unseen datapoint. Thus,
we propose a novel specification in which the specification looks at not only the
datapoint, but also the activation pattern of the neural network for that datapoint.

• In Chapter 4, we build a distributed SMT solver based on cvc5- a state-of-the-art
SMT solver. As we discuss in Chapter 2, many neural network verification problems
can be viewed as SMT problems in Quantifier-free Linear Real Arithmetic (QF-
LRA). Up until now, most SMT solvers are single-threaded, and thus cannot be
scaled horizontally to solve a problem faster. Building an efficient distributed SMT
solver is a major step toward building efficient neural network verifiers for bigger
neural networks over larger input spaces.

• In Chapter 5, we study saliency map methods for DNNs and propose novel safety
specifications for them. We focus on Vanilla Gradient – the earliest yet surprisingly
effective saliency map. We argue that while our proposed specifications can be en-
coded and solved as a QF-LRA problem, off-the-shelf SMT solvers cannot solve them
effectively. Thus, we propose a novel method combining both Abstraction-based and
Constraint-based neural network verifiers to solve our specifications.

• In Chapter 6, we propose and verify novel safety properties for mechanical interpre-
tation – the state-of-the-art explanation methods for large language models (LLMs).
We contend that although the scale of LLMs often exceeds the verification capa-
bilities of existing neural network verifiers, the apparatuses utilized in mechanical
interpretation (probes) are of manageable scales and constitute intriguing targets for
verification.

• We further outline a number of future extensions in Chapter 7, and conclude in
Chapter 8.
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Chapter 2

Preliminaries

Verifying and Explaining Neural Networks is a rich research area that lies in the intersection
of Deep Learning, Constraint solving, and Abstract Interpretation. In this chapter, we
briefly introduce the most relevant background from each field to the thesis, as well as
survey important related work. We also introduce the datasets and neural net architectures
that we use throughout the thesis.

2.1 Targeted neural network architectures

Over the years, many neural network architectures have been introduced to solve differ-
ent tasks: Feed-forward Neural Networks (FNNs) (including Convolutional Neural Net-
works [97]) process data in one direction, making them suitable for tasks like image recog-
nition. Recurrent Neural Networks [113] (RNNs) handle sequential data, like text, with
loops that allow memory of previous inputs; LSTMs [58] enhance this by retaining informa-
tion over longer sequences. Generative Adversarial Networks [45] (GANs) create realistic
data samples through a generator and discriminator. Graph Neural Networks [140] (GNNs)
process and analyze data structured as graphs, capturing relationships and dependencies
between nodes in tasks like node classification, link prediction, and graph classification.
Transformer networks [130] excel in natural language processing by managing long-range
dependencies and parallel computations, leading to the creation of Large Language Models
(LLMs). In this thesis, we focus on FNNs and Transformer/LLMs.
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Figure 2.1: Using Marabou to verify NAP properties of XNET.

2.1.1 Feed-forward Neural Networks

A feed-forward neural network N of L layers is a set {(W i, bi) | 1 ≤ i ≤ L}, where W i

and bi are the weight matrix and the bias for layer i, respectively. The neural network N
defined a function FN : Rd0 → RdL (d0 and dL represent the input and output dimension,
respectively), defined as FN (x) = zL(x), wherez0(x) = x, zi(x) = W iσ(zi−1(x)) + bi and
σ is the activation function. Neurons are indexed linearly by v0, v1, · · · . In this thesis, we
focus only on the ReLU activation function, i.e., σ(x) = max(x, 0) element-wise, but the
idea and techniques can be generalized for different activation functions and architectures
as well. The ith element of the prediction vector FN (x)[i] represents the score or likelihood
for the ith label, and the one with the highest score (arg maxi FN (x)[i]) is often considered
as the predicted label of the network N . We denote this output label as ON (x). When
the context is clear, we omit the subscript N for simplicity.

A running example To help with illustrating later ideas, we present a two-layer
feed-forward neural network XNET (Figure 2.1a) to approximate an analog XOR function
f(x0, x1) : [[0, 0.3] ∪ [0.7, 1]]2 → {0, 1} such that f(x0, x1) = 1 iff (x0 ≤ 0.3 ∧ x1 ≥ 0.7) or
(x0 ≥ 0.7 ∧ x1 ≤ 0.3). The network computes the function

FXNET(x) = W 1 max(W 0(x) + b0, 0) + b1

where x = [x0, x1], and values of W 0,W 1, b0, b1 are shown in edges of Figure 2.1a. O(x) =
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0 if FXNET(x)[0] > FXNET(x)[1], O(x) = 1 otherwise.

Note that the weights and biases are not arbitrary. We have obtained it by constructing
two sets of 1 000 randomly generated inputs, and training on one and validating on the
other until the NN achieved a perfect F1-score of 1.

2.1.2 Large language models/The Transformer Architecture

In recent years, Large Language Models (LLMs) have been at the forefront of natural
language processing (NLP) and artificial intelligence (AI). ChatGPT, arguably the most
renowned LLM, has permeated the public consciousness, consistently making headlines
due to its exceptional performance across a wide array of language tasks. At the heart
of ChatGPT and all other LLMs is a neural network architecture pioneered by [130] –
The Transformer. Although the architecture outlined in the original paper is designed for
machine translation, adhering to an Encoder-Decoder framework, most subsequent large
language models adopt a Decoder-only architecture, which we describe below.

The Decoder-only Transformer Architecture The Decoder-only Transformer ar-
chitecture is a streamlined version of the original Transformer, focusing solely on the
generative aspect of language modeling. It eliminates the need for an encoder, making
it particularly suitable for tasks such as text generation, completion, and autoregressive
modeling. Below is a formal description of its components and mathematical definitions.

• Self-Attention Mechanism The self-attention mechanism in a decoder-only Trans-
former computes a weighted sum of values, where the weights are determined by the
similarity between queries and keys. Given an input sequence X ∈ Rn×d, where n is
the sequence length and d is the dimension of the embeddings, the query Q, key K,
and value V matrices are defined as:

Q = XWQ, K = XWK , V = XWV

where WQ,WK ,WV ∈ Rd×dk are learned projection matrices, and dk is the dimension
of the queries and keys.

The attention scores are computed as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V
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To ensure causality (i.e., each position can only attend to earlier positions), a mask
is applied:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

+ M

)
V

where M is a mask matrix with Mij = −∞ for j > i and 0 otherwise, ensuring no
information flow from future tokens.

• Multi-Head Attention The multi-head attention mechanism allows the model to
focus on different parts of the sequence simultaneously. It is computed as follows:

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)WO

where each headi is calculated as:

headi = Attention(QWQi
, KWKi

, V WVi
)

and WQi
,WKi

,WVi
∈ Rd×dk , WO ∈ Rhdk×d.

• Positional Encoding Since the Transformer does not inherently capture the order
of the sequence, positional encodings are added to the input embeddings:

PE(pos,2i) = sin
( pos

100002i/d

)
, PE(pos,2i+1) = cos

( pos

100002i/d

)
where pos is the position and i is the dimension index.

• Layer Normalization and Residual Connections Layer normalization and resid-
ual connections are applied to each sub-layer to stabilize and enhance the training
process:

LayerNorm(x + Sublayer(x))

where the sub-layer could be either the multi-head attention or the feed-forward
network.
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• Transformer Decoder Layer. Full Decoder-Only Transformer Model A
single decoder layer in the Transformer consists of a masked multi-head self-attention
mechanism followed by a feed-forward neural network.

The complete decoder-only Transformer model is built by stacking N identical de-
coder layers. The output of the final decoder layer is passed through a linear layer
followed by a softmax function to generate the probability distribution over the target
vocabulary:

Transformer(X) = softmax(Linear(Decoder(X)))

where Decoder(X) represents the stacked decoder layers applied to the input sequence
X.

2.2 Adversarial attacks against neural networks and

the robustness verification problem

Given a neural network N , the aim of adversarial attacks is to find a perturbation δ of
an input x, such that x and x + δ are “similar” according to some domain knowledge, yet
O(x) ̸= O(x + δ). In this thesis, we use the common formulation of “similarity” in the
field: two inputs are similar if the L∞ norm of δ 1 is small. Under this formulation, finding
an adversarial example can be defined as solving the following optimization problem:2

min||δ||∞ s.t O(x) ̸= O(x + δ)

In practice, it is very hard to formally define “similar”: should an image and a crop
of it “similar”? Should two sentences differ by one synonym the same? We refer curious
readers to the survey [141] for a comprehensive review of different formulations.

One natural defense against adversarial attacks, called robustness verification, is to
prove that min ||δ||∞ must be greater than some user-specified threshold ϵ. Formally, given
that O(x) = i, we verify

∀x′ ∈ B(x, ϵ) · ∀j ̸= i · F (x′)[i]− F (x′)[j] > 0 (2.1)

where B(x, ϵ) is a L∞ norm-ball of radius ϵ centered at x: B(x, ϵ) = {x′ | ||x− x′||∞ ≤ ϵ}.
If Eq. (2.1) holds, we say that x is ϵ-robust.

1L∞(δ) = ||δ||∞ = max(|δ0|, |δ1|, ...) where δ is the vector [δ0, δ1, ...]
2While there are alternative formulations of adversarial robustness (see [141]), in this document, we

use adversarial attacks as a black box, thus, stating one formulation is sufficient.
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2.3 SAT/SMT. Verifying neural networks as an SMT

problem. Solving SAT/SMT.

The Boolean Satisfiability (SAT) problem Given a formula over Boolean variables
and Boolean gates ∧ (and), ∨ (or), ¬ (not), such as

(A ∨B) ∧ (C ∨D) ∧ ¬B

the SAT problem is to find the assignment for each of the variables (A, B, C and D in this
example) so that the whole formula is evaluated to True. If such an assignment exists, we
report SAT. If not, we report UNSAT. We introduce here some terminologies frequently
used in SAT:

• A literal is either a variable or its negation, e.g A,¬B

• A clause is a disjunction of literals, e.g a clause c = ℓ0 ∨ ℓ1... ∨ ℓk

• A unit clause is a clause that contains exactly one literal

• A formula is in a CNF if it is a conjunction of clauses, e.g a CNF formula F =
c0 ∧ c1 ∧ ...ci

The Satisfiability modulo theories (SMT) problem While many problems in Com-
puter Science and Mathematics can be encoded into SAT [54, 123], its expressiveness is
still limited. SMT - Satisfiability modulo theories, is a natural extension of SAT in which
Boolean variables could be extended to predicates in different theories. For example, an
SMT formula in Quantifier-free Linear Real Arithmetic (QF-LRA):

(x + 1 > 0 ∨ x + y > 0)

∧(x < 0 ∨ x + y > 4)

∧¬(x + y > 0)

The SMT problem is to find the assignment for each of the variables (x and y in this
example) so that the whole formula is evaluated to True with respect to the theories.
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Encoding DNNs and robustness properties as SMT formulas Any DNN can be
encoded as an SMT formula. More specifically, the networks 3 considered in this thesis
(feed-forward DNNs using ReLU activations) can be encoded as SMT formulas in QF-LRA.
The encoding starts with creating a real variable for each variable in the input and the
output. Then, for each layer, each neuron in the layer can be written as a constraint over
its inputs.

• For a linear layer zi = W ihi−1 + bi, the jth variable in the output is encoded as

zij =

len(hi−1)∑
k=1

W i
k,j ∗ hi−1

k + bij (2.2)

• For a ReLU layer hi = ReLU(zi), the jth variable in the output is encoded as

hi
j = max(0, zij) (2.3)

or

hi
j = if-then-else(zij > 0, zij, 0) (2.4)

The first 8 equations in Fig. 2.1b demonstrate how to encode XNET into SMT using this
encoding.

More importantly, the specification of the robustness problem can also be encoded in
QF-LRA: in Eq. (2.1), the neural network function F can be encoded in QF-LRA, the
quantifier for x′ can be written as linear bounds over each variable in the input, and since
there are a fixed number of classes, the quantifier over i and j can be removed by checking
Eq. (2.1) for each of the pair (i, j). Concretely, Fig. 2.1b shows how the neural network
XNET and a verification specification can be encoded into a single SMT problem over
QF-LRA.

Solving SAT/SMT We introduce here only the most relevant SAT/SMT terminologies
and algorithms to the thesis. Since SAT/SMT are some of the most important and well-
studied problems in computer science, it is impossible to survey all the work given the
scope of this thesis. We refer curious readers to a more comprehensive study at [42].

3While in Chapter 6 we verify an explanation method for LLM, we do so by only looking at the task
heads of the LLMs, which are feed-forward DNNs
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Algorithm 1: The DPLL algorithm. Note that in the case of returning SAT, the
assignment is not explicitly returned, but implied by the trace.

Input: A formula F in CNF
Output: SAT or UNSAT

1 while there is a unit clause c in F do
2 F ← F [c← True];
3 if F = True then
4 return SAT;
5 for variable v ∈ F do
6 if DPLL(F [v ← True]) = SAT then
7 return SAT;
8 if DPLL(F [v ← False]) = SAT then
9 return SAT;

10 return UNSAT;

Solving SAT with DPLL. Given a SAT problem, one naive way to decide its satis-
fiability is by trying every possible value and checking if the formula is evaluated to True.
Given a formula of n variables, that means combing through all 2n combinations, so this
blind search approach doesn’t scale very far. One of the earliest successful attempts to
avoid doing a completely blind search is DPLL [33, 32].

Given a Boolean formula in CNF 4, DPLL alternates between two procedures: Boolean
constant propagation (BCP), and search. During BCP, DPLL looks for all unit clauses
and assigns the sole literals in them to True. This may change some other non-unit clauses
into unit clauses. Consider the following example:

F = A ∧ (¬A ∨B)

A is a unit clause, thus BCP assigns A to True. We have

F = (True) ∧ (¬True ∨B)

= (False ∨B)

= B

At this point, we have another unit clause B.

4Fortunately, there are algorithms to convert an arbitrary Boolean formula to CNF, such as Tseytin
transformation [129].
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Given that BCP can create more unit clauses, DPLL runs BCP till a fixed-point, where
no new unit clauses are introduced. At this point, DPLL employs the second procedure
– search, which picks a variable and assigns a value to it. Together, the whole DPLL
algorithm is summarized in Alg. 1

Algorithm 2: Typical CDCL algorithm

Input: A formula F in CNF, a trace ν
Output: SAT if F is satisfiable, UNSAT otherwise

1 if (BCP(F, ν) == CONFLICT) then
2 return UNSAT;
3 dl← 0 ; // Decision level

4 while (not AllVariablesAssigned(F, ν)) do
5 (x, v)← PickBranchingVariable(F, ν) ; // Decide stage

6 dl← dl + 1 ; // Increment decision level due to new decision

7 ν ← ν ∪ {(x, v)};
8 if (BCP(F, ν) == CONFLICT) then
9 β ← ConflictAnalysis(F, ν) ; // Conflict Analysis

10 if (β < 0) then
11 return UNSAT;
12 else
13 Backtrack(F, ν, β);
14 dl← β ; // Decrement decision level due to backtracking

15 return SAT;

Conflict-driven Clause Learning (CDCL) The original DPLL algorithm laid the
foundation for SAT solving, but it had some limitations. CDCL [85] was developed to
address these limitations by incorporating advanced techniques that significantly improve
the performance of SAT solvers. While DPLL relies on backtracking when a conflict
(contradiction) is encountered, CDCL improves upon this by analyzing conflicts when
they occur, thus reducing the amount of redundant backtracking. It learns new clauses
(conflict or learned clauses) that prevent the solver from repeating the same mistake. On
top of that, CDCL uses Non-Chronological Backtracking (by using a trace ν to keep track
of the made decisions), allowing the solver to jump back more than one level in the decision
tree, directly to the point where the actual cause of the conflict originated. This results
in fewer backtracks and faster convergence (compared to DPLL where the solver can only
undo the most recent decision). Alg. 2 shows a typical CDCL algorithm.

Solving SMT with CDCL(T). To solve an SMT formula F, the most common
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Algorithm 3: The CDCL(T) loop

Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F );
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 conflict , changed ← theoryCheck() ;

8 while changed ∧ conflict = ∅;
9 if conflict ̸= ∅ then

10 level , lemma ← resolveConflict(conflict);
11 clauseDB ← clauseDB ∪ lemma;
12 if level < 0 then
13 return UNSAT;
14 backtrack(level) ;

15 else
16 if nextLiteral() = NULL then
17 return SAT ;

strategy (CDCL(T) [95]) is to solve the Boolean version of it first. Through a process
called Boolean Abstraction [95], each unique theory predicate is abstracted by a Boolean
variable, thus converting the original SMT formula into a Boolean formula. For example,
consider the following SMT formula

F = (x > 0 ∨ x < y) ∧ ¬(x > 0)

its Boolean abstracted formula is

F ′ = (A ∨B) ∧ ¬A

The mapping {x > 0 : A, x < y : B} is called the Theory Atom Map, and its keys are
called Theory Atoms. If the Boolean abstracted formula is UNSAT, it is safe to say that
the original SMT problem is also UNSAT. If there exists an assignment I for the abstracted
formula, at this point it is necessary to invoke the theory solvers to check if the assignment
also satisfies the theory. If yes, we find an assignment for F. If not, the theory solvers
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returns a reason why the current assignment is UNSAT through a learned clause cT . The
algorithm is summarized in Alg. 3.

2.4 Neural network verifiers

As discussed earlier, the neural network verification problem can be encoded as QF-LRA
formulas, thus in theory can be solved by any off-the-shelf SMT solver such as Z3 [34]
or CVC5 [9]. However, this naive approach doesn’t scale beyond tiny networks. Thus,
researchers have invented specialized tools to verify the robustness of neural networks. In
this section, we look at the two major classes of neural network verifiers: constraint-based
and abstraction-based. For a more comprehensive survey of existing verification algorithms
and tools for neural networks, we refer curious readers to [81] and [3].

2.4.1 Constraint-based verifiers

SMT solvers usually support multiple theories (e.g. string, bitvector, etc.) as well as a
combination of them, while neural network verifiers only need to reason about Quantifier-
free Linear Real Arithmetic. Thus, dedicated neural network verifiers can exploit heuristics
and architectures that may not applicable to other theories. To demonstrate this idea, we
discuss one Constraint-based verifier – Marabou [70].

Marabou is a dedicated state-of-the-art NN verifier. Marabou extends the Simplex [94]
algorithm for solving linear programming with special mechanisms to handle non-linear
activation functions. Internally, Marabou encodes both the verification problem and the
adversarial attacks as a system of linear constraints (the weighted sum and the properties)
and non-linear constraints (the activation functions). For example, Fig. 2.1b shows how to
encode the property that XNET is 0.04-robust at (0.06, 0.06). Same as Simplex, at each
iteration, Marabou tries to fix a variable so that it doesn’t violate its constraints. While in
Simplex, a violation can only happen due to a variable becoming out-of-bound, in Marabou
a violation can also happen when a variable doesn’t satisfy its activation constraints.

By focusing only on neural networks with piecewise-linear activation functions, Marabou
makes two insights: first, only a small subset of the activation nodes are relevant to the
property under consideration. Hence, Marabou treats the non-linear constraints lazily
and reduces the number of expensive case-splits, making it much faster than traditional
SMT solvers. Second, Marabou repeatedly refines each variable’s lower and upper bound,
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hoping that many piecewise-linear constraints can be turned into linear (phase-fixed), re-
ducing further the need for case splitting. Altogether, Marabou achieves state-of-the-art
performance on a wide range of benchmarks [7].

2.4.2 Abstraction-based verifiers

While Constraint-based verifiers such as Marabou can solve the encoded neural network
verification precisely, their scalability remains an issue: at the end of the day, SMT prob-
lems are at best NP-complete (as hard as its Boolean abstracted SAT problem). Thus,
ones may wish to make the problem easier by abstracting (over-approximating) the se-
mantics of a DNN, in hope of claiming UNSAT faster. This approach is often known as
Abstract Interpretation [28]. Concretely speaking, the aim of abstraction-based verifiers is
to convert the original problem (which is NP-complete) to a Linear Programming problem
(which can be solved in polynomial time) by abstracting away the source of non-linearity
– the ReLU activation function. Then, given than O(x) = i, abstraction-based verifiers
solve the optimization problem

∀j ̸= i · min
x′∈B(x,ϵ)

F ∗(x′)[i]− F ∗(x′)[j] (2.5)

in which F ∗ is the abstracted version of the neural network function F . If the minimum is
greater than 0, it is safe to say that F (x′)[i]− F (x′)[j] > 0, making Eq. (2.1) true.

While often much faster than Constraint-based verifiers, Abstraction-based verifiers
are not precise: if the computed minimum is smaller than 0, the verifier cannot conclude
anything about the property. As with DPLL(T), at this point, we may need to add back
some or all constraints from the original problem to check if the computed minimum is still
satisfiable. This trade-off between being more precise and more efficient is the one that
all abstraction-based verifiers have to balance. In this section, we survey some of the most
prominent ones.

ERAN [121, 120] is an abstraction-based verifier that use polyhedron (concretely tri-
angles) to approximate ReLU as well as other activation functions. Fig. 2.2 demonstrates
this strategy. Given the same lower and upper bound to the input, this is also the tightest
convex polyhedron that can be used to approximate the ReLU functions: the only way to
be tighter is to “bend” the top face downwards, thus losing convexity. Recent extensions
to ERAN include (but are not limited to) approximating multiple ReLUs at the same time
[119, 92] and a GPU-based implementation [110].
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(a) A ReLU (bold line) and its polyhedron
(triangle) abstraction (shaded area)

x ≤ u

x ≥ l

y ≥ 0

y ≥ x

y ≤ u(x− l)

u− l

(b) Approximating y = ReLU(x) knowing
the lower bound l and upper bound u of x

Figure 2.2: Approximating ReLUs using a polyhedron (triangle) in ERAN.

The Neural Network Verification (NNV) toolbox [127] , written in MATLAB, is
designed for the formal analysis and verification of deep neural networks. NNV also uses
polyhedron approximation but represents the abstracts using the star set representation
[6]. This representation allows efficient over-approximation of the reachable sets, which is
crucial for verifying neural network behavior.

α-Crown uses a 2-line abstraction for ReLU, as illustrated in Fig. 2.3. While being
less tight than using triangles given the same lower and upper bounds, α-Crown makes
the insight that now the bounds are functions of α, thus by optimizing α, α-Crown can
derive tighter lower and upper bounds for each neuron. Recent extensions to α-Crown
include (but are not limited to) α, β-Crown, which compute the exact minimum through
branch-and-bound, making the method precise (at the cost of having the same worst-case
complexity as solving QF-LRA).

2.5 Explanable Machine Learning

In contrast to traditional software in which both the code and the algorithms behind it are
created by humans, DNNs are only designed by humans but their concrete parameters are
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(a) A ReLU (bold line) and its linear ab-
straction (shaded area). The lower line has
the equation y = αx

x ≤ u

x ≥ l

y ≥ αx where 0 < α < 1

y ≤ u(x− l)

u− l

(b) Approximating y = ReLU(x) knowing
the lower bound l and upper bound u of x

Figure 2.3: Linear approximation for ReLUs in α-Crown.

learned from the data. Thus, DNNs’ calculation process is often regarded as a “black box”,
and researchers have been trying to create tools and methods to explain what exactly is
happening during a DNN’s computation. We survey here some of the methods that are
most relevant to the thesis and refer curious readers to [87] for a more detailed study.

In all of the surveyed methods, we use the same setup: given an input x ∈ Rd0 , a model
describes a function FN : Rd0 → RdL where dL is the number of classes in the classification
problem (or the output dimension). An explanation method constructs an explanation
map E : Rd0 → Rd0 that maps inputs to objects of the same dimensions.

2.5.1 Abductive explanations

Given an input x ∈ Rd0 and its predicted label O(x), an abductive explanation, or an AXP
of x is a mapping EAXP : Rd0 → {0, 1}d0 s.t

∀x′ ∈ Rd0 ·
∧

EAXP (x)i=1

(x′
i = xi) =⇒ O(x′) = O(x) (2.6)

Intuitively, the AXP constructs a subset of pixels of the original input (EAXP (x)i = 1)
such that if those pixels are of exact values (∀x′ ∈ Rd0 · x′

i = xi), then the picture must
be of a certain class (O(x′) = O(x)), no matter the values of the other pixels. One trivial
AXP is the set of all features: if the value of all features is fixed, its output must be fixed
as well. Hence, the research interest lies in finding the AXP of the smallest size.
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2.5.2 Feature attribution (Saliency Map)

Feature attribution methods aim to compute a subset of the input’s features that are most
relevant to the final classification. For images, the features are pixels. For text, the features
are words. Different methods differ by the exact formulation of “relevant”. For images,
the most commonly used formulation is the saliency map and its extensions.

Vanilla Gradient [117] (Saliency Maps). In this method, the pixels that are the most
relevant are the ones with the highest gradients with respect to the predicted class. Con-
cretely, we compute the gradient

ESM(x) =
δO(x)

δx
(2.7)

The problem with Saliency Map lies in the fact that the gradient through ReLU is the
same (0) for any input that is less than 0. To see why this is a problem, consider this toy
neural net

y = 1−ReLU(1− x0 − 2 ∗ x1)

equivalently

y = x0 + 2 ∗ x1 if x0 + 2 ∗ x1 ≤ 1, 1 otherwise.

Suppose that we label y “good” if y = 1, “bad” otherwise. Given the input x0 = 0, x1 = 0.6,
y is classified by the network as “good”. However, the computed gradients with respect to
y are 0 for both, telling us nothing about which of the two inputs contributes more to the
fact that the predicted label is “good”. This situation is known as “gradient saturation”.
Multiple works have been proposed to mitigate this: Gradient ⊙ Input [115] computes

Eprod(x) = x⊙ δO(x)

δx
(2.8)

which leverages the sign and strength of the input, but doesn’t completely overcome the
gradient saturation problem. Smooth Grad [122] averages over saliency maps of noisy
copies of an input by computing

ESG(x) =
1

N

N∑
i

ESM(x + gi) (2.9)
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in which gi are noise vectors drawn i.i.d from a normal distribution. Similarly, Integrated
Gradient [124] integrates the gradients as the inputs are scaled up from some baseline value
x̄ (eg: x̄ = 0⃗) to their current value x, i.e computing

EIG(x) = (x− x̄)

∫ 1

0

δO(x̄ + α(x− x̄))

δ(x)
dα (2.10)

Both Smooth Grad and Integrated Gradient address the gradient saturation problem [115],
and are usually preferable to Vanilla Gradient.

2.5.3 Mechanical Interpretation of Large Language Models

Recent advancements in large language models (LLMs) have opened a fascinating array of
capabilities. Originally designed for predicting the next token in a sequence, these networks
have demonstrated proficiency in tasks that seemingly require a deep understanding of
the underlying systems, such as solving logic puzzles [82] and generating working code
snippets [104, 143]. Do these networks simply memorize conditional statistics, or do they
implicitly construct internal representations of the process that generates the sequences
they see? To answer this, researchers proposed a set of techniques, subsequently referred
to as “mechanical interpretation”, to investigate whether an LLM construct a real world
model in its internal states.

Probing The first technique is to “probe” the internal representation of the network
[]. Let N be a neural network that takes in an input x and produces some internal
representation hN (x). Let F be a feature of x: e.g a chess board represented by a sequence
of moves x, an AST corresponding to a code snippet x, etc. A probe P is a neural network
that takes hN (x) as an input, and outputs feature F(x) of x. If we can train P such that
P(hN (x)) ≈ F(x), then we have more confidence that the internal representation hN (x)
encodes some forms of F .

Intervention The second technique is to corrupt, or intervene the internal representation
of the network. For this technique, we assume the existence of a highly accurate probe P .
We divide the neural network N into 2 parts: a head H and a tail T , such that

H(x) = hN (x) (2.11)

T (hN (x)) = N (x) (2.12)
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For example, given a 10-layer LLM, the head can be the first 8 layers and the tail be the
last 2 layers.

Let N (x) be the predicted output of the network. If for a large number of x, we can
reliably find a perturbation vector δ s.t

T (hN (x) + δ) = N (x′) (2.13)

P(hN (x) + δ) = F(x′) (2.14)

then we can conclude that the representation space has a causal effect on the model. In
words, that means if we can move in the representation space such that the probe and the
network agree on the output, then we conclude about the causality.

2.6 Datasets and Target Networks

Throughout the document, we use the following datasets and pretrained networks accom-
panying them.

ACAS-Xu Modern aircrafts rely on automated collision avoidance systems to ensure
their safe operation. Among them, one recent system known as Airborne Collision Avoid-
ance System X - unmanned variant (ACAS Xu) [68], uses a large lookup table to map 7
sensor measurements to one of the 5 possible advisories (Table 2.1). This lookup table
requires over 2GBs of memory, causing concerns for certified avionics hardware. One pro-
posed solution is to use a much smaller DNN (in term of required memory) to replace the
lookup table [68]. To improve the memory footprint even further, two of the features in
the lookup tables are concretized, and the single proposed DNN is replaced by a set of
45 DNNs, corresponding to all 45 possible values of the feature combination. The original
lookup table (120 millions datapoints) serves as the dataset for both training and testing
the DNNs.

For ACAS-Xu, our verification targets are the 45 DNNs pretrained by [68]. They are
all ReLU-activated Fully connected networks, with 6 layers and 300 ReLUs in total.

MNIST The Modified National Institute of Standards and Technology database [75]
(MNIST) is a dataset of handwritten digits that is used for training digit recognition.
The dataset contains 60,000 training images and 10,000 testing images. All inputs are
grayscale images of size 28× 28 pixels, and outputs are one of the 9 possible digits.
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Input features Possible outputs
Distance from ownship to intruder Clear-of-Conflict (COC)
Angle to intruder relative to ownship heading direction Weak right
Heading angle of intruder relative to ownship heading direction Strong right
Speed of ownship Weak left
Speed of intruder Strong left
Time until loss of vertical separation*
Previous advisory (output)*

Table 2.1: Inputs and outputs of the ACAS-Xu Systems. (*) The last 2 input features are
concretized to the set of 45 possible values, hence the array of 45 DNNs.

For MNIST, we verify the set of the ReLU-activated Fully connected networks from
VNNCOMP-2021 [7], with 256 ReLUs per layer and up to 6 layers.

CIFAR10 The CIFAR-10 dataset is a dataset of color images that is used for training
image classification. The dataset has 60,000 images of 10 object classes, with exactly 6000
images per class. There are 50,000 training images and 10,000 test images. Inputs are of
the size 3× 32× 32: every image is of the size 32× 32, and each pixel has 3 color channels
(red, green, and blue). Unlike bigger image recognition datasets ([105, 78]), the classes are
completely mutually exclusive, i.e an image can only be a truck or an automobile, but not
both.

For CIFAR-10, we verify the set of ReLU-activated Convolutional neural networks from
VNNCOMP-2021, each network has 2 convolutional layers followed by two fully connected
feed-forward layers, with up to 10528 ReLUs in total.

OthelloGPT To study LLM and mechanical interpretation, we use the OthelloGPT
model and the set of Othello games suggested in [77]. The board game Othello is played
on an 8 by 8 board. Two players take turn to place white or black discs on the board.
We use the two synthetic datasets used in [77]: a “legal” dataset in which 20 millions
random games are recorded, and the model is tasked to predict the next legal move; a
“championship” dataset collected from online sources, in which the model is tasked to
predict the next best move. For both datasets, we use the pretrained 8-layer GPT models,
both with an 8-head attention mechanism and a 512-dimensional hidden space.
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Chapter 3

Towards Reliable Neural
Specifications

3.1 Introduction

The advances in deep neural networks (DNNs) have brought a wide societal impact in
many domains such as transportation, healthcare, finance, e-commerce, and education.
This growing societal-scale impact has also raised some risks and concerns about errors in
AI software, their susceptibility to cyber-attacks, and AI system safety [36]. Therefore,
the challenge of verification and validation of AI systems, as well as, achieving trustworthy
AI [138], has attracted much attention of the research community. Existing works approach
this challenge by building on formal methods – a field of computer science and engineering
that involves verifying properties of systems using rigorous mathematical specifications and
proofs [137]. Having a formal specification — a precise, mathematical statement of what AI
system is supposed to do is critical for formal verification. Most works [69, 70, 62, 60, 133]
use the specification of adversarial robustness for classification tasks that states that the
NN correctly classifies an image as a given adversarial label under perturbations with a
specific norm (usually L∞). Generally speaking, existing works use a paradigm of data
as specification — the robustness of local neighborhoods of reference data points with
ground-truth labels is the only specification of correct behaviors. However, from a learning
perspective, this would lead to overfitted specification, since only local neighborhoods of
reference inputs get certified.

As a refresher, Figure 1.2 illustrates this fundamental limitation of such overfitted
specifications. Specifically, the test input Fig. 1.2a can hardly be verified even if all local
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neighborhoods of all training images have been certified using the L∞ norm. This is
because adversarial examples like Fig. 1.2c lie in a much closer region compared to testing
inputs (e.g., Fig. 1.2a), as a result, the truly verifiable region for a given reference input
like Fig. 1.2b can only be smaller. All neural network verification approaches following
such data-as-specification paradigm inherit this limitation regardless of their underlying
verification techniques. In order to avoid such a limitation, a new paradigm for specifying
what is correct or wrong is necessary. The intrinsic challenge is that manually giving a
proper specification on the input space is no easier than directly programming a solution
to the machine learning problem itself. We envision that a promising way to address this
challenge is developing specifications directly on top of, instead of being agnostic to, the
learned model.

We propose a new family of specifications, neural representation as specification, where
neural activation patterns form specifications. The key observation is that inputs from the
same class often share a neural activation pattern (NAP) – a carefully chosen subset of
neurons that are expected to be activated (or not activated) for the majority of inputs in
a class. Although two inputs are distant in a certain norm in the input space, the neural
activations exhibited when the same prediction is made are very close. For instance, we
can find a single NAP that is shared by nearly all training and testing images (including
Fig. 1.2a and Fig. 1.2b) in the same class but not the adversarial example like Fig. 1.2c.
We can further formally verify that all possible inputs following this particular NAP can
never be misclassified. Specifications based on NAP enable successful verification of a
broad region of inputs, which would not be possible if the data-as-specification paradigm
were used. For the MNIST dataset, a verifiable NAP mined from the training images could
cover up to 84% testing images, a significant improvement in contrast to 0% when using
neighborhoods of training images as the specification. To our best knowledge, this is the
first time that a significant fraction of unseen testing images have been formally verified.

This unique advantage of using NAPs as specification is enabled by the intrinsic infor-
mation (or neural representation) embedded in the neural network model. Furthermore,
such information is a simple byproduct of a prediction and can be collected easily and
efficiently. Besides serving as reliable specifications for neural networks, we foresee other
important applications of NAPs. For instance, verified NAPs may serve as proofs of cor-
rectness or certificates for predictions. We hope our initial findings shared in this chapter
would inspire new interesting applications. We summarize our contribution as follows:

• We propose a new family of formal specifications for neural networks, neural rep-
resentation as specification, which use activation patterns (NAPs) as specifications.
We also introduce a tunable parameter to specify the level of abstraction of NAPs.
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• We propose a simple yet effective approximate method to mine NAPs from neural
networks and training datasets.

• We show that NAPs can be easily checked by out-of-the-box neural network verifica-
tion tools used in VNNCOMP – the annual neural network verification competition,
such as Marabou.

• We conduct thorough experimental evaluations from both statistical and formal ver-
ification perspectives. Particularly, we show that a single NAP is sufficient for certi-
fying a significant fraction of unseen inputs.

3.2 Neural activation patterns

In this section, we discuss in detail neural activation patterns (NAPs), what we consider
as NAPs and how to relax them, and what interesting properties of NAPs can be checked
using neural network verification tools like Marabou [70].

3.2.1 NAPs and their relaxation

In our setting (Chapter 2), the output of each neuron is passed to the ReLU function
before going to neurons of the next layer, i.e., zi(x) = W iσ(zi−1(x)) + bi. We abstract
each neuron into two states: activated (if its output is positive) and deactivated (if its
output is non-positive). Clearly, for any given input, each neuron can be either activated
or deactivated.

Definition 3.2.1 (Neural Activation Pattern). A Neural Activation Pattern (NAP) of a
neural network is a tuple P := (A,D), where A and D are two disjoint subsets of activated
and deactivated neurons, respectively.

Definition 3.2.2 (Partially ordered NAP). For any given two NAPs P̄ := (Ā, D̄) and
P := (A,D). We say P̄ subsumes P iff A,D are subsets of Ā, D̄ respectively. Formally,
this can be defined as:

P̄ ≼ P ⇐⇒ Ā ⊇ A and D̄ ⊇ D (3.1)

Moreover, two NAPs P̄ and P are equivalent if P̄ ≼ P and P ≼ P̄ .
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Definition 3.2.3 (NAP Extraction Function). A NAP Extraction Function E takes a
neural network N and an input x as parameters, and returns a NAP P := (A,D) where A
and D represent all the activated and deactivated neurons of N respectively when passing
x through N .

With the above definitions in mind, we are able to describe the relationship between
an input and a specific NAP. An input x follows a NAP P of a neural network N if:

E(N , x) ≼ P (3.2)

For a given neural network N and an input x, it is possible x follows multiple NAPs.
In addition, there are some trivial NAPs such as (∅, ∅) that can be followed by any input.
From the representational learning point of view, these trivial NAPs are the least specific
abstraction of inputs, which fails to represent data with different labels. Thus, we are
prone to study more specific NAPs due to their rich representational power. Moreover, an
ideal yet maybe impractical scenario is that all inputs with a specific label follow the same
NAP. Given a label ℓ, and let S be the training dataset, and Sℓ be the set of data labeled
as ℓ, Formally, this scenario can be described as:

∀x ∈ Sℓ · E(N , x) ≼ Pℓ ⇐⇒ O(x) = ℓ (3.3)

This can be viewed as a condition for perfectly solving classification problems. In our view,
Pℓ, the NAP with respect to ℓ, if exists, can be seen as a certificate for the prediction of
a neural network: inputs following Pℓ can be provably classified as ℓ by N . However, in
most cases, it is infeasible to have a perfect Pℓ that captures the exact inputs for a given
class. On the one hand, there is no access to the ground truth of all possible inputs; on
the other hand, DNNs are not guaranteed to precisely learn the ideal patterns. Thus, to
accommodate standard classification settings in which Type I and Type II Errors are non-
negligible, we relax Pℓ in such a way that only a portion of the input data with a specific
label ℓ follows the relaxed NAP. The formal relaxation of NAPs is defined as follows.

Definition 3.2.4 (δ-relaxed NAP). We introduce a relaxing factor δ ∈ [0, 1]. We say a
NAP is δ-relaxed with respect to the label ℓ, denoted as Pδ

ℓ := (Aδ
ℓ , D

δ
ℓ ), if it satisfies the

following condition:

∃S ′
ℓ ⊆ Sℓ s.t.

|S ′
ℓ|
|Sℓ|
≥ δ and ∀x ∈ S ′

ℓ, E(N , x) ≼ Pδ
ℓ (3.4)

Intuitively, the δ-relaxed factor controls the level of abstraction of NAP. When δ = 1.0,
not only Pδ=1.0 is the most precise (as all inputs from Sℓ follow it) but also the least
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Algorithm 4: NAP Mining Algorithm

Input : relaxing factor δ, neural network N , dataset Sℓ

1 Initialize a counter ck for each neuron vk;
2 for x ∈ Sℓ do
3 compute E(N , x);
4 if vk is activated then
5 ck += 1

6 Aℓ ← {vk | ck
|Sℓ|
≥ δ};

7 Dℓ ← {vk | ck
|Sℓ|
≤ 1− δ} ;

8 Pδ
ℓ ← (Aℓ, Dℓ);

specific. In this sense, Pδ=1.0 can be viewed as the highest level of abstraction of the
common neural representation of inputs with a specific label. However, being too abstract
is also a sign of under-fitting, this may also enhance the likelihood of Type II Errors for
NAPs. By decreasing δ, the likelihood of a neuron being chosen to form a NAP increases,
making NAPs more specific. This may help alleviate Type II Errors, yet may also worsen
the recall rate by producing more Type I Errors.

In order to effectively mine δ-relaxed NAPs, we propose a simple statistical method
shown in Algorithm 4 1. Table 3.1 reports the effect of δ on the precision recall trade-off
for mined δ-relaxed NAPs on the MNIST dataset. The table shows how many test images
from a label ℓ follow Pδ

ℓ , together with how many test images from other labels that also
follow the same Pδ

ℓ . For example, there are 980 images in the test set with label 0 (second
column). Among them, 967 images follow Pδ=1.0

ℓ=0 . In addition to that, there are 20 images
from the other 9 labels that also follow Pδ=1.0

ℓ=0 . With the decrease of δ, we can see that
in both cases, both numbers decrease, suggesting that it is harder for an image to follow
Pδ=.99

ℓ=0 without being classified as 0 (the NAP is more precise), at the cost of having many
images classified as 0 fail to follow Pδ=.99

ℓ=0 (the NAP recalls worse). In short, the usefulness
of NAPs largely depends on their precision-recall trade-off. Thus, choosing the right δ or
the right level of abstraction becomes crucial in using NAPs as specifications in verification.
We discuss this matter further in Section 3.3.

1Note that this algorithm is an approximate method for mining δ-relaxed NAP, whereas δ should be
greater than 0.5, otherwise, Aδ

ℓ

⋂
Dδ

ℓ ̸= ∅. We leave more precise algorithms for future work.
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Table 3.1: The number of the test images in MNIST that follow a given δ.NAP. For a label
i, i represents images with labels other than i yet follow δ.NAPi. The leftmost column is
the values of δ. The top row indicates how many images in the test set are of a label.

0 1 2 3 4 5 6 7 8 9
(980) (1135) (1032) (1010) (982) (892) (958) (1028) (974) (1009)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

0.00 967 20 1124 8 997 22 980 13 959 25 874 32 937 26 1003 28 941 22 967 12
0.01 775 1 959 0 792 4 787 2 766 3 677 1 726 4 809 2 696 3 828 4
0.05 376 0 456 0 261 1 320 0 259 0 226 0 200 0 357 0 192 0 277 0
0.10 111 0 126 0 43 0 92 0 76 0 24 0 45 0 144 0 44 0 73 0

3.2.2 Interesting NAP properties

We expect that NAPs can serve as the key component in more reliable specifications of
neural networks. As the first study on this topic, we introduce here three important ones.

The non-ambiguity property of NAPs We want our NAPs to give us some con-
fidence about the predicted label of an input, thus a crucial sanity check is to verify that
no input can follow two different NAPs of two different labels. Formally, we want to verify
the following:

∀x · ∀i ̸= j · E(N , x) ≼ Pℓ=i =⇒ E(N , x) ≼− Pℓ=j (3.5)

Note that this property doesn’t hold if either Aℓ=i

⋂
Dℓ=j or Aℓ=j

⋂
Dℓ=i is non-empty

as a single input cannot activate and deactivate the same neuron. If that’s not the case,
we can encode and verify the property using verification tools.

NAP robustness property The intuition of using neural representation as specifi-
cation not only accounts for the internal decision-making process of neural networks but
also leverages the fact that NAPs themselves map to regions of our interests in the whole
input space. In contrast to canonical ϵ-balls, these NAP-derived regions are more flexible
in terms of size and shape. We explain this insight in more detail in Section 3.2.3. Con-
cretely, we formalize this NAP robustness verification problem as follows: given a neural
network N and a NAP Pℓ=i, we want to check:

∀x ∈ R · ∀j ̸= i · F (x)[i]− F (x)[j] > 0 (3.6)

in which

R = {x | E(N , x) ≼ Pℓ=i} (3.7)
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NAP-augmented robustness property Instead of only having the activation pat-
terns as specification, we can still specify ϵ-balls in the input space for verification. This
conjugated form of specification has two advantages: First, it focuses on the verification
of valid test inputs instead of adversarial examples. Second, the constraints on NAPs
are likely to make verification tasks effortless by refining the search space of the original
verification problem, in most cases, allowing the verification on much larger ϵ-balls. We
formalize the NAP-augmented robustness verification problem as follows: given a neural
network N , an input x, and a mined Pℓ=i, we check:

∀x′ ∈ B+(x, ϵ,Pℓ=i) · ∀j ̸= i · F (x′)[i]− F (x′)[j] > 0 (3.8)

in which O(x) = i and

B+(x, ϵ,Pℓ=i) = {x′ | ||x− x′||∞ ≤ ϵ, E(N , x′) ≼ Pℓ=i} (3.9)

Working with NAPs using Marabou In this chapter, we use Marabou [70], a dedi-
cated state-of-the-art NN verifier. Marabou extends the Simplex [94] algorithm for solving
linear programming with special mechanisms to handle non-linear activation functions.
Internally, Marabou encodes both the verification problem and the adversarial attacks as
a system of linear constraints (the weighted sum and the properties) and non-linear con-
straints (the activation functions). Same as Simplex, at each iteration, Marabou tries to
fix a variable so that it doesn’t violate its constraints. While in Simplex, a violation can
only happen due to a variable becoming out-of-bound, in Marabou a violation can also
happen when a variable doesn’t satisfy its activation constraints.

NAPs and NAP properties can be encoded using Marabou with little to no changes
to Marabou itself. To force a neuron to be activated or deactivated, we add a constraint
for its output. To improve performance, we infer ReLU’s phases implied by the NAPs,
and change the corresponding constraints2.For example, given a ReLU vi = max(vk, 0), to
enforce vk to be activated, we remove the constraint from Marabou and add two new ones:
vi = vk, and vk ≥ 0.

3.2.3 Case Study: Visualizing NAPs of a simple Neural Network

We show the advantages of NAPs as specifications using a simple example of a three-layer
feed-forward neural network that predicts a class of 20 points located on a 2D plane. We
trained a neural network consisting of six neurons that achieves 100% accuracy in the

2Marabou has a similar optimization, but the user cannot control when or if it is applied.
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(a) Linear regions in different colors are de-
termined by weights and biases of the neural
network. Points colored either red or green
constitute the training set.

(b) NAPs are more flexible than L∞ norm-
balls (boxes) in terms of covering verifiable
regions.

Figure 3.1: Visualization of linear regions and NAPs as specifications compared to L∞
norm-balls.

prediction task. The resulting linear regions as well as the training data are illustrated
in Fig. 3.1a. Table 3.2 summarizes the frequency of states of each neuron based on the
result of passing all input data through the network, and NAPs for labels 0 and 1. Fig. 3.1b
visualizes NAPs for labels 0 and 1, and the unspecified region which provides no guarantees
on data that fall into it. The green dot is so close to the boundary between Pℓ=0 and the
unspecified region that some L∞ norm-balls (boxes) such as the one drawn in the dashed
line may contain an adversarial example from the unspecified region. Thus, what we could
verify ends up being a small box within Pℓ=0. However, using Pℓ=0 as a specification
allows us to verify a much more flexible region than just boxes, as suggested by the NAP-
augmented robustness property in Section 3.2.2. This idea generalizes beyond the simple
2D case, and we illustrate its effectiveness further with a critical evaluation in Section 3.3.3.
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Table 3.2: The frequency of each ReLU and the dominant NAPs for each label. Activated
and deactivated neurons are denoted by + and −, respectively, and ∗ denotes an arbitrary
neuron state.

Label Neuron states #samples Dominant NAP

0 (Green)
(+,−,−,+,−,+) 8

(+, ∗,−,+,−,+)
(+,+,−,+,−,+) 2

1 (Red)
(+,+,−,−,+,−) 7

(∗,+,−,+,−, ∗)(−,+,−,−,+,−) 2
(+,+,−,−,+,+) 1

3.3 Evaluation

In this section, we validate our observation about the distance between inputs, as well as
evaluate our NAPs and NAP properties on networks and datasets from VNNCOMP-21.

3.3.1 Experiment setup

Our experiments are based on benchmarks from VNNCOMP-21 [7] – the annual neural net-
work verification competition. We use 2 of the datasets from the competition: MNIST and
CIFAR10. For MNIST, we use the two largest models mnistfc 256x4 and mnistfc 256x6,
a 4- and 6-layers fully connected network with 256 neurons for each layer, respectively. For
CIFAR10, we use the convolutional neural net cifar10 small.onnx with 2568 ReLUs.
Experiments are done on a machine with an Intel(R) Xeon(R) CPU E5-2686 and 480GBs
of RAM. Timeouts for MNIST and CIFAR10 are 10 and 30 minutes, respectively.

3.3.2 L2 and L∞ maximum verified bounds

We empirically find that the L2 and L∞ maximum verifiable bounds are much smaller
than the distance between real data, as illustrated in Figure 1.2. We plot the distribution
of distances in L2

3 and L∞ norm between all pairs of images with the same label from
the MNIST dataset, as shown in Figure 3.2. For each class, the smallest L∞ distance of
any two images is significantly larger than 0.05, which is the largest perturbation used in
VNNCOMP-21.

3The L2 metric is not commonly used by the neural network verification research community as it is
less computationally efficient than the L∞ metric.
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(a) The distribution of L2-norms between any
two images from the same label. Images of
digit (label) 1 are much similar than that of
other digits.
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(b) The distribution of L∞-norms between any
two images from the same label. The red
line is drawing at 0.05 – the largest ϵ used in
VNNCOMP-21

Figure 3.2: Distances between any two images from the same label (class) are quite signif-
icant under different metrics of norm.

This suggests that the data as specification paradigm (i.e., using reference inputs with
perturbations bounded in L2 or L∞ norm) is not sufficient to verify test set inputs or
unseen data. The differences between training and testing data of each class are usually
significantly larger than the perturbations allowed in specifications using L∞ norm-balls.

3.3.3 The NAP robustness property

We conduct two sets of experiments with MNIST and CIFAR10 to demonstrate the NAP
and NAP-augmented robustness properties. The results are reported in Tables 3.3 to 3.5.
For label ℓ from 0 to 9, ‘Y’ (‘N’) indicates that the network is (not) robust (i.e., no
adversarial example of label ℓ exists). ‘T/o’ means the verification of robustness timed
out.

MNIST with fully connected NNs In Figure 1.2, we show an illustrative image I (of
digit 1) and its adversarial example within the distance of L∞ = 0.2. As shown in Table 3.3,
three different kinds of counter-example can be found within this distance. In contrast,
the last row shows that all input images in the entire input space following the mined NAP
specification Pδ=0.99

ℓ=1 can be safely verified. It is worth noting that this specification covers
84% (959/1135) of the test set inputs (Table 3.1). To our best knowledge, this is the first
specification for MNIST dataset that covers a substantial fraction of testing images. To
some extent, it serves as a candidate machine-checkable definition of digit 1 in MNIST.
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Table 3.3: Robustness of the illustrative example in Figure 1.2

0 1 2 3 4 5 6 7 8 9

ϵ = 0.2, no NAP N - N T/o T/o T/o T/o T/o N T/o
ϵ = 0.2, δ = 1.0 N - N Y T/o T/o Y T/o N N
ϵ = 0.2, δ = 0.99 Y - Y Y Y Y Y Y Y Y
no ϵ, δ = 0.99

Y - Y Y Y Y Y Y Y Y
(NAP robustness property)

The second and third rows of Table 3.3 show the robustness of combining L∞ norm
perturbation and NAPs as the specification. The third row is well expected as the last row
has shown that the network is robust against NAP itself (without L∞ norm constraint). It
is interesting to see that when we increase δ to 1.0, the mined NAP specification Pδ=1.0

ℓ=1 be-
comes too general and covers a much larger region that includes more than 99% (1124/1135)
testing images as shown in Table 3.1. As a result, together with L∞ = 0.2 constraint, only
two classes of adversarial examples can be safely verified, which is still better than only
using L∞ = 0.2 perturbation as the specification.

We further study how NAP-augmented specification helps to improve the verifiable
bound. Specifically, we collect all (x, ϵ) tuples in VNNCOMP-21 MNIST benchmarks that
are known to be not robust (an adv. example is found in B(x, ϵ)). Among them, the first
six tuples correspond to mnistfc 256x4 and the last one corresponds to mnistfc 256x6.
Table 3.5 reports the verification results with NAP augmented specification.

For the first six instances, using the NAP augmented specifications B+(·, ϵ = 0.05,Pδ=1.0)
enables the verification against more labels, outperforming using only L∞ perturbation as
the specification. By slightly relaxing the NAP (δ = 0.99) , all of the chosen inputs can
be proven to be robust. Furthermore, with δ = 0.99, we can verify the robustness for 6
of the 7 inputs (Table 3.5) with ϵ = 0.3, which is an order of magnitude bigger bound
than before. Note that decreasing δ specifies a smaller region, usually allowing verification
with bigger ϵ, but a smaller region tends to cover fewer testing inputs. Thus, choosing an
appropriate δ is crucial for having useful NAPs.

CIFAR10 with CNN To show that our insights and methods can be applied to more
complicated datasets and network topologies, we conduct the second set of experiments
using convolutional neural nets trained on the CIFAR10 dataset. We extract all (x, ϵ)
tuples in the CIFAR10 dataset that are known to be not robust from VNNCOMP-21 (an
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Table 3.4: Augmented robustness with CIFAR10 and CNN.

ϵ 0.012 0.024 0.12
δ 0.99 0.95 0.9 0.99 0.95 0.9 0.99 0.95 0.9

O(x0) = 8 Y Y Y N T/o Y T/o Y Y
O(x1) = 6 T/o N Y N N Y N N Y
O(x2) = 0 Y Y Y Y Y Y N N N
O(x3) = 1 N N N N N N N N N
O(x4) = 9 N Y Y N N N N N N
O(x5) = 7 Y Y Y N T/o Y N Y Y
O(x6) = 3 Y Y Y Y Y Y N N N

adv. example is found in B(x, ϵ)) and verify them using augmented NAP. For CIFAR10,
Pδ=1.0 does not exist, thus we use Pδ=.99, Pδ=.95 and Pδ=.90. We follow the scenario used
in VNNCOMP-21 and test the robustness against (correctLabel + 1) mod 10. The results
are reported in Table 3.4. As with MNIST, we observe that by relaxing δ, we were able
to verify more examples at every ϵ. Even with ϵ = 0.12 (10× the verifiable bound, which
translates to an input space 103072× bigger!), by slightly relaxing δ to 0.9, we can verify 3
out of 7 inputs.

3.3.4 The non-ambiguity property of mined NAPs

We evaluate the non-ambiguity property of our mined NAP at different δs on MNIST.
At δ = 1.0, we can construct inputs that follow any pair of NAP, indicating that Pδ=1.0s
do not satisfy the property. However, by setting δ = 0.99, we are able to prove the non-
ambiguity for all pairs of NAPs, through both trivial cases and invoking Marabou. This
is because relaxing δ leaves more neurons in NAPs, making it more difficult to violate the
non-ambiguity property.

The non-ambiguity property of NAPs holds an important prerequisite for neural net-
works to achieve a sound classification result. Otherwise, the final prediction of inputs with
two different labels may become indistinguishable. We argue that mined NAPs should
demonstrate strong non-ambiguity properties and ideally, all inputs with the same label i
should follow the same Pℓ=i. However, this strong statement may fail even for an accurate
model when the training dataset itself is problematic, as what we observed in Fig. 1.2d.
These examples are not only similar to the model but also to humans despite being labeled
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differently. The experiential results also suggest our mined NAPs do satisfy the strong
statement proposed above if excluding these noisy samples.

3.4 Related work and Future Directions

Abstract Interpretation in verifying Neural Networks The software verification
problem is undecidable in general [102]. Given that a Neural Network can also be considered
a program, verifying any non-trivial property of a Neural network is also undecidable. Prior
work on neural network verification includes specifications that are linear functions of the
output of the network: Abstract Interpretation (AbsInt) [28] pioneered a happy middle
ground: by sacrificing completeness, an AbsInt verifier can find proof much quicker, by
over-approximating reachable states of the program. Many NN-verifiers have adopted
the same technique, such as DeepPoly [121], CROWN [133], NNV [128], etc. They all
share the same insight: the biggest bottleneck in verifying Neural Networks is the non-
linear activation functions. By abstracting the activation into linear functions as much as
possible, the verification can be many orders of magnitude faster than complete methods
such as Marabou. However, there is no free lunch: Abstract-based verifiers are inconclusive
and may not be able to verify properties even when they are correct.4 On the other hand,
the neural representation as specification paradigm proposed in this work can be naturally
viewed as a method of Abstract Interpretation, in which we abstract the state of each
neuron to only activated and deactivated by leveraging NAPs. We would like to explore
more refined abstractions such as {(−∞, 0], (0, 1], (1,+∞)} in future work.

Neural Activation Pattern in interpreting Neural Networks There are many
attempts aimed to address the black-box nature of neural networks by highlighting impor-
tant features in the input, such as Saliency Maps [117, 109] and LIME[101]. But these
methods still pose the question of whether the prediction and explanation can be trusted
or even verified. Another direction is to consider the internal decision-making process of
neural networks such as Neural Activation Patterns (NAP). One popular line of research
relating to NAPs is to leverage them in feature visualization [144, 21, 39], which inves-
tigates what kind of input images could activate certain neurons in the model. Those
methods also have the ability to visualize the internal working mechanism of the model to
help with transparency. This line of methods is known as activation maximization. While
being great at explaining the prediction of a given input, activation maximization methods

4Methods such as alpha-beta CROWN [133] claim to be complete even when they are Abstract-based
because the abstraction can be controlled to be as precise as the original activation function, thus reducing
the method back to a complete one.
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do not provide a specification based on the activation pattern: at best they can establish a
correlation between seeing a pattern and observing an output, but not causality. Moreover,
moving from reference sample to revealing neural network activation pattern is limiting as
the portion of NAP uncovered is dependent on the input data. This means that it might
not be able to handle cases of unexpected test data. Conversely, our method starts from
the bottom up: from the activation pattern, we uncover what region of input can be ver-
ified. This property of our method grants the capability to be generalized. Motivated by
our promising results, we would like to generalize our approach to modern deep learning
models such as Transformers [130], which employ much more complex network structures
than a simple feed-forward structure.

3.5 Conclusion

We propose a new paradigm of neural network specifications, which we call neural repre-
sentation as specification, as opposed to the traditional data as specifications. Specifically,
we leverage neural network activation patterns (NAPs) to specify the correct behaviours
of neural networks. We argue this could address two major drawbacks of “data as specifi-
cations”. First, NAPs incorporate intrinsic properties of networks which data fails to do.
Second, NAPs could cover much larger and more flexible regions compared to L∞ norm-
balls centred around reference points, making them appealing to real-world applications.
We also propose a simple method to mine relaxed dominant NAPs and show that working
with NAPs can be easily supported by modern neural network verifiers such as Marabou.
Through a simple case study and thorough valuation on the MNIST dataset, we show that
using NAPs as specifications not only address major drawbacks of data as specifications,
but also demonstrate important properties such as no-ambiguity and one order of mag-
nitude stronger verifiable bounds. We foresee verified NAPs have the great potential of
serving as simple, reliable, and efficient certificates for neural network predictions.

This chapter is adapted from the following published work:

• Nham Le, Chuqin Geng, Xiaojie Xu, Zhaoyue Wang, Arie Gurfinkel, Xujie Si. To-
wards Reliable Neural Specifications. In Proceedings of the 40 th International Con-
ference on Machine Learning. 2023, Honolulu, Hawaii, USA.
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Table 3.5: Inputs that are not robust can be augmented with a NAP to be robust. With
δ = 0.99, all inputs can be verified to be robust at ϵ = 0.05 – the largest checked ϵ in
VNNCOMP-21(not shown)

0 1 2 3 4 5 6 7 8 9

O(x0) = 0
ϵ = 0.05, δ = 1.0 - Y Y Y Y Y Y Y Y Y
ϵ = 0.3, δ = 0.99 - Y Y Y Y Y Y Y Y Y
O(x1) = 1
ϵ = 0.05, δ = 1.0 Y - Y Y Y Y Y Y N Y
ϵ = 0.3, δ = 0.99 Y - Y Y Y Y Y Y Y Y
O(x2) = 0
ϵ = 0.05, δ = 1.0 - T/o T/o Y T/o T/o Y N T/o T/o
ϵ = 0.3, δ = 0.99 - Y Y Y Y Y Y Y Y Y
O(x3) = 7
ϵ = 0.05, δ = 1.0 N T/o Y Y T/o T/o Y - N T/o
ϵ = 0.3, δ = 0.99 Y Y Y Y Y Y Y - Y Y
O(x4) = 9
ϵ = 0.05, δ = 1.0 T/o Y Y Y Y Y N Y N -
ϵ = 0.3, δ = 0.99 Y T/o T/o Y N Y T/o T/o T/o -
O(x5) = 1
ϵ = 0.05, δ = 1.0 Y - N Y Y Y Y N N N
ϵ = 0.3, δ = 0.99 Y - Y Y Y Y Y Y Y Y
O(x6) = 9
ϵ = 0.05, δ = 1.0 T/o T/o T/o T/o T/o T/o T/o T/o T/o -
ϵ = 0.3, δ = 0.99 Y Y Y Y Y Y Y Y Y -
(mnistfc 256x6)
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Chapter 4

cvc5-d: Towards a distributed SMT
solver

As discussed in Chapter 2, at the heart of all constraint-based neural network verifiers lies
an SMT solver. In this chapter, we introduce cvc5-d, our portfolio-based distributed SMT
solver. We propose a general architecture consisting of two main components: (i) solvers
extended with the capability of sharing and importing information on the fly while solving;
and (ii) a central manager that orchestrates and monitors solvers while also deciding which
information to share with which solvers. We introduce new information-sharing strategies
based on the idea of maximizing the amount of “good” diversity in the system. We show
that on hard benchmarks from recent related work, cvc5-d instantiated with the cvc5
SMT solver outperforms a state-of-the-art partitioning-based approach, is competitive with
existing portfolio approaches, and enables portfolio solving for new benchmarks.

4.1 Introduction

Solvers for satisfiability modulo theories (SMT) are used as general-purpose constraint
solvers in a wide variety of applications, including those arising in computer science [16, 49],
mathematics [54, 123], operations research [108], and more. Unsurprisingly, as users push
SMT solvers to solve more diverse and challenging problems, solver performance becomes
the limiting factor in many applications.

Today, state-of-the-art SMT solvers like cvc5 [9], Yices [37], and Z3 [34], do not scale
horizontally to solve hard instances faster, and if the solving job times out or crashes, any
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work done during the solving attempt is lost.An effective strategy for distributed SMT
solving could address both issues: it can help scale SMT solving across multiple threads
and machines, and by sharing information among solver instances, any progress made can
be retained and used by others, even if one of the instances crashes or fails.

Two main approaches to distributed SMT solving have been explored: portfolio solving
and divide-and-conquer. Portfolio solving is essentially a race between multiple indepen-
dent SMT solver instances. Each solver is different in some way: either it is a completely
different solver, or it is configured differently, or it is provided with a different (but log-
ically equivalent) input. Portfolio solving aims to leverage the well-known high variance
that often exists when solving equivalent SMT problems: the hope is that one of the solvers
in the portfolio finishes quickly. Portfolio solving can be enhanced by sharing information
among the solver instances. Typically, this information consists of formulas that the SMT
solvers have learned that can be used to prune the search space. In divide-and-conquer
solving, a single problem is partitioned in such a way that if each partition is solved, this
provides a solution to the original problem. The main challenge is finding a way to divide
the problem that actually improves performance.

In this chapter, we introduce cvc5-d, a new tool for portfolio-based distributed SMT
solving. cvc5-d’s architecture consists of two main components: (i) solvers extended with
the capability to share and import information on the fly while solving; and (ii) a central
manager that orchestrates and monitors solvers while also deciding which information to
share with which solvers. We also introduce a new information-sharing strategy based on
the idea of maximizing the amount of “good” diversity in the system. On hard bench-
marks from recent work [136], cvc5-d outperforms state-of-the-art partitioning-based dis-
tributed cvc5 [136] and is competitive with existing portfolio approaches with information
sharing [84]. We also show that cvc5-d provides a significant speed-up on string bench-
marks, an important category of benchmarks that has not previously been attempted with
distributed solvers.

In summary, our contributions include:

• a flexible and general architecture for portfolio-based SMT solving with information
sharing;

• new portfolio strategies including delayed sharing and guided randomization;

• an implementation in cvc5-d; and

• an evaluation of cvc5-d and existing systems on several sets of challenging bench-
marks.

40



The rest of the chapter is organized as follows. Section 4.2 covers background and
related work. Section 4.3 describes the architecture of cvc5-d. Section 4.4 explains
our novel portfolio strategies, and Section 4.5 provides additional implementation details.
Experimental results are reported in Section 4.6, and Section 4.7 concludes.

4.2 Preliminaries

We assume the standard many-sorted first-order logic setting with the usual notions of
terms, interpretations, and theories. We assume a fixed background theory T (which could
be a composition of one or more individual theories). An atom is a term of sort Bool
that does not contain any proper sub-terms of sort Bool. A literal is either an atom or
the negation of an atom. A clause is a disjunction of literals, and a cube is a conjunction
of literals. A formula is a term of sort Bool and is satisfiable (resp., unsatisfiable) if it is
satisfied by some (resp., no) T -interpretation. A formula whose negation is unsatisfiable
is valid.

4.2.1 CDCL(T)-based SMT solvers

Most modern SMT solvers are based on the CDCL(T ) framework [95], in which a SAT
solver and one or more theory solvers cooperate. The SAT solver incrementally builds a
truth assignment for the Boolean skeleton of the formula, obtained by replacing each unique
atom by a Boolean variable. It does this using a standard CDCL loop that is modified
to also take into account theory reasoning. The modified CDCL(T ) approach is shown in
Alg. 5. Initially, an input formula F is converted to conjunctive normal form (CNF), and
each clause is stored in a clause database. The main loop first calls Boolean propagation,
which may assign some atoms to true or false. If Boolean propagation produces no conflicts,
then the theory solvers are called to check for theory conflicts. These two steps repeat until
a fixed point is reached. If there is a conflict, it is resolved by learning a conflict lemma and
backtracking to an earlier level in which there is no conflict. Otherwise, the nextLiteral
function is used to make a case split on a new literal. More details can be found in [12].

4.2.2 Portfolio solving with lemma sharing

SMT solvers are highly sensitive. Small changes to the input formula or solver heuristics can
result in orders of magnitude difference in solving time [50]. While a cause of frustration for
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Algorithm 5: The CDCL(T) loop

Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F );
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 conflict , changed ← theoryCheck() ;

8 while changed ∧ conflict = ∅;
9 if conflict ̸= ∅ then

10 level , lemma ← resolveConflict(conflict);
11 clauseDB ← clauseDB ∪ lemma;
12 if level < 0 then
13 return UNSAT;
14 backtrack(level) ;

15 else
16 if nextLiteral() = NULL then
17 return SAT ;

users, this phenomenon can be leveraged to create an effective portfolio solving strategy:
multiple solvers (each configured differently or with permuted, but logically equivalent,
inputs) are run in a “racing” mode and the result of the fastest one is returned. This
approach has been explored extensively for both SAT and SMT solving [8, 83, 84, 142]
and produces reliable speed-ups [139]. Still, portfolio solving is limited by the performance
of the best and luckiest individual solver, leading to diminishing returns with increasing
parallelism. Additional perfomrance can be obtained with information sharing. Each
solver in the portfolio shares its learned conflict lemmas with the others, with the hope
that this exchange of information will help find the solution faster.

Implementing a lemma-sharing portfolio in practice is highly non-trivial. System-wise,
one must provide scalability, fault tolerance, and low overhead; algorithmic-wise, one must
find a good balance between sharing useful information and overloading the system with
too many lemmas. Moreover, a well-designed distributed solver should be modular and
general, leaving room for future extensions. Ideally, it should also accommodate a wide
range of different solvers, support new sharing strategies, and be compatible with other
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parallel strategies such as partitioning. After a review of related work, we discuss our design
and implementation, including design decisions that aim to meet the criteria mentioned
above.

4.2.3 Related Work

Parallel strategies for SAT solving have been explored extensively [8, 55, 63, 142]. SMT
solvers must take into account the more sophisticated CDCL(T ) architecture and the dif-
ferent performance profiles of SMT applications. However, the two main approaches for
parallel SAT solving are also found in the existing research literature on parallel SMT
solving, namely portfolio solving and partitioning.

Portfolio solving for SMT. Z3 was the first SMT solver to implement portfolio solv-
ing with information sharing [139]. The Z3 implementation focuses on a shared-memory
implementation and achieves a speed-up of 3.5x on average for moderately difficult integer
difference logic benchmarks using a portfolio of four copies of Z3. The sharing strategy
used is simple: lemmas with eight literals or fewer are shared, and others are not. Shared
lemmas are put into a queue, and each solver in the portfolio checks its queue whenever
it backtracks to decision level 0. Unfortunately, portfolio solving is no longer supported in
recent versions of Z3.

SMTS [83] is another system implementing portfolio solving with information sharing.
As with the Z3 approach, lemmas to be shared are loaded into queues that are accessed
when the solvers backtrack to decision level 0. SMTS uses a central database to store shared
lemmas. A filtering heuristic is used to decide which lemmas to add to the database, and
a selection heuristic is used to decide which lemmas to share from the database. SMTS
obtains its best results using a filter that discards lemmas with more than four literals
and a selection heuristic that randomly samples from the database. The SMTS authors
specifically flag the need for better filtering and selection techniques in their discussion of
future work. Our work builds on and extends these previous approaches in several ways,
as we discuss in the next section.

Partitioning in SMT. SMTS [83] implements several partitioning strategies that out-
perform sequential solving. Relatedly, Wilson et al. [136] implement a partitioning-based
parallel solver using cvc5 (which we will refer to as cvc5-p going forward) and show that
it outperforms traditional portfolio solving on a set of challenging benchmarks. cvc5-p
does not use any information sharing, leaving the integration of sharing to future work.
SMTS does explore a limited form of sharing mixed with partitioning: each partition can
be solved using a portfolio with lemma sharing, which yields even better performance.
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The focus of this chapter is on portfolio solving with sharing but without partitioning. We
aim to build a robust and high-performance solution that could be expanded to include
partitioning strategies in future work.

4.3 An Architecture for Portfolio-Based SMT Solving

In this section, we describe a general architecture for portfolio-based SMT solving and
contrast it with prior approaches. Figure 4.1 depicts our architecture. It is designed
to run on either a cluster of computing nodes or a multicore machine. Multiple solver
instances (called workers) work on the same problem and share information through a
central manager (or broker). The workers are SMT solvers instrumented to be able to
export and import learned lemmas on the fly. Workers also track local statistics about
lemma imports, exports, and filtering.

The central manager plays two roles. First, in the control plane (Fig. 4.1a), it manages
the system by starting, configuring, monitoring, and terminating workers, and by moni-
toring the overall system (through telemetry collected at each solver) and network health
(through periodically transmitted ping/pong messages). Second, in the data plane (Fig. 4.1b),
it controls system data flow by managing lemma exchange between workers and by track-
ing and monitoring solver and system-level lemma statistics. In particular, the data-plane
manager (i) tracks which lemmas arrive from which individual workers and (ii) decides
which lemmas to forward to which workers. This already enables a finer level of control
than in previous approaches, where lemma sources are not tracked and static selection
criteria are used to decide which lemmas to share. The broker tracks system telemetry
for both control and data, including statistics such as the number of lemmas exported or
imported so far, time spent in various phases of processing those lemmas, whether a worker
has solved its copy of the problem, and so forth.

We advocate a simple hub-and-spoke architecture, similar to that used in SMTS [84].
Using a central broker simplifies coordination and does not require workers to synchronize
with each other We have also observed empirically that in our implementation, the broker
is not a communication bottleneck (see Sec. 4.6). Our hub-and-spoke architecture tolerates
worker failure and communication lag or failure. The design makes progress as long as the
central manager and some workers are active. The manager is a single point of failure, but
can be engineered to be robust.
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4.3.1 Workers

As mentioned above, the workers are SMT solvers modified to support importing and ex-
porting of learned lemmas during search. This allows for more fine-grained information
sharing than prior approaches, where lemmas are only imported at decision level 0, and
requires modifying the CDCL loop as shown in Alg. 6. The loop now calls an export
procedure whenever a new lemma is learned as a result of conflict analysis (Alg. 6). Addi-
tionally, during the propagation phase, the worker adds lemmas received from the broker
to its database by invoking an import procedure (Alg. 6). The worker sends telemetry to
the broker whenever lemmas are exported or imported (Alg. 6 and Alg. 6). Each solver
has a mechanism for locally filtering lemmas. The goal is to import and export only useful
lemmas. We discuss various considerations for local filtering in Section 4.5.

4.3.2 Central Manager

The central manager (broker) sets up and configures both the workers and network com-
munication channels and manages both the control and data planes. During solving, it
coordinates the exchange of information between workers and detects termination.

A major role of the central manager is to distribute lemmas learned by one worker to
the other workers, while discarding duplicates and managing additional filters. Because
multiple workers can learn and export identical lemmas, the broker ensures that each
unique lemma is only forwarded (at most) once to each worker. Again, this offers a more
fine-grained control mechanism than prior work, in which all lemmas up to a certain size
are always shared (Z3) or lemmas are sampled randomly (SMTS) from the database of all
shared lemmas.

The core broker algorithm is shown in Alg. 7. The broker maintains two global variables:
archivedLemmas is the set of all lemmas it has received; and lemmaSolverMap is a map
from lemmas to worker ids that keeps track of the origin(s) of each lemma. When the broker
receives a lemma, the lemma is canonicalized by sorting the set of its literals (Alg. 7). This
ensures that one source of lemma redundancy is eliminated. The broker then uses this
canonical form to detect whether the lemma is new (i.e., not in archivedLemmas) and
to update the map lemmaSolverMap. Function shouldSend controls the timing of when
lemmas are transmitted to the workers. When shouldSend is true, the broker sends each
lemma l stored in lemmaSolverMap to the workers that did not export it. We discuss
implementation choices for shouldSend in Section 4.5.
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Algorithm 6: Modified CDCL(T) loop with lemma sharing

Input : an SMT formula F
Output: SAT or UNSAT

1 clauseDB ← toCNF (F ) ;
2 while True do
3 do
4 conflict ← BooleanPropagate(clauseDB);
5 changed ← False;
6 if conflict = ∅ then
7 newLemmas ← importLemmas();
8 clauseDB ← clauseDB ∪ newLemmas ;
9 sendtelemetry();

10 conflict , changed ← theoryCheck() ;

11 while (newLemmas ̸= ∅ ∨ changed) ∧ conflict = ∅;
12 if conflict ̸= ∅ then
13 level , lemma ← resolveConflict(conflict);
14 exportLemma(lemma);
15 sendtelemetry();
16 clauseDB ← clauseDB ∪ lemma;
17 if level < 0 then
18 return UNSAT;
19 backtrack(level) ;

20 else
21 if nextLiteral() = NULL then
22 return SAT ;
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Algorithm 7: The broker’s core lemma exchange routine

1 archivedLemmas ← ∅ ;
2 lemmaSolverMap ← ∅ ;
3 while True do
4 ℓ, w ← readMessage();
5 ℓ← canonicalize(ℓ);
6 if ℓ ∈ archivedLemmas then
7 continue;
8 else
9 lemmaSolverMap[ℓ].add(w);

10 if shouldSend() then
11 for ℓ ∈ lemmaSolverMap do
12 send(ℓ, allWorkers − lemmaSolverMap[ℓ]) ;
13 lemmaSolverMap.pop(ℓ) ;
14 archivedLemmas .add(ℓ);

4.4 Portfolio Strategies

Constructing effective strategies for portfolio solving with information sharing requires
balancing trade-offs from a number of different goals:

• Maximize diversity: workers should work on different parts of the search space to
avoid redundant work.

• Share useful lemmas: ideally, workers should export lemmas that are useful to all
instances. A common heuristic for evaluating the value of a lemma is its size (i.e.,
number of literals in the clause). Smaller clauses are more likely to be useful, as they
prune a larger portion of the search space.

• Avoid overwhelming solvers: each solver maintains a database containing both locally-
learned lemmas and lemmas imported from the broker. Core solver performance
degrades as the size of the database grows. Sharing too many lemmas can thus be
detrimental to overall system performance.

• Manage communication overhead: we do not want to overload the communication
network with too much data, as this also slows down the system.
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Our proposed architecture supports a wide variety of strategy options. We mention two
general strategies here, and then discuss specific parameter settings used in our implemen-
tation in Section 4.5. The first strategy is delayed sharing , which avoids sharing a large
set of lemmas that all solvers discover locally. The second strategy is a novel approach to
diversity that we call guided randomization.

4.4.1 Delayed Sharing

In initial experiments with an early prototype, we observed that for some large problems,
workers initially export a large number of lemmas and delay calling the importLemmas
procedure. Later, when they do try to import the lemmas, the system stalls due to the
large amount of communication traffic. Telemetry revealed that this was caused by the
initial preprocessing and theory reasoning performed by the solvers.

Before entering the CDCL loop proper, SMT solvers perform formula simplification,
conversion to clausal form, and some eager theory reasoning. It is possible for solvers to
produce many lemmas during this phase; if each worker is an instance of the same SMT
solver, such lemmas are likely to be learned by all solvers working on the problem.To address
this issue, we added a delayed sharing mechanism, which ensures that only lemmas learned
after the preprocessing phase are exported. Enabling this mechanism boosts performance
on all of our benchmarks.

4.4.2 Guided Randomization

Baseline mechanisms for diversifying solver behavior include selecting different random
seeds and modifying solver configurations to ensure that different instances use different
search parameters. However, these basic mechanisms have diminishing benefit as we in-
crease portfolio size, as we show in Section 4.6.1. Using the telemetry collected by the
broker, we can observe the number of uniquely learned lemmas (i.e., those learned by a
single worker). This metric is a reasonable proxy for system diversity, and indeed, in early
experiments, we observed that this number plateaus as we scale the number of workers.

We address this problem by dividing the pool of workers into two clusters, a standard
cluster and a noisy cluster. Each cluster uses different levels of randomness and different
scoring and filtering heuristics. Scoring and filtering can also treat lemmas local to the
cluster differently than clauses from other clusters. The noisy cluster uses a high degree
of randomness. Intuitively, we expect that solvers in this cluster will learn mostly useless
clauses, because they are using heuristics that are far away from the default configurations
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which have been tuned to be effective. They are also likely to end up exploring parts of
the search space that low-randomness solvers ignore. But once in a while, noisy solvers
may get lucky and learn clauses that can be useful to solvers in the other cluster.

To maintain diversity in the noisy cluster, we keep the clause databases for solvers in
the cluster somewhat isolated. We do this by configuring solvers in noisy clusters to ignore
each other and only import lemmas that the central manager determines are highly likely
to be useful, (e.g., unit clauses). We discuss a concrete instantiation of this strategy in the
next section.

4.5 Implementation

cvc5-d is a distributed SMT solver that implements our proposed architecture and strate-
gies. For the worker instances, we use a version of cvc5 with the main loop modified to
support importing and exporting clauses, as discussed in Section 4.3.1. Workers run in
separate processes, and each worker process has a separate wrapper thread that manages
the control plane interface and networking details.

The central manager is written in Python. Communication between broker and workers
is implemented with gRPC [48]. We chose gRPC instead of lower-level mechanisms like
sockets, because gRPC’s high-level API provides better monitoring capabilities and has
sufficient performance for (at least) 64 solvers. gRPC also allows us to abstract the parallel
and distributed aspects of the system. Thus, cvc5-d can be deployed either on a single
multicore machine or on a cluster of machines in the cloud.

To export lemmas, we serialize them as strings in the SMT-LIB format [11]. Corre-
spondingly, lemma import requires parsing SMT-LIB strings. This adds some overhead
but provides a significant interoperability advantage, as all SMT solvers can parse and
print terms in SMT-LIB format. More compact formats could be used at the cost of in-
creased implementation effort and reduced interoperability. For example, SMTS uses a
dedicated binary format, but this limits the choice of solvers to those that support this
format. Choosing SMT-LIB reduces the cost of adding solvers beyond cvc5 to cvc5-d.

As explained previously, cvc5-d implements comprehensive telemetry for both the
control and data planes. We found this real-time information about the solving process
at both the local and global levels to be crucial when debugging the system, evaluating
different portfolio configurations, and evaluating lemma scoring and filtering strategies.
The implementation is heavily parameterized, so that whenever possible, users can choose
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configuration options at runtime, rather than having to change hard-coded configuration
settings.

Local Filtering Several considerations must be taken into account at the worker level.
SMT solvers can dynamically create new atoms and new variables during search. This poses
a soundness problem in a distributed setting as one must ensure that new variables created
by a solver instance are interpreted consistently by other instances. We currently avoid this
issue at the export stage by filtering out lemmas that contain variables not present in the
original formula. New theory atoms are fine as long as they do not introduce new variables.
More sophisticated approaches are possible, but require a mechanism for exporting the
definitions of new variables in a canonical way. Implementing such a mechanism requires
extending the baseline SMT solver in a non-trivial way, and we leave it for future work.

As mentioned, our primary goal when filtering is to only export useful lemmas. As in
prior work, we use the number of literals in the lemma as our main export filter.

Importing lemmas has a cost. The central manager aims to limit redundancy by only
sending a given lemma once to each worker. It is still possible for a worker to produce
a lemma internally before learning that another worker has produced the same lemma.
Thus, we check in the import procedure whether an imported lemma has already been
discovered locally. If so, we drop it. This can be implemented efficiently using mechanisms
such as hashing and Bloom filters.

Sending Lemmas from the Manager Our broker uses two datasets to determine when
to send lemmas. The first is the wall clock time elapsed since the last lemma transmission.
The other is the number of unsent lemmas for a particular worker in the lemmaSolverMap
map. Function shouldSend returns true if the elapsed time is greater than a parameter
delay or if the number of unsent lemmas is larger than a threshold maxQueueSize. By
setting these two parameters, the broker can implement different communication policies.
It can send lemmas in size-driven batches (like SMTS [83]), in time-driven epochs (like
Mallob [107]), or both. We found empirically that so far, the best results come from sharing
lemmas individually as soon as they are received. If we encounter network bandwidth
limitations at some point, we expect that time-driven epochs will provide the best efficiency.

Monitoring cvc5-d uses telemetry from the workers to monitor the number of lemmas
imported and exported by each worker. Information from solver wrappers is used to mon-
itor message latency and manager/solver roundtrip times. The lemmaSolverMap map also
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Benchmarks cvc5-d 64x CS-GR smts baseline smts 64x CS cvc5-p 64x
Category Count Solved PAR-2 Solved PAR-2 Solved PAR-2 Solved PAR-2

QF LRA 139 120 60 (↓61%) 117 69 127 41 (↓41%) 99 130 (↓16%)
QF IDL 48 21 70 (↓39%) 8 99 15 82 (↓17%) 5 107 (↓6%)
QF LIA 16 9 20 (↓47%) 11 13 14 11 (↓15%) 1 36 (↓5%)
QF UF 7 7 2 (↓86%) 6 5 6 3 (↓40%) 4 9 (↓36%)

QF RDL 4 2 6 (↓40%) 0 10 0 10 ( 0%) 0 10 ( 0%)

SAT 115 86 82 (↓52%) 83 87 99 44 (↓49%) 59 151 (↓12%)
UNSAT 85 73 43 (↓65%) 59 75 63 63 (↓16%) 50 106 (↓15%)

UNKNOWN 14 0 34 ( 0%) 0 34 0 34 ( 0%) 0 34 ( 0%)

ALL 214 159 159 (↓52%) 142 196 162 141 (↓28%) 109 291 (↓12%)

Table 4.1: Results comparing the best config of cvc5-d with different distributed solvers.
PAR-2 scores in thousands. Numbers in brackets denote how much different distributed
solvers improve over their base solver.

Benchmarks cvc5-d baseline cvc5-d 64x CS cvc5-d 64x CS-GR
Category Count Solved PAR-2 Solved PAR-2 Solved PAR-2

QF LRA 139 90 154 121 61 (↓60%) 120 60 (↓61%)
QF IDL 48 1 114 20 72 (↓37%) 21 70 (↓39%)
QF LIA 16 0 38 8 22 (↓42%) 9 20 (↓47%)
QF UF 7 2 14 3 11 (↓21%) 7 2 (↓86%)

QF RDL 4 0 10 2 6 (↓40%) 2 6 (↓40%)

SAT 115 52 172 86 83 (↓52%) 86 82 (↓52%)
UNSAT 85 41 124 68 55 (↓56%) 73 43 (↓65%)

UNKNOWN 14 0 34 0 34 ( 0%) 0 34 ( 0%)

ALL 214 93 330 154 171 (↓48%) 159 159 (↓52%)

Table 4.2: Results comparing different configs of cvc5-d. PAR-2 scores in thousands

tracks how many solvers independently learned each lemma, e.g., the number of lemmas
learned by exactly one solver, two solvers, and so forth. This helps dynamically measure
diversity in the system, including the amount of redundant work being performed by dif-
ferent solvers. The broker also maintains its own counts of the number of exported and
imported lemmas for each worker. Mismatches between the numbers stored in the broker
and the numbers reported by the workers mean that the system is overloaded (thus mes-
sages are late or dropped) or that there is a bug. During the development of cvc5-d, the
monitor helped detect multiple bugs and helped inform the design of our lemma-sharing
heuristics.
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4.6 Evaluation

We measure cvc5-d performance on the set of benchmarks used in [136], which consists
of 214 challenging benchmarks taken from the Cloud track of smtcomp22 and the set of
QF LRA and QF UF benchmarks in SMT-LIB. The benchmarks come from five SMT-LIB
logics: QF LRA (139), QF IDL(48), QF LIA (16), QF UF (7), and QF RDL (4).

We use a competition build of cvc5 with the optional CLN and GLPK options enabled.
For cvc5 portfolios, we use several different sets of options in order to improve diversity.

In all experiments, we set the timeout for solving each query to be 1200 seconds,
the same timeout used in SMT-COMP. Experiments were performed on Amazon EC2
c6a.48xlarge instances, with 96 physical cores and 384 GB of RAM.

Our main metric used for comparison is the PAR-2 score used in [136] and the annual
SAT competition. PAR-2 is the sum of run times for all instances, but where unsolved
instances receive a score of twice the timeout value (1200 × 2 = 2400). This provides
a single metric that takes into account both runtime and number of benchmarks solved.
The lower the PAR-2 score, the better. We also use cactus plots to show the number of
solved instances (y-axis) within a limit of s seconds per instance (x-axis). We are primarily
interested in the effectiveness of different parallelization strategies and implementations.

4.6.1 Scalability and Effectiveness of Guided Randomization

We first report on scalability experiments of cvc5-d, both with and without sharing. We
also show the effect of adding guided randomization. When using guided randomization,
we divide the portfolio into two clusters: a standard cluster, which uses default cvc5
randomness settings, and a noisy cluster, which assigns the cvc5 rnd freq option to 75%.
This option controls how often the SAT decision tries to pick a random variable instead of
a heuristically-driven choice. We assign 25% of the workers to the noisy cluster and 75% to
the standard cluster. Solvers in the standard cluster import and export clauses of length
≤ 8. In the noisy cluster, clauses of length ≤ 4 are exported, but only unit clauses are
imported.

To distinguish the different configurations of cvc5-d, we use CS for configurations with
clause sharing and CS-GR for configurations with clause sharing and guided randomization.
Fig. 4.2 shows how different configurations of cvc5-d scale with the number of workers.
The figure includes results for baseline cvc5, portfolio sizes of 4, 16, and 64, both with and
without sharing, as well as an additional run with 64 workers with guided randomization.
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Specific numbers for three of the configurations (baseline, 64x CS, and 64x CS-GR) can
be found in Table 4.1.

We observe that cvc5-d scales nicely when going from 1 to 64 solvers. In addition,
clause sharing improves performance for all portfolio sizes greater than four, and guided
randomization provides an additional boost. A comparison of the 64x CS configuration
with and without guided randomization is shown in Fig. 4.3. We can see that CS-GR is
especially effective on satisfiable (SAT) instances. CS-GR also improves the performance
by more than 2x for many problems (dots to the left of the top “2x” line). As a whole,
among all instances solved by both CS and CS-GR, there are 24 instances where CS-GR
is more than 2x faster than CS, and only 5 instances where CS-GR is 2x slower. CS-GR
solves 5 more problems, and improves PAR-2 score by 12k (7%) over CS.

4.6.2 Comparison with State-Of-The-Art Tools

We next compare cvc5-d with smts [84], the strongest solver in quantifier-free divisions
of smtcomp22’s cloud track,1 and cvc5-p, the partitioning solver from [136].

Comparison to smts It is important to note that on this benchmark set, OpenSMT2,
the baseline solver for smts, is stronger than cvc5.2 However, the best configuration of
cvc5-d (64 CS-GR) improves this situation significantly. Table 4.1 shows that overall,
in terms of benchmarks solved, the best configuration of cvc5-d (64 CS-GR) is roughly
comparable to the best configuration of smts, despite the large difference in their base
solvers. Compared to the baseline, the best configuration of cvc5-d improves the overall
PAR-2 score by 52% (for smts, this number is only 28%) and solves 66 more problems
(compared to 20 more problems solved by smts). Moreover, for the 48 QF IDL benchmarks
and for the UNSAT benchmarks as a whole, cvc5 goes from performing worse than smts
when comparing baselines to performing better when comparing the best version of each.
This suggests that at least part of the reason for the improvement is explained by our
lemma-sharing implementation being more effective.

Comparison to partitioning cvc5 cvc5-p, the state-of-the-art parallel/distributed
implementation of cvc5, uses a combination of portfolios and partitioning strategies. We

1SMT-COMP 2023’s cloud track omitted all quantifer-free divisions.
2One reason for this is that the benchmarks we are using, from [136], were selected specifically because

they are challenging for cvc5.

53



implemented and ran the hybrid multijob approach of [136] and compared it with cvc5-d.
Fig. 4.7 and Table 4.1 show that cvc5-d is significantly more effective at utilizing 64 copies
of cvc5, resulting in a 52% improvement in PAR-2 score (vs 12% improvement by cvc5-p),
and in 50 more problems being solved (159 vs 109).

4.6.3 Comparison to a Legacy Version of z3

z3 was the first SMT solver to implement a portfolio approach with clause sharing. How-
ever, this functionality is no longer supported in modern versions of z3, and the latest
release that we could find with this functionality is version 2.15 (Windows-only, from
2009). We include the comparison here for completeness, but with two caveats: first, z3
2.15 runs on a different operating system than our other solvers (we used instances with the
same ratio of workers to processor cores), and it crashes on any configuration with more
than eight solvers. We note that z3 2.15 fails (parsing or execution) on 85 problems in our
modern set of 214 benchmarks. For this reason, we only compare z3 2.15 with cvc5-d
using eight workers on the remaining 129 SMT benchmarks. We do not enable guided ran-
domization here because cvc5-d does not saturate diversity at 8 solvers. Fig. 4.5a show
that cvc5-d scales to eight solvers more effectively than z3 2.15 and as a whole achieves
better PAR-2 and solves more problems than z3 2.15. Note that z3 performs worse when
enabling clause sharing, indicating the instability of the 2.15 implementation on modern
benchmarks. A fair comparison could only be achieved if the sharing functionality were
restored in a modern version of z3.

4.7 Conclusion

cvc5-d is a promising advancement in the realm of parallel, portfolio-based SMT solv-
ing. Leveraging a hub-and-spoke architecture with a tight CDCL(T ) integration, lemma
sharing, and guided randomization, cvc5-d demonstrates significant improvements in scal-
ability, outperforming not just sequential cvc5, but also pure portfolio (with sharing), and
cvc5-p (portfolio with partitioning). In addition, cvc5-d demonstrates more improve-
ment from clause sharing than smts and an early version of z3 and has performance that
is overall comparable with and complementary to the state of the art.

While cvc5-d demonstrates solid progress in distributed SMT solving, many opportu-
nities for future work remain. These include deeper integration with the underlying SAT
solver, handling internally-introduced variables, exploring additional sources of diversity,
and combining our approach with partitioning-based parallelism.
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This chapter is adapted from the following work:

• Clark Barrett, Pei-Wei Chen, Byron Cook, Bruno Dutertre, Robert Jones, Nham
Le, Andrew Reynolds, Kunal Sheth, Chriss Stevens, and Mike Whalen. cvc5-d:
New Strategies for Portfolio-Based SMT Solving. Accepted at The Twenty-fourth
Conference on Formal Methods in Computer-Aided Design. 2024, Prague, Czech
Republic.
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Figure 4.1: Architecture of cvc5-d
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Figure 4.2: Scalability of cvc5-d.
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Figure 4.3: Guided Randomization (CS-GR) vs naive Clause Sharing (CS). Dots on the
upper and right-most edges are problems that time out with CS and CS-GD, respectively.
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(a) cvc5-d

(b) smts

Figure 4.4: Comparing cvc5-d’s and smts’ improvement over a single base solver.59



0 200 400 600 800 1000 1200
Time budget given to each problem(s)

0

10

20

30

40

50

60

70

Nu
m

be
r o

f s
ol

ve
d 

pr
ob

le
m

s
Z3 8 solvers
Z3 4 solvers
Z3 1 solver

(a) Z3

0 200 400 600 800 1000 1200
Time budget given to each problem(s)

0

10

20

30

40

50

60

70

Nu
m

be
r o

f s
ol

ve
d 

pr
ob

le
m

s

SMT-D 8 solvers
SMT-D 4 solvers
SMT-D 1 solver

(b) cvc5-d

Figure 4.5: Comparison between cvc5-d and Z3 on 129 benchmarks).
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Figure 4.6: cvc5-d vs smts. Dots on the upper and right-most edges are problems that
time out for smts and cvc5-d, respectively.
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Figure 4.7: cvc5-d and cvc5-p, 64 workers vs 1 worker.
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Chapter 5

Verifying the robustness properties
of saliency maps

Saliency maps are one of the most popular tools to interpret the operation of a neural
network: they compute input features deemed relevant to the final prediction, which are
often subsets of pixels that are easily understandable by a human being. However, it is
known that relying solely on human assessment to judge a saliency map method can be
misleading.

In this chapter, we propose a novel neural network verification specification called
saliency-robustness, which aims to use formal methods to prove a relationship between
Vanilla Gradient (VG) – a simple yet surprisingly effective saliency map method – and
the network’s prediction: given a network, if an input x emits a certain VG saliency map,
it is mathematically proven (or disproven) that the network must classify x in a certain
way. We then introduce a novel method that combines both Marabou and Crown– two
state-of-the-art neural network verifiers, to solve the proposed specification. Experiments
on our synthetic dataset and MNIST show that Vanilla Gradient is surprisingly effective
as a certification for the predicted output.

5.1 Introduction

As deep neural networks (DNNs) continue to advance in complexity and impact, the de-
mand for explanation methods and tools to interpret key aspects of these models also
grows. The ability to explain how a model operates can be crucial in meeting regulatory
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Figure 5.1: Different saliency map methods of a dog, together with the result of an edge
detection algorithm [22] that does not take the model into account at all.

requirements [47] and assisting developers in debugging the model [73]. Among the various
explanation methods available, one category that stands out is saliency maps [117, 109, 71],
primarily due to their interpretability. Saliency maps identify input features that are con-
sidered relevant to the final prediction, often highlighting specific pixels that can be easily
understood by humans. Fig. 5.1 visualizes an image of a dog and how some different
saliency map methods highlight pixels that are deemed important. However, the abun-
dance of different saliency map methods raises a methodological question for practitioners:
how does one choose between these numerous options?

Thus far, the evaluation of most saliency map methods has heavily relied on subjective
human judgment. The assessment typically follows the approach of “the saliency map is
considered good if it appears visually appealing to me”. While it is necessary to discard
obviously inadequate methods through a sanity check [2], users of saliency maps are left to
select the appropriate method based on their own visual assessment. As pointed out in [2],
while we want an explanation to take into account both the input and the network, human
judgment tends to be biased toward the input. This presents a problem as humans may
inadvertently focus on explaining the input itself rather than understanding the relationship
between the input and the model. The issue is highlighted in Fig. 5.1, where the Canny
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edge detector algorithm [22] (which does not consider the DNN at all and should not be
used to explain any DNN) produces a visually convincing map that bears a resemblance
to those generated by some other saliency methods.

In this chapter, we propose to use formal methods to mathematically prove or disprove
a relationship between a saliency map and the prediction of the network. As the first
work in this direction, we apply our method with Vanilla Gradient (VG) [5] – an elegant
yet surprisingly effective formulation of saliency maps: it passes all of the sanity checks
proposed by [2] while several more modern methods [122, 124, 115] do not.

Our key insight is our novel concept of saliency-robustness, which states that if the
Vanilla Gradient saliency map EN for the networkN is reliable, then two images generating
similar saliency maps should be classified in the same manner by N . This property is
essential because it ensures that EN can genuinely explain why an image belongs to the
label “dog” rather than the label “cat”. Conversely, if this property does not hold, then
EN may not provide accurate explanations. To the best of our knowledge, this is the first
time in which a mathematically proven relationship between a saliency map function and
a prediction is attempted.

To solve our proposed saliency-robustness property, we make another insight: comput-
ing the saliency map of a ReLU-activated neural network can be done by solving a system
of linear constraints. Thus, the whole property can be encoded as a set of linear constraints
and solved using an off-the-shelf SMT solver. While this is acceptable as a proof of concept,
it is widely known that off-the-shelf SMT solvers do not scale to solving neural networks
of interesting sizes [69]. To overcome that challenge, we propose a novel method to solve
the saliency-robustness property more effectively, by combining state-of-the-art techniques
in neural network verification. To sum up, we make the following contributions:

• We propose a novel safety property for a neural network and its Vanilla Gradient
saliency map, called saliency-robustness.

• We show that the proposed property can be verified by solving a constraint satisfia-
bility problem over linear real arithmetic (LRA).

• We propose a novel method to solve the saliency-robustness problem more effectively,
by combining two state-of-the-art techniques in neural network verification, namely
constraint-based solving [70] and Jacobian bounding [147, 133, 114].

• We conduct experiments on our synthetic benchmarks and dataset and a neural
network from VNNCOMP23 [91], the annual neural network verification competition.
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Z3 Ours

δ = 0.5 3.22s UNSAT 0.8s UNSAT
δ = 0.75 2.8s UNSAT 1.225s UNSAT
δ = 1 2.9s UNSAT 1.258s UNSAT
δ = 1.25 3.36s SAT 2.212s SAT
δ = 1.5 2.78s SAT 0.8s SAT

Table 5.1: Verifying saliency-robustness for BanditNet using Z3 and Marabou +Crown

We find that Vanilla Gradient, despite being the earliest form of the saliency maps,
is a surprisingly good explanation for the tested network.

The rest of the chapter is structured as follows: Section 5.2 provides a concrete exam-
ple as well as describes our synthetic dataset, Section 5.3 goes into details our proposed
saliency-robustness property and how to solve it, Section 5.4 presents our experiments and
results, and finally Section 5.5 summarizes our contributions, outlines the current limita-
tions of the method, and discusses open problems for future work.

5.2 A motivating example

In this section, we provide a concrete example to illustrate our idea. We consider a multi-
arm bandit machine with 5 arms, each capable of generating a specific reward by manip-
ulating its complete state. However, unlike digital arms, these arms are analog and can
be pulled at varying levels of intensity, ranging from 0% to 100%. For instance, if an arm
has a reward value of 300, pulling it at 10% intensity will result in a reward of 30. The
rewards for the five arms are as follows: 100, 100, 300, 100, 300.

To obtain the total reward, the player must pull each arm to an arbitrary level. We can
represent the machine configuration with a five-element vector. For instance, if the machine
has only the first two arms pulled to 50% level, this configuration can be represented by
the vector [0.5, 0.5, 0., 0., 0.]. The total reward is simply the sum of rewards obtained from
each arm. We consider the total reward greater than 300 to be a high reward, and anything
less to be a low reward. However, this information is not revealed to the players. Suppose
a player records several configurations of complete arm states, such as [1.0, 0., 0., 1., 0.].
The player has a dataset of 20 configurations. They can then train a simple FCN model
to predict the corresponding reward outcome. By analyzing the saliency map, the player
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Figure 5.2: Five arm bandit.

realizes that the third and fifth arms have the highest absolute value of gradients. They
can take advantage of this information to improve their strategy. But they have a burning
question: is the saliency map truly an explanation for the predicted outcome or a mere
correlation?

The user looks at the saliency map of the input [1, 1, 0, 1, 1] with respect to the “high
reward” label, which is M = [0.03, 0.23, 2.97, 0.05, 2.5]. If the saliency map is an expla-
nation for the prediction, then for all input in [0, 1]5, a saliency map similar to M must
imply that the output is classified as “high reward”, the user figures. They look at M and
see that the gap between the high and low values is about 2.5, thus they expect that for
all saliency maps that have L∞ distance to M of less than 1.25 (i.e saliency maps with
the same two arms being highlighted), they should all guarantee the prediction of “high
reward”. Using our method, they verify that it is indeed the case, as shown by Table 5.1.
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5.3 Methodology

In this section, we introduce our new verification problem, called the saliency-robustness
problem, how solving it can be seen as solving a constraint satisfiability problem over LRA,
and how to effectively solve it by combining state-of-the-art techniques in neural network
verification.

5.3.1 The saliency-robustness problem

Given the aim of a saliency map E, we ask the question: if E(x) and E(x′) are “similar”
(according to some metrics or human judgment), must O(x) = O(x′)? If that’s not the
case, then E is hardly a good explanation: if the same set of pixels are important for both
recognizing digit 0 and 1, then that set of features cannot be used to explain why an image
is of the label 0 but not 1.

We formalize this question by the following verification problem

∀x, x′ ∈ Rd0 · O(x) = ℓ ∧ E(x′) ≈ E(x) =⇒ O(x′) = ℓ (5.1)

in which E(x) ≈ E(x′) indicate that they are similar. There are many different ways
of defining similarity, and we leave exploring different formulations for future work. In
this chapter, we use the same notion of similarity that is commonly used in robustness
verification [3]: two saliency maps are similar if they are close in the L∞ norm.

The quantifier in Eq. (5.1) reflects the ideal scenario in which the property can be
verified in the whole input domain. In practice, this is rarely the case given the scalability
of existing tools. Thus, we aim to solve a ϵ-relaxed problem and aim to push the parameter
ϵ higher in future work. Concretely, we verify inputs in the epsilon vicinity of datapoints
(similar to the robustness problem): given a target input x̂, we check the following saliency-
robustness property

∀x′ ∈ B(x, ϵ) · O(x̂) = ℓ ∧ ||E(x′)− E(x̂)||∞ ≤ δ (5.2)

=⇒ O(x′) = ℓ (5.3)

If Eq. (5.2) holds, we say that E is (ϵ, δ)-robust at x̂. In our motivating example, the user
wants to check queries ranging from (1, 0.5)- to (1, 1.5)-robustness of at x̂ = [1, 1, 0, 1, 1].

Note that per our definition in Chapter 2, E is a 2D matrix computing the gradient
of each input with respect to each label. In many saliency map methods [109, 118, 71], it
is common to focus on only the gradient with respect to the label with the highest score
(O(x)). From this point on, unless specified otherwise, we consider E as a gradient vector
with respect to the predicted label.
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5.3.2 The saliency-robustness as a constraint satisfiability prob-
lem

We show that for any neural network consisting of only linear layers and piecewise-linear
activation functions, Eq. (5.2) can be encoded into a satisfiability problem over linear real
arithmetic (LRA). First, given a target input x̂ and a neural network N that predicts
ON (x̂) = ℓ, we define the following first-order logic formula

f = ϕF ∧ ϕG ∧ ϕ≈ ∧ ϕP

in which

ϕF = Constraints for forward computation

(encoding ON (x))

ϕG = Constraints for computing gradient

(encoding EN (x))

ϕ≈ = Constraints for gradient similarity

ϕP = Constraints for ϵ-robustness

The forward computation can be encoded using the same encoding used by Marabou [70]:

for a linear layer zi = W ihi−1+bi, we have the constraint zi[j] =
∑|hi−1|

k=1 W i[j][k]+bi[j] for
each entry in the resulting layer zi; and for a ReLU activation layer hi = ReLU(zi) , each
entry in the result vector can be encoded using two implications: zi[j] > 0 =⇒ hi[j] = zi[j]
and zi[j] ≤ 0 =⇒ hi[j] = 0.

The backward computation can be encoded recursively as follows. For each layer hi

and zi, we denote ∂hi and ∂zi their gradient vectors. At the last layer zL, we set ∂zL[ℓ] = 1,
and ∂zL[j ̸= ℓ] = 0.

For the linear layer zi = W ihi−1 +bi, the jth entry in the gradient of ∂hi−1 is computed
by

∂hi−1[j] =

|zi|∑
k=1

W i[k][j]∂zi[k] (5.4)

The backward computation for the convolutional layer (which is a specialized version of
the linear layer) can be encoded in a similar manner.
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For the ReLU layer hi = ReLU(zi), the jth entry in the gradient of ∂zi is encoded by
two implications

zi[j] > 0 =⇒ ∂zi[j] = ∂hi[j] (5.5)

zi[j] ≤ 0 =⇒ ∂zi[j] = 0 (5.6)

The gradient similarity is encoded as bounds on each entry in the vector ∂h0. Given
the precomputed E(x̂) (which can be computed using any off-the-shelf auto-gradient tools
like Pytorch or Tensorflow), we set

∀j ∈ [1, d0] · E(x̂)[j]− δ ≤ ∂h0[j] ≤ E(x̂)[j] + δ (5.7)

The robustness constraints are encoded as bounds on the input and negation of con-
ditions on the output:

∀j ∈ [1, d0] · x̂[j]− ϵ ≤ x[j] ≤ x̂[j] + ϵ (5.8)

∀j ̸= ℓ ∈ [1, dL] ·
∨

zL[j] > zL[ℓ] (5.9)

Theorem 5.3.1. If f is UNSAT, then E is (ϵ, δ)-robust at x̂

Its correctness can be easily derived from Eq. (5.2) and the construction of f .

5.3.3 Solving the saliency-robustness problem by combining constraint-
based NN verifiers with Jacobian bounding methods

In this part, we introduce a first cut to effectively verifying the saliency-robustness problem
by combining two state-of-the-art neural network verification techniques – constraint-based
neural network verifier and Jacobian bounding.

Given that the saliency-robustness problem can be encoded as a satisfiability problem
over LRA, it could be solved by any off-the-shelf SMT solver such as Z3 [34] or CVC5 [9].
However, like the robustness problem, which can also be encoded as a satisfiability problem
over LRA, solving the encoding using an off-the-shelf SMT solver hardly scale to any
network of interesting size [69].
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Adapting constraint-based NN verifiers for solving the saliency-robustness prob-
lem In this chapter, we use Marabou [70], a dedicated state-of-the-art constraint-based
NN verifier as the core solver. Marabou extends the Simplex [94] algorithm used in linear
programming with special mechanisms to handle ReLU activation function. Like Simplex,
at each iteration, Marabou tries to fix a variable so that it doesn’t violate its constraints. If
in Simplex, a violation can only happen when a variable becomes out-of-bound, in Marabou
a violation can also happen when a variable doesn’t satisfy its activation constraints, thus
Marabou extends Simplex’s pivot rules with a PivotForRelu rule and introduces splitting
into the solving loop. Most importantly, Marabou supports disjunctions, thus allowing it
to express and solve more complicated verification specifications, compared to other tools
like Crown that only verifies the robustness property.

Out of the box, Marabou can solve the satisfiability of ϕF ∧ ϕP (which is exactly the
robustness property). Since Marabou only supports disjunctions but not implications,
and doesn’t have strict inequalities, to encode ϕG we model Eq. (5.5) and Eq. (5.6) using
disjunction as follows:

zi[j] ≤ 0 ∨ ∂zi[j] = ∂hi[j] (5.10)

zi[j] ≥ 10−6 ∨ ∂zi[j] = 0 (5.11)

Note that in Eq. (5.11) we use a small number to model strict inequality. This is a
standard technique and is also recommended by Marabou’s developer 1. Encoding ϕ≈ in
Marabou is similar to encoding ϕP : we simply set the bounds for each of the entries of
∂x.

Precomputing Jacobian bounds It is not enough to encode the saliency-robustness
problem into the form that Marabou accepts. The core solving loop of Marabou requires
that every variable in the input has to be bounded. Thus, one of the first preprocessing
steps in Marabou is to derive bounds for all variables. Unfortunately, while Marabou
implements many procedures to derive and tighten bounds during the preprocessing phase,
those procedures cannot compute bounds over disjunctions. In practice, that means we
must find a way to effectively bound ∂hi and ∂zi and set them in Marabou manually.
Put it simply, we need to compute the Jacobian bounds for ∂hi and ∂zi

Bounding Jacobian is a hard and open question [147, 114, 67], and we do not attempt
to solve the problem in this chapter. Instead, we use Crown [114] – a state-of-the-
art recursive algorithm to precompute the Jacobian bounds to use with Marabou. To

1https://github.com/NeuralNetworkVerification/Marabou/issues/496

71

https://github.com/NeuralNetworkVerification/Marabou/issues/496


optimize memory usage, Crown does not maintain the intermediate Jacobian bounds for
all layers. We work around this issues by calling Crown L times, each time marking one
layer as the last layer in the computation graph, thus allowing us to collect the Jacobian
bounds for all L layers in the network.2

5.4 Evaluation

In this section, we evaluate the saliency-robustness of the Vanilla Gradient, as well as
compare the performance between Z3 – a state-of-the-art SMT solver, and our proposed
method. We also conduct an experiment showing the relationship between the quality of
the Jacobian bounds and the solving performance.

Z3 Marabou + Crown

Region δ = 0.0001 δ = 0.0001 δ = 0.0005 δ = 0.001
B(x1, 0.05) TIMEOUT 3m46s UNSAT TIMEOUT TIMEOUT
B(x2, 0.03) TIMEOUT 1m34s UNSAT 1m22s UNSAT 5m22s UNSAT
B(x2, 0.05) TIMEOUT TIMEOUT TIMEOUT TIMEOUT
B(x3, 0.03) TIMEOUT ERROR ERROR ERROR
B(x3, 0.05) TIMEOUT TIMEOUT TIMEOUT TIMEOUT
B(x4, 0.03) TIMEOUT ERROR ERROR ERROR
B(x4, 0.05) TIMEOUT 1m19s UNSAT 1m28s UNSAT 3m23s UNSAT
B(x5, 0.05) TIMEOUT ERROR ERROR ERROR
B(x6, 0.05) TIMEOUT 1m44s UNSAT TIMEOUT 1m50s UNSAT
B(x7, 0.05) TIMEOUT TIMEOUT TIMEOUT TIMEOUT

Table 5.2: Verifying the saliency-robustness property using Z3 and our method at different
δs.

5.4.1 Experiment setup

Our experiments are based on our synthetic dataset for the five-arm bandit problem and
benchmark from VNNCOMP23 [91] – the annual neural network verification competition.
We use the MNIST dataset and the pre-trained model mnistfc 256x2, a 2-layers fully

2This is currently the recommended solution suggested by the developers, see https://github.com/

Verified-Intelligence/auto_LiRPA/issues/46
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connected network with 256 neurons for each layer. Due to the scalability of both Crown
in computing Jacobian bounds and Marabou in solving, experiments with CNNs or bigger
fully connected networks with bigger δs all result in TIMEOUT 3. Note that by adding
extra variables to represent gradients into Marabou, every network is double in size, i.e.,
a query verifying the saliency-robustness of a 4-layer network has the same number of
variables and constraints as verifying the robustness property of an 8-layer network.

Experiments are run on a c5a.16xlarge EC2 instances with 64 cores and 124GB of
RAM. On all benchmarks and in both Z3 and Marabou+Crown, we allow the solver to
use up to 30 cores. The timeout for each query is set to 10 minutes. Unless specified oth-
erwise, we use the Crown-Optimized method in Crown, and set the number of refinement
iterations to 200 instead of the default value of 20. We call this the Reference config.

5.4.2 The saliency-robustness for the five-arm bandits over the
whole input domain

We train BanditNet, a 2 layers FCN with 6 neurons each, on our synthetic benchmark.
For BanditNet, we verify the saliency-robustness for the whole input domain (ϵ = 1),
at different values of δ ranging from 0.5 to 1.5. We run each query using both Z3 and
Marabou+Crown, and results are summarized in Table 5.1. Z3 performs well on this
small network, but even here, we observe a significant difference in performance between
our method and Z3, across all δs, for both SAT and UNSAT queries. Interestingly, we also
observe that the query becomes hardest near the δ border 1.25.

5.4.3 The saliency-robustness for mnistfc 256x2 in known unsafe
regions

To verify the usefulness of Vanilla Gradient as an explanation for the prediction of mnistfc 256x2,
we look at inputs in the benchmarks that are known to have adversarial examples in their
vicinity. If checking the saliency-robustness in the same vicinity returns UNSAT, we can
claim that the Vanilla Gradient is a useful tool to explain the prediction in that region.

In the VNNCOMP23 benchmarks, Marabou can find adversarial examples in 10 re-
gions centered at 7 inputs at 2 different epsilon values (Table 5.2). As expected, Z3 does
not scale to this network, while our method can verify 4 out of 10 regions at δ = 0.0001.

3Crown needs at least 40GB of GPU memory to bound the Jacobian of a 2-layer CNN network with
only 8 channels and kernels of size 3× 3
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We also observe that as we increase δ, our queries become increasingly harder, resulting
in more TIMEOUTs. There is an outlier at region B(x6, 0.05) in which at δ = 0.0005 the
query is timed out but at a harder δ = 0.001 it can be solved again. It is interesting that
other than returning TIMEOUT or SAT/UNSAT, we also observe cases where our method
crashes the solver. Given the limited amount of time, we do not have a clear idea of the
root cause of the crashes and we leave investigating those issues for future work.

5.4.4 The effect of bound’s tightness on performance

Reference config No optimization 20 refinement iterations

Region Result Result avg × Result avg ×
B(x1, 0.05) 3m46s UNSAT TIMEOUT 2.131 5m21s UNSAT 1
B(x2, 0.03) 1m34s UNSAT 1m11s UNSAT 1.11 1m6s UNSAT 1.014
B(x2, 0.05) TIMEOUT TIMEOUT 1.06 TIMEOUT 1
B(x3, 0.03) ERROR ERROR - ERROR -
B(x3, 0.05) TIMEOUT TIMEOUT 1.05 TIMEOUT 1.002
B(x4, 0.03) ERROR ERROR 1.69 ERROR 1
B(x4, 0.05) 1m19s UNSAT 1m44s UNSAT 1.04 1m12s UNSAT 1
B(x5, 0.05) ERROR ERROR 1.13 ERROR 1
B(x6, 0.05) 1m44s UNSAT TIMEOUT 1.04 1m44s UNSAT 1.004
B(x7, 0.05) TIMEOUT TIMEOUT 1.07 TIMEOUT 1.004

Table 5.3: The effect of Jacobian bounds on solving the saliency-robustness problem. We
use δ = 0.0001 for this experiment. We show the average increase in Jacobian bounds in
the two “avg ×” columns. The “avg ×” values for B(x3, 0.03) are missing since this query
crashes Crown, thus no bounds were computed.

As a new area of research, the quality of Jacobian bounds is improved rapidly, and
in some cases, newer methods like Crown can produce bounds orders of magnitudes
smaller than older methods [114]. To get an idea of how big of a difference different
Jacobian bounds can make on our method, we conduct an experiment in which we turn
off all optimizations in Crown, and another experiment in which we keep the same set
of optimizations but use the default number of refinement iterations (20) to obtain looser
bounds, then set them in Marabou. Table 5.3 shows the solving result as well as the
average increase in the size of the obtained bounds. Without any optimization, we can see
that the obtained Jacobian bounds are quite loose (more than 2 times bigger compared
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with the optimized bounds), resulting in more TIMEOUTs. In general, running Crown-
Optimized for 20 iterations gives us relatively tight bounds, and the solving performance
stays quite consistent between using 20 iterations and 200 iterations.

5.5 Conclusion

In this chapter, we propose a novel verification problem, called saliency-robustness, which
aims to verify whether a Vanilla Gradient saliency map can serve as an explanation or cer-
tification for a prediction. We model the problem as a constraint satisfiability problem over
linear real arithmetic and show that for small networks, our formulation can be solved by
off-the-shelf SMT solvers like Z3. Furthermore, when Z3 doesn’t scale to networks of bigger
sizes, we propose a method combining constraint-based neural network verifier with Jaco-
bian bounding to solve it more effectively. Experiments show that our method outperforms
Z3 and scales to the mnistfc 256x2 pre-trained network used in VNNCOMP23.

Limitations and Future Work There are several limitations in this chapter and open
problems for future work. First, one thread to validity is the soundness of floating point
arithmetic, which is a known issue in neural network verification in general [69]. Second,
our proposed method is limited in scalability by both components: the Jacobian bounding
algorithm of Crown does not scale to deeper neural networks and the quality of the bounds
degrades significantly as we go deeper [114], and Marabou (or any constraint-based NN
verifiers for that matter) is inherently slower than abstraction-based methods in exchange
for being precise. Finally, our current method does not handle non-linear formulations of
saliency maps, which are used in many works such as Integrated Gradients or SmoothGrad.
Extending our work to support such saliency map functions is a challenge for future work.

As the first work at verifying the saliency-robustness property, our proposed method
serves as a proof of concept, and we humbly hope we interest other researchers to build
upon it toward more robust saliency maps.

The content of this chapter is adapted from the following work:

• Nham Le, Arie Gurfinkel, Xujie Si, Chuqin Geng. Towards Reliable Saliency Maps.
Under submission at The 16th Asian Conference on Machine Learning. 2024, Hanoi,
Vietnam.
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Chapter 6

Verifying the Robustness Between
the Latent Space, the Probe, and the
Downstream Tasks in Interpreting
Large Language Models

Large language models (LLMs) are surprisingly capable at a range of tasks, even when they
are only trained on a simple “next-token” prediction task. However, how does this perfor-
mance emerge out of the seemingly simple learning objective is still a mystery: do LLMs
build a high-level structure representation of the world, or are they stochastic parrots?
Recent researches in synthetic settings (the board game Othello) give evidence supporting
the formal: it is possible to train a simple probe to reconstruct the board state from the
latent space of a LLM, and the output of the downstream task can also be controlled by
navigating said latent space such that the probe reports a different board state. In this
chapter, we investigate the question of whether a causality relationship between the three
entities: the latent space, the probe, and the task-solving head of the LLMs, exists.

6.1 Introduction

Large-language models (LLMs) have emerged as formidable tools in many tasks, surpassing
human-being and revolutionizing various fields with their remarkable capabilities. Their
prowess in tasks ranging from language translation to code generation, seemingly just from
learning how to predict the next token, has surprised the community at large.
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Yet, the underlying mechanisms that enable their exceptional performance remain
somewhat enigmatic. While LLM’s performance is undeniable, the intricacies of how they
achieve it still elude full comprehension. Recent studies [77], however, provide compelling
evidence suggesting that LLMs not only process data but also learn intricate representa-
tions of the world within the statistical patterns of the information they are trained on.
This revelation opens new avenues for understanding the inner workings of these powerful
models and underscores their potential for advancing artificial intelligence.

In the pioneering work [77], the authors argue for the existence of a world model inside
LLMs, by looking at the connection between the three entities: the Latent Space, the
Trained Probe, and the Task Head of the network. Their method – Mechanical Intepretation
– starts with training an almost perfect GPT model N to predict either the next legal
moves or the next best moves given a sequence of Othello moves, then train a probe P to
reconstruct the board state given the hidden values h of N . Note that at no point is the
spatial information of the Othello board (e.g C4 is next to C5) given to N : if exists in
the model, it must have learned it by itself. It is fascinating that the probe, without any
prior knowledge, can almost perfectly reconstruct the board in its 2D arrangement from
the latent space. The authors go even further, by showing a causal relationship between
the three entities N , P , h: given an Othello board state B, when moving in the latent
space to trick the trained probe to reconstruct a different board B′, the head will output
legal or best moves corresponding to the board B′ as well (instead of B).

In this chapter, we aim to use Formal verification to establish a mathematical certifi-
cation for this connection. We exploit the fact that both the probes must be lightweight
by construction: probing methods want to avoid the trap of training a second model ex-
plaining the data instead of explaining the original model [77], and the task-heads of the
network usually are two- or one-layer fully connected networks; thus making them inter-
esting targets for verification.

In this work, we make the following contributions:

• We introduce Trinity-robustness: a novel suite of safety properties designed to verify
not only the three individual entities but, more importantly, the connections between
them.

• We present a technique to encode the model and verify these properties as a set of
first-order logic constraints, which are then solved using Marabou [70], a state-of-
the-art neural network verifier.

• Our experimental results reveal that both the probes and the heads exhibit brittleness
with respect to the latent space. Crucially, fixing one entity does not enhance the
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robustness of the other, suggesting that the connection between the three entities is
weaker than initially assumed.

6.2 The Trinity-robustness problem

Background for this chapter (Transformer architecture, Neural network verifiers, the board
game Othello, and Mechanical interpretation) are presented in Chapter 2. We start this
section by introducing our notations.

Denote s a sequence of moves on an Othello board resulting in a real-world board state
M(s). Denote h(s) the hidden state (vector v in Fig. 6.1) that is used for both the probe
P and the task head F of the network. P produces a tensor of shape 60×3, corresponding
to the probability of each of the 60 cells being black, white, or empty. In this chapter, we
focus on the head network that outputs the set of next legal moves: F outputs a vector of
length 60, in which a negative value means the tile is an illegal move and a positive value
means the tile is a legal move.

We define ≈M an approximation relation between the real-world model M(s) and the
model reconstructed by P . The real-world board stateM(s) is a vector of size 60, in which
each entry is either 0 (black), 1 (white), or 2 (empty), based on the rule of the game. We
define

P(h(s)) ≈MM(s) ⇐⇒ ∀i ∈ 1..60 · argmaxP(h(s))[i] =M(s)[i] (6.1)

Additionally, we define the relation ≈F

F(v1) ≈F F(v2) ⇐⇒ signF(v1) = signF(v2) (6.2)

Mechanical interpretation uses probes to explain the inner state of the learned models,
thus we argue for using formal verification to establish more confidence in the robustness of
the probes: if we cannot trust the probes, how can we trust our interpretation of its output?
At the same time, we also argue that while common LLMs are too large for the current
state-of-the-art neural network verifiers, the heads in those LLMs are more lightweight and
should be verified. Thus, we propose the following two robustness properties for the probes
and the heads:

Given a perturbation norm ϵ, we define
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• Head-robustness:

∀∆ · ||∆||∞ ≤ ϵ =⇒ F(h(s) + ∆) ≈F F(h(s)) (6.3)

• Probe-robustness:

∀∆ · ||∆||∞ ≤ ϵ =⇒ P(h(s) + ∆) ≈MM(s) (6.4)

While checking for the robustness of the probes and the heads are important, in this
chapter, we also want to explore the connection between them: can the output of the
head be used to explain the output of the probe, and vice versa? Thus, we propose two
additional properties:

• Head proves probe (F =⇒ P):

∀∆ · F(h(s) + ∆) ≈F F(h(s)) =⇒ P(h(s) + ∆) ≈MM(s) (6.5)

• Probe proves head (P =⇒ F):

∀∆ · P(h(s) + ∆) ≈MM(s) =⇒ F(h(s) + ∆) ≈F F(h(s)) (6.6)

Together, the four specifications form the Trinity-robustness problems. In the next sec-
tion, we discuss how we encode and solve them. When the context is clear, we omit s.

6.3 Solving the Trinity-robustness with Marabou

In this section, we focus on how to solve the Trinity-robustness properties against the
pretrained probes and head in [77]. However, the technique presented here is generic and
can be applied to probes and heads of other LLMs with minimal or no changes.

In [77], both the probes and the task heads consist of only linear layers and piecewise-
linear activation functions. Thus, we show that Trinity-robustness can be encoded into a
satisfiability problem over linear real arithmetic (LRA). We first show that by constructing
the encoding for probe-robustness, since they contain many of the needed techniques to
construct all four Trinity-robustness properties.
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Encoding the probe-robustness property First, the property can be written as the
following first-order logic formula f :

f := (ϕh ∧ ϕprobe) =⇒ ϕprobe-robust (6.7)

in which (6.8)

ϕh = Constraints encoding the perturbation on the hidden vector h (6.9)

ϕprobe = Constraints encoding the probe network (6.10)

ϕprobe-robust = Constraints encoding the robustness properties (6.11)

First, we apply the same conversion as in software verification and model checking: to
check for the validity of A =⇒ B, we check if there exists a satisfying assignment for
A ∧ ¬B. Thus, we check SAT for

Q = (ϕh ∧ ϕprobe) ∧ ¬ϕprobe-robust (6.12)

To encode the perturbations ∀∆ · ||∆||∞ ≤ ϵ, for each index i in h, we set its upper and
lower bounds based on the true value of h (denote ĥ) as follows:

ϕh =
∧
i

(h[i] > ĥ[i]− ϵ) ∧ (h[i] < ĥ[i] + ϵ) (6.13)

To encode the network: Both the probe P and the head F can be encoded using the
same encoding used by Marabou [70]: for a linear layer zi = W ivi−1 + bi, we have the

constraint zi[j] =
∑|vi−1|

k=1 W i[j][k] + bi[j] for each entry in the resulting layer zi; and for
a ReLU activation layer vi = ReLU(zi) , each entry in the result vector can be encoded
using two implications:

zi[j] > 0 =⇒ vi[j] = zi[j]

zi[j] ≤ 0 =⇒ vi[j] = 0

For the probe-robustness property, we encode Eq. (6.1) as follows: At the tile i, the
board has the true value M[i], then

ϕprobe-robust =
∧
i

P(h)[i][M[i]] = maxP(h)[i] (6.14)

or (6.15)

ϕprobe-robust =
∧
i

∧
j ̸=M[i]

P(h)[i][M[i]] > P(h)[i][j] (6.16)
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Thus, by expanding the negation of a conjunction into a disjunction, we can encode
¬ϕprobe-robust as:

¬ϕprobe-robust =
∨
i

∨
j ̸=M[i]

P(h)[i][M[i]] < P(h)[i][j] (6.17)

Altogether, we check for the probe-robustness by checking SAT for

Q = (ϕh ∧ ϕprobe)(
∨
i

∨
j ̸=M[i]

P(h)[i][M[i]] < P(h)[i][j]) (6.18)

or Q =
∨
i

∨
j ̸=M[i]

ϕh ∧ ϕprobe ∧ P(h)[i][M[i]] < P(h)[i][j] (6.19)

While both Eq. (6.18) and Eq. (6.19) can be parsed and solved using Marabou– our
neural verifier of choice, the latter format allows us to explicitly parallelize the workload
by creating 120 independent queries for Marabou.

Encoding the head-robustness property , the only difference is in encoding ϕprobe-robust,
thus the final check SAT query is

Q =
∨
i

ϕh ∧ ϕhead ∧ signF(h)[i] ̸= signF(ĥ)[i] (6.20)

Encoding the F =⇒ P and P =⇒ F properties Due to their symmetry, we discuss
only the encoding for F =⇒ P . F =⇒ P can be written as the following formula:

f := (ϕh ∧ ϕhead ∧ ϕprobe ∧ ϕhead-robust) =⇒ ϕprobe-robust (6.21)

in which (6.22)

ϕh = Constraints encoding the perturbation on the hidden vector h (6.23)

ϕhead = Constraints encoding the head (6.24)

ϕprobe = Constraints encoding the probe (6.25)

ϕhead-robust = Constraints encoding the head-robustness (6.26)

ϕprobe-robust = Constraints encoding the probe-robustness (6.27)

Using the same encoding scheme described above, the validity of F =⇒ P can be answered
by checking SAT for

Q =
∨
i

∨
j ̸=M[i]

ϕh ∧ ϕprobe ∧ ϕhead ∧ signF(h)[i] = signF(ĥ)[i]︸ ︷︷ ︸
ϕhead-robust

∧P(h)[i][M[i]] < P(h)[i][j]︸ ︷︷ ︸
¬ϕprobe-robust

(6.28)
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Property Number of sub-queries for each game
Head-robust 180
Probe-robust 384
P =⇒ F 180
F =⇒ P 384

Total 112800 (100 games)

Table 6.1: The number of input queries to Marabou

6.4 Experiments

We evaluate our methods using a randomly generated set of Othello game sequences.
Starting with an initial set of 1000 games, we exclude those where either the head makes
an incorrect prediction or the probe incorrectly reconstructs the board. This filtering
process results in a benchmark set of 617 game sequences, with lengths ranging from 5 to
30 moves. From this filtered set, we randomly select 100 games to serve as our benchmarks.
We use the pre-trained head and probe extracted from [77], where the head is a linear layer
and the probe is a 2-layer fully connected network. Both networks take the last hidden
value of the Transformer block (post-LayerNorm) as the input. This input vector is of size
512.

For each game, we check all four of the Trinity-robustness properties. Table 6.1 details
the number of queries sent to Marabou after splitting each disjunct into a set of queries.
For each sub-query, we use Marabou with the default parameters, setting a timeout of 5
minutes. The experiments are conducted on a Microsoft Azure Virtual Machine equipped
with 64 cores and 256 GB of memory. Each property is tested at three different values of
ϵ: 0.025, 0.05 and 0.1.

RQ1: Are the trained task head and probe robust with respect to perturbation
in the latent space? Table 6.2 presents the results of verifying the robustness of the
head and the probe. The head demonstrates exceptional robustness across all tested epsilon
values: there are no adversarial points in the latent space for 99.45% of the queries at
ϵ = 0.025, and even at ϵ = 0.1, Marabou can only find a counter-example in 10.14% of
the queries. Additionally, none of the head-robustness queries result in a timeout. This
can be attributed to its relatively simple architecture: the head is just a linear layer of
affine transformation.

The probe shows robustness at epsilon values of 0.025 and 0.05, with 98.39% and
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ϵ Head-robust Probe-robust
SAT UNSAT T/o SAT UNSAT T/o

0.025 0.55% 99.45% 0% 0.88% 98.39% 0.73%
0.05 1.53% 98.46% 0% 6.48% 81.07% 12.45%
0.1 10.14% 89.86% 0% 43.26% 7.88% 48.86%

Table 6.2: Verifying the head- and probe-robustness

ϵ F =⇒ P P =⇒ F
SAT UNSAT T/o SAT UNSAT T/o

0.025 0.55% 99.45% 0% 0.84% 98.09% 1.06%
0.05 1.53% 98.46% 0% 6.42% 80.31% 13.26%
0.1 10.1% 89.9% 0% 43.11% 7.64% 49.25%

Table 6.3: Verifying the P =⇒ F and F =⇒ P

81.07% of the queries returning UNSAT, respectively. However, the difficulty of the queries
significantly increases as epsilon is scaled up: less than 1% of the queries timeout at
ϵ = 0.025, but this number rises to 12.45% at ϵ = 0.05 and nearly half (48.86%) at ϵ = 0.1.
Notably, at ϵ = 0.1, Marabou is unable to prove the robustness of the probe in most
cases, with less than 10% of the queries being proven UNSAT within the time limit.

RQ2: If the perturbation does not change the output of the probe (head), is the
head (probe) robust? The results, as detailed in Table 6.3, reveal some unexpected
findings. Fixing the output of the probe does not enhance the robustness of the head.
Likewise, fixing the output of the head does not significantly improve the robustness of the
probe, but makes the queries more challenging, leading to an increase in the number of
timeouts across all three epsilon values. This is surprising, as it suggests that the causal
connection between the probe and the head is not as strong as [77] proposed: there exist
multiple points in the latent space where the output of the head and the probe disagree
with each other, thus the output of one cannot be used to explain the output of the other.

Discussion We hypothesize two possible reasons for this intriguing phenomenon. First,
the meaning of ϵ in the latent space is not well-defined. While adding 0.05 or 0.1 to a
red channel of a pixel has a clear visual interpretation, moving along a dimension in the
latent space a value of 0.05 does not have a clear real-world equivalence. Thus, our choice
of ϵ might be too large or small. Second, even if our perturbation range is meaningful, it
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is possible that the adversarial examples where the head and the probe disagree do not
correspond to any real input sequence s. Thus, the head and probe may not prove each
other’s robustness with respect to the continuous latent space, but the causal relation with
respect to the discrete input space may still hold. Reversing a point in the latent space to
a corresponding input or the closest one is an interesting future work.

6.5 Conclusion

In this chapter, we attempt to provide a mathematical proof for the connection between the
latent space, the task head, and the probe used in Mechanical Interpretation. Specifically,
we investigate whether the output of the head can be used to prove the robustness of the
probe and vice versa. While empirical evidence from [77] suggests a causal connection
between the probe and the head, our technique using formal verification reveals points in
the latent space where the head and probe outputs disagree. Surprisingly, we find these
discrepancies across a substantial region of the randomly sampled latent space, indicating
that the connection between the three entities is weaker than initially thought. We hope
that these findings will encourage further research into Mechanical Interpretation.

The content of this chapter is adapted from the following work:

• Nham Le, Henry Guo, Arie Gurfinkel, Xujie Si, Chuqin Geng. TRINITY-robustness:
Verifying the Causality Between the Latent Space, the Probe, and the Downstream
Tasks in Large Language Models. Submitted to at FMCAD’24 Student Forum.
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Othello GPT

Layer 1

Layer 2

Layer 8

Task head (F)

['f5', 'd6', 'c3', 'd3', 'c4', 'f4', 'f6', 'b4', 'f3', 'e6', 'e3', 'f2', 'd2', 'g5', 'g6', 'g4', 'h4', 'h5']

output by running F(v):
 tensor([-2.0611, -2.8018, -3.0063,  7.7758,  7.8361, -1.6718, -2.3594, -2.6148,
         -2.2483, -2.5150, -2.5595, -1.9102,  7.7744, -1.5704, -2.2384, -3.5364, 
         -2.2118, -2.2511, -1.9897, -2.8324,  7.7565,  7.8481, -1.6253, -2.7198, 
         -2.4036, -2.8010, -2.3921,                   -2.3050,  7.7830, -2.2417, 
         -1.4258, -2.7268, -2.0945,                   -2.7569,  7.7833, -2.8513,
          7.8171, -2.2584, -1.8082, -2.5208, -2.7762, -2.5894, -2.6374, -2.4938,  
          7.8177, -1.1532,  7.7892, -2.4260, -2.8173, -2.5380, -1.3652, -3.0821, 
         -2.2105, -2.0345, -0.3020, -1.9035, -2.4227,  7.8137, -1.4604, -2.2261])

[Final embedding vector]
(v)

...

Probe (P)

a                
b       O        
c     X O        
d   X X O O O    
e     X O O O    
f   O X O O X    
g       O O X    
h       X O      
  1 2 3 4 5 6 7 8

Figure 6.1: OthelloGPT predicting the next legal moves given a sequence of play. The
output of the head in this case is a vector of size 60, encoding all cells in the board. The
vector is reformatted for clarity, with moves predicted as legal by the head highlighted.

85



Chapter 7

Future Work

As machine learning finds increasing application across diverse industries, explaining and
validating the operational mechanisms of neural networks assumes heightened significance.
This dissertation investigates the integration of explanation and verification techniques to
enhance understanding and bolster confidence in neural networks. Additionally, we explore
the development of an efficient distributed Satisfiability Modulo Theories (SMT) solver –
the heart of many neural network verifiers. We outline a number of future directions on
both fronts: using verification to enhance explanation methodologies; and strategies for
further optimizing the scalability of distributed SMT solvers.

7.1 On Robust Explanations for Neural Networks

Robust training for explanation methods Recent advancements in the verification
of robustness properties of neural networks have facilitated the development of robust
training methodologies. In these methodologies, robustness is integrated into the training
phase of the neural network, rather than being assessed post hoc [4]. For explanation
methods that rely on training an auxiliary network to interpret the behavior of the primary
network (e.g. probing), we propose that incorporating robust training techniques into the
auxiliary networks can enhance their reliability. This, in turn, increases our confidence in
the interpretations derived from it.

Handling non QF-LRA constraints In Chapter 3, Chapter 5, and Chapter 6, we
work with explanation functions that can be directly encoded as QF-LRA constraints.
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This allows us to use off-the-shelf neural verifiers with a minimal amount of changes in
the solvers, but also limits what explanations we can verify. Being able to handle complex
activation functions such as tanh or statistical procedures like sampling will enable us to
work with richer specifications.

7.2 On Efficient Distributed Solving

A unified framework for clause-sharing and partitioning for distributed SMT
The two most common methods to scale SMT solvers are partitioning [64, 136] and clause-
sharing [34]. In this dissertation, we present our results on building a clause-sharing based
distributed solver based on cvc5. One natural extension is to combine both partitioning
and clause-sharing. To the best of our knowledge, SMTS [84] is the only solver that
attempts this combination, by sharing clauses between multiple solver copies solving the
same partition.

Learning clause sharing heuristics As argued in Chapter 4, one crucial piece of
making an efficient clause-sharing solver is to choose which clause to share. In Chapter 4,
we utilize a rather simple heuristic based on the size of the learned clause, and while cvc5-
d shows great results, we believe that a better heuristics can improve its performance even
further.

Recent advances in the realm of SAT solving have witnessed the application of ma-
chine learning techniques, specifically Graph Neural Networks (GNNs), to effectively rank
learned clauses [134, 145]. These developments highlight the feasibility of integrating ma-
chine learning into the selection process of SMT-solving strategies. Given that cvc5 relies
fundamentally on a SAT solver, integrating a learned clause scoring mechanism adapted
from SAT could potentially offer a significant performance boost to cvc5-d. Moreover,
the incorporation of sophisticated structures within theory clauses holds promise for even
greater gains in efficiency.

Enhancing the clause-selection process through advanced machine learning models not
only aligns with recent trends in SAT solving but also opens avenues for exploring novel
methodologies in SMT solving. By harnessing the power of machine learning to optimize
clause sharing, we anticipate not only improving the efficiency of cvc5-d but also ad-
vancing the broader capabilities of SMT solvers in handling complex problem domains
effectively.
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Chapter 8

Conclusion

This thesis presents a new paradigm for safe and explainable AI by leveraging the strengths
of both explanation and verification methods to validate neural networks. Explanation
methods are intuitive but lack rigorous mathematical backing, whereas verification meth-
ods are robust by design but limited in their ability to validate large input spaces. By
verifying explanation methods, we address these issues: enhancing the trustworthiness of
explanations and significantly expanding the verifiable input space.

Combining explanation and verification opens a new research dimension, presenting
novel properties to be checked, new challenges for tool developers, and innovative ways to
design explanation methods. In this thesis, we address fundamental issues with the com-
monly used ϵ-robustness specification, advocating for its augmentation with explanation
functions. To demonstrate the feasibility and effectiveness of our approach, we propose
and develop techniques to augment ϵ-robustness with some of the most widely used ex-
planation methods. Specifically, we focus on Saliency Maps for Computer Vision and
Mechanical Interpretation for Large Language Models, enhancing the interpretability and
trustworthiness of these AI models. Moreover, we develop advanced techniques to solve
the proposed specifications using state-of-the-art tools, either individually or in combina-
tion. Recognizing the inevitable scalability issues associated with verification methods, we
discuss our efforts in building a distributed Satisfiability Modulo Theories (SMT) solver –
the backbone of many neural network verifiers.

This thesis demonstrates the potential of combining explanation and verification for
safe and explainable AI. Looking forward, this approach can be extended not only to other
explanation functions but also to the creation of new explanation methods. Explanation
methods should be verifiable to ensure trust in their outputs. Furthermore, our success in
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building a distributed SMT solver holds significant potential for improving neural verifiers.
We hope that this work can be incorporated into future verifiers to address more complex
properties in larger networks.

In conclusion, this thesis presents a comprehensive approach to combining explana-
tion and verification for safe and explainable AI. By addressing the limitations of both
methods and leveraging their strengths, we enhance the reliability and interpretability of
neural networks. Our work lays the foundation for future research in this area, offering
new directions and opportunities for the development of more robust and trustworthy AI
systems.
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Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code, 2024.

[105] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[106] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[107] Dominik Schreiber and Peter Sanders. Scalable sat solving in the cloud. In Chu-Min
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