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Abstract 

One important image processing task concerns the restoration of blurred images degraded 

by additive noise. This thesis describes and compares locally adaptive Wiener filtering 

techniques in the spatial and kequency domains- The Wiener filter minimizes the Mean 

Squared Error (MSE). 

The fitst technique describes an extension of locally adaptive Wiener filtering in the 

spatial domain. Assuming an exponentially decaying autocorrelation function, a non- 

causal filter is developed whose adaptive properties are dependent on the local signal 

autocorrelation. The development yields a recursive filter with pole positions based on 

local signal and noise variance and Local signal autocorrelation. A two dimensional dis- 

crete implementation of this filter in the form of a recursive noncausal Linear difference 

equation is derived. The properties of this filter are discussed and an iterative implemen- 

tation is presented, 

The second filtering technique is a Wiener filter based on the local power spectrum 

estimate. This technique makes no assumptions about the signal model and instead 

directly estimates the local power spectnun but requires a sufficient local neighbourhood 

for a reliable estimate. 

Both these techniques are tested using synthetic and real images to demonstrate the 

adaptive nature. The results so far show that the spatial domain version provides eff't ive 

smoothing due to a large region of support, reasonable edge preservation especially in 

noisy and low contrast conditions and smoothing along edges. The mean squared error 

is less than that of other noncasual Wiener fiIters and less than that of the Lee filter. 
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Chapter 1 

Introduction 

One important task in digital image processing concerns the restoration of blurred images 

degraded by additive noise- This problem occurs in many practical contexts; distortion 

by additive noise can be due to poor quality acquisition, images observed in a noisy 

environment, or noise inherent in a communications channel. A benefit to researchers 

is that this type of noise can be easily simulated and modelled in laboratory conditions, 

Inherent in the restoration process is the need for criteria to measure the effectiveness of 

the restoration technique. The criteria may encompass resulting image quality and image 

characteristics or computer resources needed. The efkctiveness of the image restorat ion 

algorithm depends on the basis of the algorithm and on any assumptions such as the 

noise and image models used. 

The classical minimum Mean Squared Enor (MSE) or Wiencr [7] filter uses a model 

which assumes that the original image and noise are globally stationary. Global station- 

arity refers to a signal with signal statistics that remain relatively constant throughout 

the image. Images are in general not stationary; in fact it is exactly that non-stationarity 

which manifests itself in images consisting of regions of relative smoothness and regions 

of high edge content. The assumption of global stationarity ignores the locally changing 



nature of the statistics typical in a broad class of images. 

In contrast to the Global Wiener filter, the Lee filter[l2] assumes a tilter structure 

and uses local statistics from a small fixed window around a pixel of interest to estimate 

the non-degraded value at that point. The assumption of a filter structure parameterizes 

the image characteristics into a simple form. 

The "middle groundn between these two approaches are filters which are locally adap  

tive but incorporate a greater region of support than the Lee filter. A Wiener filter which 

locdy estimates the power spectrum a t  various regions in the image is interesting because 

it is adaptive yet does not impose an explicit image model Like the Lee filter. Altema- 

t i d y ,  a spatial domain filtering technique which parameterizes the image model may 

neatly avoid the practical problems of local power spectrum estimation. The goal of this 

thesis is to explore these two alternatives to find a better restoration technique. 

The background section describes the well known Lee filter and briefly describes the 

classical Wiener filter. The description of these filters serves to put into context subse- 

quent sections which focus on the problem of optimal point estimation given the local 

st a t  istics and varying neighbourhood of support. 

In the methods chapter, the first section explores parametric approaches. First, an 

optimai recwsive point estimator based on the Lee filter structure is developed to moti- 

vate the idea of using recursive adaptive filters. The second section describes an extension 

of locally adaptive Wiener filtering in the spatial domain. Recursive filters are spatial 

domain filters that are appropriate for the image restoration problem rrnd use a combi- 

nation of local inputs and local outputs. This class of filters is parametric in the sense 

that the signal model and filter structure must be assumed. 

In the next section, non-parametric approaches are used which forgo any assumptions 

of a signal model. Instead, the local power spectrum estimate and noise spectrum estimate 

directly find the optimal filter. Frequency domain filters do not requite assumptions about 
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the signal model; they measure the signal charactmitics non-parametrically. They do, 

however, require a significant local neighbourhood to estimate the local power spectrum 

which may make them less responsive to local variations in the image. 

The results section assesses the visual and MSE performance of these filters on both 

simulated and red images. Lastly, the conclusions summarizes the comparison of these 

techniques and recommends future directions. 



Chapter 2 

Background 

This section introduces the concepts of local optimal point estimators with varying neigh- 

bourhoods of support. The section first briefly describes the local linear minimum squared 

error filter or Lee filter that estimates local noise and signal contributions and weights 

the local signal and mean accordingly. The next section describes a filter developed by 

Eder[4] which is a noncausal Wiener filter which assumes a global tixed autocorrelation. 

Finally, the classical frequency domain Wiener fdter is briefly introduced. 

2.1 Parametric Techniques 

2.1.1 Lee Filter 

The Lee filter is a simple heuristic which uses a combination of the signal and the local 

signal mean to produce an estimate which reduces noise in smooth areas and preserves 

the signal elsewhere. Lee assumes a zero mean additive independent white noise with 

known variance. In this model, 
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where x (n) , s(n) and n(n) are the observed image, uncorrupted image and noise respec- 

t ivel y, The variances are similarly related. 

u',(n) = u: (n) + o:(n) 

The form of the Lee [12] filter chosen apriori is 

Minimizing the mean square error between z(n) and s(n) of this linear filter 

M S E  = E[(yl(n) - ~(n))~] = (az(n) + P - s(n))2 

and setting the derivatives to zero with respect to a and p yields 

- 
where u:(n) and z(n) are the estimates of local signal variance and local mean respectively 

and u:(n) = 02, since the noise is stationary The filter response yr(n) is then 
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The Lee filter uses a noise variance estimate and a local signal variance estimate to 

maximize smoothing at low signal variance and acts as an all pass filter at high signal 

variance. The Lee filter emulates the Wiener filter in the form of a linear finite impulse 

response local point estimator; it provides effkctive smoothing and preserves edges at the 

expense of noisiness around edges. 

2.1.2 Noncausal Symmetric Recursive Filter 

Erler [5] has developed a recursive filter as a noncausal Wiener filter, where the signal 

autocorrelation is assumed to be a decaying exponential with constant of 0.5. 

The fitter has an implicitly infinite region of support which allows it to powerfully smooth 

in a way that the Lee filter cannot. This brief explanation is simply meant to review 

previous work in this area and a more detailed description of this model will be explored 

in section 3.1. 

2.2 Non-Parametric Techniques 

Non-parametric techniques estimate the image charactersitics without assuming any apri- 

ori models. The power spectrum, or the squared magnitude of the Fourier transform, is 

an example. The global power spectrum P(Q) of a function s(n) is 

If the power spectrum of the noise is known, then the Wiener filter can be calculated 
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where P,(R) = 4 is the global noise variance estimate for the additive white noise 

process. This technique is globally optimal in the minimum squared error sense. The 

power spectrum underestimates signal energy in the vicinity of edges which leads to 

excessive blurring at signal edges. 



Chapter 3 

Rest orat ion Techniques 

3.1 Parametric Approaches 

3.1.1 Introduction 

Section 3-1.2 begins by developing an alternate form of the Lee filter which puts it into the 

context of recursive filters. Section 3.1.3 extends this idea to develop a spatial domain 

Wiener filter which is based on an exponentially decaying signal model. This model 

produces a filter which has smoothing and edge preservation terms, These tenas are 

described in relation to their frequency response and combined to arrive at the filter 

transfer hct ion.  

A two dimensional discrete implementation of this filter in the form of a noncausal 

linear difference equation is derived. Local mean and variance est h a t e s  are used, and the 

local signal autocorrelation is expressed in the form of a nearest neighbour pixel correla- 

tion coefficient - The properties of the filter are discussed and an iterative implementation 

is presented. 
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3.1.2 Recursive Lee Model 

Recall the Lee filter 

Consider an alternate form of the Lee filter which has a recursive term instead of the 

local mean 

The structure in equation 3.2 is the same as the Lee filter, except that the neighbouring 

output is used instead of the local mean. Minimizing the mean square error between y(n) 

and s(n) of this filter 

M S E  = E[(y(n) - ~ ( n ) ) ~ ]  = (ax(n) + (1 - o)y(n - 1 )  - ~ ( n ) ) ~  

and setting the derivative with respect to o to zero yields 

- - 
Note z(n)  = s(n) + n(n) and n(n) is independent zero mean Gaussian noise, z(n) = s(n) , 

- 
s(n)x(n) = s2(n) and y(n - l ) z (n )  = y(n - l ) s (n) ,  so 
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where 4, and t&un-, are the estimates of noise variance and covariance between s(n) 

and y(n - 1) respectively. The resulting filter y(n) is 

Since y (n - 1) is an estimate of s(n - I), the covariance <n,-L is an estimate of 4n,n-, 
which, when expressed in standard form, is the correlation between s(n) and s(n  - I), or 

the lag 1 autocorrelation of s(n). This section has served to demonstrate that autocor- 

relation is a useful notion for recursive MSE filters of the form in equation 3.2. Instead 

of relying on the ad hoe assumption of the filter structure as in equation 3.2, the idea of 

incorporating autoconelation into the signal model and developing Wiener filters based 

on this model is explored in the next section. 

3.1.3 Autocorrelation Model 

A signal model [6] for a broad class of images assumes a local autocorrelation function of 

the form 

where R, is the autocorrelation function, a: and pi are the local signd mean and variance 

and a is the autocorrelation coefficient. The model in equation 3.9 assumes that the 

correlation between pixels in an image decays exponentially with increasing distance. 

The autocorrelation coefficient in a discrete signal is 
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a =  

where S ( R )  is the signal and 

R.(U - P: - - E [ 4 M n  + 111 - P: (3.10) 
4 u: 

~ ( n  + 1) is the nearest neighbour and E [s(n)s(n + I)] is the 

expected value of the product s(n)s(n + 1). Note that the distribution of the coefficient 

a ranges fiom -1 to 1. The local signal power spectrum is 

The power spectrum depends on the autocorrelation and frequency in the first term, while 

the &(a) term determines the DC response. Recall the Wiener filter 

where P,(n) = u: is the global noise variance estimate. The noise variance is constant 

for an additive white noise process so the discrete response of the corresponding adaptive 

Wiener filter is 

where SNR = u:/a: is the signal to noise ratio. The term 

means that the DC gain is one, so the input mean is the same as the output mean in 

each local neighbourhood. The adaptive term provides the locally adaptive behavior 

dependent on the frequency R and the autocorrelation coeficient a 
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The (1-a2)sNR term occurs in both the numerator and the denominator. Since SNR > 

0 and -1 < a < L, (1 - a 2 ) S ~ R  > 0. The denominator term ditrers from the numerator 

by 1 + a2 - 2acosQ. The term 1 + a2 - 2acosO is smail when (n,a) ( 0 , l )  and 

(R, a)  x (rr, -1) so the filter passes low fiequendes at a 1 and high Frequencies at 

a r;: -1. Figure 3.1 shows the smoothing effect at high autocorrelation and enhancement 

effect at low autocorrelation at SNR of 1 and 5 respectively. 

Figure 3.1: Frequency Response of the Non-DC Term as in Equation 3.15 

-1 -1 range of a -1 -1 rangeafa omega inp i r i  omgainpiradiam 

(a) Ftequency Response at SNR = L (b) Frequency Response at SNR = 5 

As the graph on the left of Figure 3.1 shows, the response of non-DC term is always all 

pass at zero autoconelation. There is high frequency emphasis when the autocorrelation 

is less than zero, and low frequency emphasis when the autoconelation is greater than 
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zero. Increasing the SNR tends to make the filter more all pass, as the graph on the 

right of Figure 3.1 shows. In summary, positive correlation corresponds to smoothing 

and negative autocorrelation corresponds to enhancement and high SNR cornponds to a 

more dl pass response. 

Filter Response 

The block diagram of the filter in figure 3.2 shows the filter terms. Note the AVG term 

indicates the unity DC gain referred to in equation 3.14. The representation of this 

term must be considered, This term is locally calculated and is meant to represent a 

frequency response of H(R)ln=a = 1. It must approximate an impulsive response, which 

may be problematic since the filter uses only a local neighbourhood. The issue of finding 

an appropriate AVG term is crucial and various AVG models based on the criteria of 

equation 3.14 will be developed in section 3.1.5. 

Figure 3.2: Continuous Time Block Diagram of Filter as in Equation 3.16 

The frequency response of the filter is 

To see how these terms d e c t  filter performance, it is useful to view the overall frequency 
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response of this filter for varying conditions of R and a. Assuming, for now, an AVG 

function which has a low pass response which consists of the average of the nearest 

neighbows (described in section 3.1.5) around the point of interest, figure 3.3 shows the 

response at  SNR = 1 and SNR = 5 respectively. 

Figure 3.3: Frequency Response of the Filter as in Equation 3.16 Assuming a Nearest 
Neighbour Average Term 

(a) Frequency Response at  SNR = 1 (b) E'requency Response at  SNR = 5 

The graph shows that at  negative autocorrelation, the filter tends to be all pass, 

especially at high SNR. This is exactly what is desired for a Wiener filter since negative 

autocorrelation occurs in regions of high edge content. At positive autocorrelation the 

filter tends to smooth very strongly. It should be noted that the initial assumption of 

the autocorrelation function imposes a model on the filter and has a direct impact on the 

structure and smoothing behavior of the resulting filter in equation 3.16 . 

In non-edge regions of the image, autocorrelation tends to be zero since there is 
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random variation about a local mean. In these regions, the filter tends to smooth as we& 

which is desirable. Autocorrelation is positive along edges, smoothing here allows the 

filter to smooth along edges while edge preserving across edges. In summary, the filter 

in figure 3.3 has a number of desirable properties: it is able to smooth non-edge regions, 

preserve edges, and smooth along edges. 

3.1.4 Discrete Filter and LDE 

This section describes the implementation and difference equation. Figure 3.4 shows the 

discrete version of the filter. The transfer function using a and P is 

Figure 3.4: Discrete Time Block Diagram of Filter 

where 

and 
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and where the AVG function must have the desired unity gain at zero frequency- The 

best practical approximation for the AVG function is discussed in the next section. 

3.1.5 Zero Ekequency Filter Response 

Consider the response of the filter at zero fiequency- Recall the term 

corresponds to a DC gain of unity. The question is, how best can equation 3.20 be 

represented iri a way that fits into the filter which already has the recursive non-DC 

term? Since the h c t i o n  is supposed to represent the zero frequency component, a mean 

should be used, The mean function could be a simple non-recursive local average. It 

could also be an iterative function that incorporates neighbouring terms which could 

be effective in smoothing. In this case, the iterative structure implies a large region of 

support and hence a more effective smoothing at subsequent iterations. In the foUowing 

subsections, these functions are first q l a i n e d  in terms of their effect on the filter and 

then compared in terms of their fiequency response- 

Non-Iterat ive Mean 

The local average is taken over the same region of support as the variance and autocor- 

relation in order to be consistent with the model. For a seven point discrete average 

which has a two dimensional frequency response shown in Figure 3.5 (a) which results in 

the overall fiequency response in Figure 3.5 (b). The local mean provides a reasonably 

impulsive function to approximate equation 3.14 and the filter response provides the all- 
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Figure 3.5: E'requency Response of Non-Iterative Mean Filter 

(a) Frequency Response of Local Mean (b) Frequency Response of Filter ( S N R d )  

smoothing to &-pass behavior with increasing autocorrelation as expected. In terms of 

the LDE 

where y(n  f 1) is shorthand for y(n + 1) + y(n - 1) and irn indicates she local mean. In 

terns of a and the SNR 

The x(n) term represents the portion of the signal which is passed through. This portion 

1-a2 SNR is &&R+I+P which is small when the SNR is low and nearer to unity when the SNR 

is large. This means the filter will smooth more at low SNR which is similar to the Lee 
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filter. When P is negative, autocorrelation is positive and y(n - 1) and y (n -k 1) terms are 

added which performs smoothing. Conversely, when autocorrelation is negative, these 

neighbouring y terms are subtracted which provides for enhancement. The AVG term 

provides smoothing for a net response which ranges fiom all pass to maximum smoothing. 

The results section will show the performance of the filter in equation 3.23. 

Iterative Nearest Neighbour Average 

The discrete nearest neighbour average is 

which has a frequency response, after fout iterations, as shown in Figure 3.6 (a). It results 

in the overall frequency response in Figure 3.6 (b) and the transfer function for the first 

Figure 3.6 : Frequency Response of Nearest Neighbour Average Filter 

(a)  Frequency Response of Nearest Neighbour (b) Frequency Response of Filter (SNR=l) 
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iteration using a and p is 

so the non constant coeflicient LDE for the first iteration is 

1 Br(n) = (a + 1)x(n) + (v) z(n & 1) + p ( n  * 2) - y(n f 1) (3.26) 

In terms of SNR and a for the first iteration, the filter is 

Since the average function is iterative, the transfer function at iteration k is 

so the non-constant coefficient LDE is 

where z (n) is the original image and zk (n) is 

and y is set to z for the first iteration. In terms of SNR and a, the filter is 
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The filter in equation 3.30 differs &om the previous filter in that instead of using a fixed 

local mean, the neighbouring z terms smooth iteratively. Overall, the filter has significant 

smoothing since there is slightly less emphasis on the x (n) term compared to the locd 

mean filter. A summary is provided in section 3-1.7 for convenient comparison of the 

filters. 

Iterative 3 Point Average 

Another possible function is a 3 point average 

which has a frequency response, after 4 iterations, as shown in Figure 3.7 (a). It results 

in the overall frequency response in Figure 3.7 (b) so the transfer function a t  the first 

iteration using a and p is 

so the non constant coefficient LDE for the first iteration is 

In terms of SNR and a for the first iteration, the filter is 

This filter is similar to the nearest neighbour average filter except there is less emphasis 
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Figure 3.7: Frequency Response of Recursive 3 Point Average Filter 

(a) Frequency Response of 3 Point Average (b) Frequency Response of Filter ( S N R d )  

on the z(n f 1) and z(n iz 2) terms, which means less smoothing. Since the average 

function is iterative, the transfer funetion at iteration k is 

so the non constant coefficient LDE is 

P ~ k ( n )  = a z ( n )  + (P - a)zk(n)  + zk(n * 1) - yk-l(n f 1)  (3.37) 

which as the same structure as the Nearest Neighbour case except z k ( n )  is 



The results section will show the performance of the filter in equation 3-38, 

3.1.6 Hybrid Filter 

The approaches so far have considered a number of averaging functions to address the 

issue of a zero frequency filter response in order match the Wiener response in a local 

context- In contrast to the methods presented thus far, another alternative to sat-g 

the unity gain requirement is to augment the filter gain, which ranges from 0 to 1, with 

the input signal instead of an averaging function so that the total gain is unity. This 

approach follows the Lee filter in that the response changes when the local statistics 

support it, but is otherwise all-pass. Consider the requirement 

and the uncompensated filter as in equation 3.15 is 

so the gain, without 

since 

compensation, is 

and 
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Now if the structure is assumed to be 

H(Q)  = 
(1 - a2)SNR + K 

(1 - a2)SNR+ 1 +a2 - Z U C O S ~  

then for this structure to meet the constraint of equation 3.39, 

This approach is similar in spirit to the Lee filter in that it smoothes, but also enhances, 

when the local statistics supports it, and is otherwise all-pass. Pursuing this strategy may 

be useful in exploring a hybrid fiIter which has the filter richness of the autocorrelation 

model and local response similar to the Lee filter. The discrete response of the filter is 

and the non-constant coefficient difference equation is 

The hybrid filter in equation 3.47 uses only the neighbouring output terms for either 

smoothing or enhancement. It bridges the ideas behind the autocorrelation model and 

the Lee filter. The response is similar to the Wiener filters described, except that the 

response of the neighbouring 2 terms, which provide additional smoothing, are removed 

and the filter gain is compensated with the signal input. 

3.1.7 Summary 

This section compares the filter in terms of the LDE coefficients at the first and kth 

iterations. Table 33. shows the coefEcients at the first iteration which gives an idea of 
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the weightings on z(n) , z(n f 1) and z(n 3~ 2) ftom the original image, and y (n * I) ,  

the neighbouring outputs. Table 3.2 shows the coefEicients for the kth iteration on the 

original observed image z(n) , and on the AVG terms and neighbouring outputs y(n it 1). 

Note: AU terms are over (1 - a2 ) sNR+ 1 + a2. 

Table 3.1: Comparison of LDE Coefficients in terms of a and SNR for the fist iteration 

Table 3-2: Com~arison of LDE Coefficients in terms o f a  and SNR for the kth iteration 

z(n =t 1) 2(n 3~ 2) ~ ( n  AZ 1) 
-(a)lm a 
$(1+a2) 
) ( I -a+a2)  
- - a 

Filter Name 
Non-Iterative Mean 
Nearest Neighbour 

~ ( n )  
(1 - a 2 ) S N ~  + (1 + a2)lm 
(1 - a )SNR - a 

. 

3.1.8 Two Dimensional Implementation 

3 Point Average ( l - d ) S N ~ + ) ( l - a ) ~  
Bvbrid (1 - a 2 ) S N ~  + (1 - a)* 

Filter Name 1 AVG type 
Non-her. 1 local mean 
Near. Neigh. 
3 point Avg 
Hybrid 

The filters developed in the previous sections have been described in one dimension only. 

In extending these filtering techniques to two dimensions, the goal is to find a reasonable 

implementation given that the images are represented in cartesian coordinates but that 

the signal model is anisotrophic. Anisotrophic filters have identical behavior in any 

direction and the two dimensional f'kequency response is radially symmetric about the 

origin. The nearest neighbour autocorrelation is calculated in x and y directions. Since 

the filters developed so far depend on the nearest neighbour autocorrelation estimate, it 

follows that the filtering occurs independently in x and y directions, and the results are 

summed and divided by 2 to get the result. This allows the filter to react independently 

z(n) 
(1 - a2)SNR 

Note: Al l  terms are over (1 - a 2 ) s N R  + 1 + a2. 

4 n f  1) 
2 

"(nf 1 
3 

none 

I 1 I J 

yk(n f 1) 
a 

AVG(n) 
1 + a" 

(1 - a 2 ) s I V ~  
(1 - a 2 ) S ~ R  
(1 - a2)SNR + (1 - 

- AVG(n f 1) 
-a 

1 + a" 
1 + a2 
- 

-a 

-a 
- 

a 

Q 

a 
d 
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to either edge preserve or smooth in the vertical and horizontal directions. The trade-off 

is that the filters are not a perfect extension &om one to two dimensions due to the 

representation of the images. 

Since these filters are noncausal, they have been implemented iteratively. This implies 

the filter begins on the observed, degraded image, and subsequent iterations restore the 

image until a stopping criteria has beem met. The criteria used in the filters presented so 

far has been to stop iterating when the change in the next iteration becomes sufficiently 

small. The image horn the previous iteration is therefore saved and compared with the 

current iteration until the filter converges. 

Appendix A describes exactly how the autocorrelation was estimated. The noise 

variance was estimated by finding the mode of the variance histogram as in [I]. 
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3.2 Non-Parametric Approaches 

3.2.1 Introduction 

In this section, a non-parametric approach is used which forgoes any assumption of a 

signal model. Instead, the local power spectrum estimate is used to directly find the 

optimal filter. If the image model is known, then the problem of image restoration would 

be Limited to finding the optimal estimates of the parameters in the model. Since only 

the noise model is known, it is worth exploring non-parametric techniques. The classical 

Wiener filter assumes the image is stationary and finds the power spectnun of the entire 

image. Although this technique is optimal in the global MSE sense, it ignores the locally 

changing nature of many images, so an adaptive version is considered. 

A local frequency domain MSE filter method assumes that the image can be filtered in 

sections of sufficient extent to allow reasonable estimation of the power at each frequency. 

This presents a practical problem since a signal must be infinitely long to exactly estimate 

the power spectrum, but the goal is to obtain a good estimate of the power spectrum in 

a finite neighbourhood. In fact, the neighbourhood of samples must be small enough so 

that the assumption of local stationarity is reasonable but large enough so that the power 

spectnun can be estimated with some accuracy. The goal is to find a good estimate using 

as few data points as possible. 

The optimal power spectrum estimate cannot be known since the exact image model 

is unknown, so there is no clear definition of what is meant by "optimal" in terms of 

how closely a power spectrum estimate will match the true power spectrum. The optimal 

solution balances the biasing inherent in finite neighbourhoods while preserving enough 

resolution for a close estimate of the true power spectrum. The two dimensional Fourier 

Transform is used. Recall the Wiener filter 
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where P, (Q) = 4 is the global noise variance estimate for an additive white noise process. 

The local version of this filter considers P.(Q) as the local estimate of the signal power 

spectrum. The power spectrum P ( 0 )  of a fimction z(n) is the square of the magnitude 

of the Fourier Transform which is the Fourier Transform of the autocorrelation function 

according to the Wiener-Knichin theorem [9] 

where 

R(k) = E[z(n)z(k  + n)] (3.50) 

is the lag k autocorrelation function. The power spectrum therefore just takes aLl the 

autocorrelation lags of a function and changes the basis to the frequency domain which 

facilitates the direct implementation of the Wiener filter. 

In considering a window of small spatial extent, it becomes important to consider the 

type of windowing function used to create the Fourier transform. The importance of win- 

dowing in spectral estimation sterns from the fact that the signal is short duration while 

the desired trequency response H(Q)  has an infinite duration impulse response. What 

is required is an impulse response of finite duration whose transform adequately approx- 

imates the true impulse response. Using a rectangular windowing function introduces 

undesirable ripples in the transform, known as the Gibbs phenomenon. For this reason, 

other windowing functions were considered. These window functions are tapered so as 

to reduce the abrupt transition of the rectangular window. The trade-off is that some 
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distortion occurs which smoothes the transform. A triangular or Bartlett window[lO] 

and Banning window[9] 

were used with real and simulated images. Tests on a variety of images indicated that 

for images whose power spectra have more energy concentrated at lower fiequencies, 

the windowing functions did improve the MSE performance. In images with significant 

energy at higher frequencies the result was worse. In natural scene images, there was 

no windowing function which was consistently better in terms of MSE performance. In 

summary, a rectangular windowing function was used; the choice of which windowing 

function is "optimal" is difficult since the exact image model is unknown and so there are 

no clear criteria to measure how closely the power spectrum estimate matches the true 

power spectrum. 

3.2.2 Block Spectral Estimation 

The first technique estimates P,(Q) in a 16 by 16 neighbourhood in blocks which do not 

overlap. Only images whose size are a multiple of 16 can be used. Since the noise power 

spectrum is constant, the filter estimates the 16 by 16 region of P,(Q) to be P,(R) = 0: 

for each block. The power spectrum, P,(n), is 
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where zi(n) is the P 16 by 16 neighbourhood for the image. P.(R) is truncated to 

zero where necessary to avoid negative power spectrum dues .  The advantage of this 

technique is that the filter is fast and gives good results if the image is stationary within 

each block. Since the blocks do not overlap, there can be block artifacts associated with 

not estimating the power spectrum at every point. 

3.2.3 Continuous Spectral Estimation 

In contrast to non-overlapping blocks, the filter can instead calculate the estimate for 

each point. In this case, P,(n) is 

where x(n) is the 16 by 16 neighbonrhood centred at n. Af'ter filtering the block centred 

at n, the central point of the result is the output y(n). This process is done for every 

point in the image, resulting in a filter that is more computationally expensive but void 

of block artifacts. 



Chapter 4 

Results 

4.1 Introduction 

The previous chapters of this thesis have examined adaptive recursive and frequency 

domain Wiener filters for digital image filtering. The emphasis has been on creating 

restoration filters to remove additive Gaussian noise from natural scene images. Spatial 

domain Wiener filters based on the autocorrelation model and kequency domain models 

have been developed. In this section, the results of applying these filters are presented. 

The criteria for filtering effkctiveness are the MSE and the subjective appearance of 

the image. The images considered are 0 to 255 gray scale images. In each case, a variety 

of noise variances were used. The filters developed so far are 

" Lee", the Lee filter as in equation 2.8 

"Non-Iterative Mean", the spatial MSE fdter using local mean as in equation 3.23 

"Nearest Neighbourn, the spatial MSE filter using iterative nearest neighbour av- 

erage as in equations 3.29 and 3.30 
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"3 Point Average", the spatial MSE using iterative 3 point average as in equations 

3.37 and 3.38 

0 " Hy bridn , the hybrid filter which uses the autocorrelation model in a Lee structure 

as in equation 3.47 

" Global*, the tiequency domain Global Wiener Filter as in equation 2.11 

" Block", the frequency domain Block Wiener Filter as in equation 3 -53 

0 "Continuous", the fkequency domain Continuous Wiener Filter as in equation 3.54 

For the filtering techniques described, three images were chosen. The first is a simple 

edge with flat sections on either side. It is meant to give a clear idea of the filter behavior 

in edge and non-edge regions. The second image is a mix of text, checkerboard pattern, 

and edges at various orientations which are generally highly non-stationary. This is an 

extreme case for image filters which depend on a local stationarity. The final image is a 

face with some high and LOW contrast edges in the background which gives a better idea 

of general pedormance. 

Since the filter behaviour was similar, and because of the large number of filters and 

images involved, a complete set of reproductions is presented only for the noise variance 

of 200 case, The reader should be aware that there may be additional distortion of 

the resulting images due to transfkrrbg the images to this printed material. Table 4.1 

summarizes the results for three images- 

In general, the spatial MSE filters tended to have similar results, with the 3 Point 

Average filter performing better than the Non-Iterative mean and Nearest Neighbour 

filters- The Hybrid filter was competitive, with generally less effective smoothing but a 

higher tolerance for local non-stationarity, as can be seen in the non-stationary image 

results. The frequency domain filters were generally mediocre; they smoothed to some 



Table 4.1: Sllmmaty of Results 

MSE Iter. Neigh- Average 

Edge 192-1 16.18 11.38 10-98 12.90 73.99 73.21 73-91 17-44 
Non-Stat 203.1 197 457 483 155 181.2 166.3 169.9 136.9 

T 

Face 200.3 63-55 64.24 51.24 59.6 105.6 106.0 102.3 58.92 

extent but tended to oversmooth edges- The problem of choosing a suitable window size 

was made diflicult by the conflicting objectives of a precise local power spectrum estimate 

and a small enough window over which to assume local stationarity. 

In terms of cow pzli;ational expense, the Non-Iterative mean filter tended to converge 

rapidly sine the local mean was calculated non-iteratively. The spatial MSE filters 

had the heaviest burden, and the frequency domain methods were the quickest since no 

local statistics were needed. Depending on the size of stationary regions, the number of 

iterations could be high in images with large smooth regions; typically 3-4 iterations were 

required for most images. 

Edge Image 

In this image, the recursive smoothing effects of the spatial MSE filters allowed larger 

implicit regions of support and hence a much lower MSE than the Creguency domain 

methods. The Hybrid filter had a slightly higher MSE but also gave a visually more 

pleasing result because it did not smooth over the edge as much as the MSE filters. 

The frequency domain methods were not as effective although they did some overall 

smoothing. The Lee result was similar to the Hybrid filter, although it did not smooth 

as well since it lacks a recursive smoothing strustme. 
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Non-Stationary Image 

This image was interesting because it is an extreme case of a non-stationary image to 

test filters which rely on stationarity assumptions. The non-stationary image contains a 

number of sharp, thin, diagonal edges which were smoothed by the spatial MSE filters, 

greatly increasing the MSE for Nearest Neighbour and 3 Point Average cases. The Hybrid 

filter tended to be more conservative. It smoothed only when the SNR and autocorrelation 

was high enough to justify it. This effect was positive where the assumption of local 

stationarity was bad. The frequency domain methods performed on the non-stationary 

image produced results similar to the edge image case; slight smoothing reduced the MSE 

compared to the spatial MSE methods. 

Face Image 

The face image is a more typical naturai image which has regions of relative smoothness 

and some areas of high edge content. The spatial MSE filters were able to smooth to some 

extent, although this was limited by the presence of background texture. The frequency 

domain methods were not as effective but did do some overall smoothing. 
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4.2 Test Image: Edge Image 

Figure 4.1 shows the original and the original plus noise. As in all the images in the 

results section, the noise variance is 200 and the images consist of 256 gray levels. For 

the edge image, the edge height is 20. 

Figure 4.1: Original and 0 i a a l  with Additive Noise 



CHAPTER 4. RESULTS 35 

Figure 4.2 shows the Non-Iterative Mean and Nearest Neighbour average filters, The 

Non-Iterative Mean filter shows some patchiness in the smooth regions because the non- 

recursive smoothing has a limited spatial extent. The area in the vicinity of the edge has 

more noise since smoothing is not as strong. The Nearest Neighbour filter shows effkctive 

smoothing, wi th  some erosion of the edge due to some residual smoothing. 

Figure 4.2: Non-Iterative Mean and Nearest Neighbour MSE Filters 



Figure 4.3 shows the 3 point average and hybrid filters. The 3 Point Average filter is 

very similar to the Nearest Neighbour result in this case. Once again, there is &ective 

smoothing and some edge erosion. The Hybrid filter has better edge preservation since it 

is not an aggressive a smoother. A side-dect of this is that there is residual patchiness. 

The Hybrid filter favours preservation of features rather than smoothing. 

Figure 4.3: 3 Point Average and Hybrid MSE Filters 
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Figure 4.4 shows the Global and Block frequency domain filters. The Global and 

Block frequency domain filters smooth to a lesser degree then the spatial filters. 

Figure 4.4: Global and Block Etequeney Domain Filters 



Figure 4.5 shows the continuous Block frequency domain and Lee filters. The Contin- 

uous fkequency domain filter has a slightly better smoothing effect, but is otherwise very 

similar to the other frequency domain filters. The Lee filter is similar to the Hybrid filter; 

it preserves the edge and smoothes elsewhere. The key Werence is that the Hybrid filter 

smoothes more dktively because its recursive structure gives it a large implicit region 

of support. 

Figure 4.5: Continuous Frequency Domain and Lee Filters 
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4.3 Test Image: Non-Stationary Image 

Figure 4.6 shows the original and the original plus noise. 

Figure 4.6: Original and Orieinal with Additive Noise 
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Figure 4-7 shows the Non-Iterative Mean and Nearest Neighbour average filters. The 

Non-Iterative Mean result shows some smoothing, especially in the dark areas around the 

bagel shape. This is not surprising since the neighbourhood of support for local statistics 

is 7 by 7 ans since most smooth areas in this image are smaller than this size, there is 

little opportunity for smoothing to occur. The Nearest neighbour filter shows the negative 

aspect of using only the nearest neighbours, the filter rings in the diagonal Line areas, and 

around the lettering. This is a drawback for the nearest neighbour averaging approach. 

Figure 4.7: Non-Iterative Mean and Nearest Neighbow MSE Filters 



Figure 4.8 shows the 3 point average and hybrid filters. The 3 Point average filter, 

like the Nearest Neighbour filter, has edge erosion near the lines and lettering as well, 

but has less ringing. The Hybrid filter is more like the Lee filter in that it srnoothes in 

stationary areas, although the smoothing effect requires a larger region of stationarity 

than the Lee filter. An example of this is in the checkerboard squares; the Lee filter turns 

on smoothing (see Figure 4.10), while the Hybrid filter requires a larger neighbourhood 

switch fiom all-pass to maximum smoothing. 

Figure 4.8: 3 Point Average and Hybrid MSE Filters 
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Figure 4.9 shows the Global and Block frequency domain filters. These filters do some 

overall smoothing and cause less edge erosion than the parametric filters. 

Figure 4.9: Global and Block Frequency Domain Filters 
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Figure 4-10 shows the Continuous frequency domain and Lee filters. The Continuous 

filter is similar to the other frequency domain filters, and the Lee filter is able to smooth 

in station- areas such as the dark area around the bagel, and on the checkerboard 

squares. 

Figure 4.10: Continuous fiequenw Domain and Lee Filters 
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4.4 Test Image: Face Image 

Figure 4.11 shows the original and the original plus noise. 

Figure 4.11: Original and Original with Additive Noise 
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Figure 4.12 shows the Non-Iterative Mean and Nearest Neighbour average filters. The 

Non-iterative Mean filter is an dective smoother and the edges are preserved as in the 

area mound the shoulder. The Nearest Neighbour fdter also preserves edges and gives an 

over all smoother appearance. 

Finure 4.12: Non-Iterative Mean and Nearest Neighbour MSE Filters 
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Figure 4.13 shows the 3 point average and hybrid filters. The 3 Point average filter is 

similar to the Nearest Neighbour filter, while the Hybrid filter has somewhat better edge 

preservation. 

Finure 4.13: 3 Point Averane and Hybrid MSE Filters 
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Figure 4.14 shows the globd and block frequency domain filters. The Global and 

Tiled filters have less smoothing than the parametric filters. 

Finure 4.14: Global and Block Requency Domain Filters 
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Figure 4.15 shows the continuous block frequency domain and Lee filters- The Con- 

tinuous filter is similar to the other Etequency domain filters, and the Lee is similar to 

the Hybrid filter, 

Figure 4.15: Continuous Frequency Domain and Lee Filters 
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Conclusions 

The first objective in this thesis is to develop parametric point estimators which use local 

statistics and a varying neighbourhood size to optimally recover an image corrupted by 

additive Gaussian noise. The second objective is then to compare these techniques with 

locally adaptive frequency domain methods. 

The structure of parametric filters developed has been inferred &om an autocorre- 

lation model in which the signal autcorrelation is assumed to decay exponentially with 

increasing distance, this has led to the concept of a nearest neighbour autocorrelation es- 

timate. Three filters have been derived using three averaging functions in order to meet 

the requirement of local unity DC gain. A hybrid filter has also been developed which 

takes advantage of the autocorrelation model but uses a Lee structure which smoothes 

or enhances when the local statistics supports it, and is otherwise all-pass. 

The second set of filters uses local frequency domain methods which do not require 

apriori signal model assumptions. Instead, local power spectrum estimates are used to 

directly get the Wiener fdter result. 

The SpatiaI MSE filters were much more effective at smoothing, and gave results 

better than the Lee filter in many cases, although the choice of the averaging function 
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had a significant effect on the overall smoothing behavior. In the case of the Non-Iterative 

Mean, it perfbrms better when the image is highly non-stationary, although the Hybrid 

filter did even better when the assumption of focal stationarity was bad. The Nearest 

Neighbout and 3 Point Average filters are effective smoothers, but require more iterations. 

The frequency domain filters did not perform as w d  because of the problem of accurately 

estimating the power spectrum in a fixed local neighbowhood. In summary, the 3 Point 

Average filter was the best filter since it performed better than the other Spatial MSE 

filters; the iterative mean allowed a greater region of support than the Non-Iterative 

filter and did not suffer fiom artifacts as in the Nearest Neighbow filter case. The 

autocorrelation model approach is therefore a valid one since it achieves an effective 

compromise between global non-parametric filters such as the Global Wiener fdter yet 

improves upon the simple structure and fixed neighbourhood of support of the Lee filter. 

The Hybrid filter was aIso interesting from the point of view that it still manages a 

reasonable MSE result yet is more tolerant to local non-stationarity. 

In terms of performance, the overhead of calculating the autocorrdation is similar 

to calculating any second order local statistic. Appendix A describes the way the two 

dimensional nearest neighbour autocorrelation estimate is calculated, as well as describing 

how it is used to detect edges and smooth areas. Once it has been calculated, the 

spatial MSE filters are reasonably quick since only a few operations per pixel are required. 

Convergence was assumed when the difference in the image from one iteration to the next 

was sufkiently small that no significant activitp was occurring in the filter. 

For future work, a few possibilities exist - In terms of computational efficiency, there 

may be ways of reaching convergence futer by having a more efficient algorithm or 

incorporating iterative techniques such as those suggested in [2] and [20]. Also, the use of 

image models other than the exponentially decaying exponential could be used. Lastly, 

instead of using a Wiener filter framework, some other tkamework, such as one which 
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enables image enhancement may be worth investigating. 



Appendix A 

Autocorrelat ion 

A.1 Introduction 

This appendix first shows that calculated autocorrelation coeflicients are reliable only if 

the region of support is adequate. It then shows that using only lag 1 autocorrelation 

coefficients falsely predicts positive autocorrelation a m s  edges. After identifying and 

explaining this behavior, a notion of autocorrelation is presented that uses a combination 

of lags that reliably estimates autocorrelation in smooth areas, along edges and across 

edges. 

A.2 Local Statistics 

The implementation of the estimators discussed reqnires knowledge of local image statis- 

tics. Filter performance depends on the extent to which local mean, variance and nearest 

neighbout correlation coefficient can be accurately estimated. The local neighbourhood 

must include a su£Ecient number of samples to achieve an accurate local estimate. 

At the same time, the signal model of the adaptive Wiener filter assumes that the 
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signal is stationary over the local window. The txtent to which this i~ssumption is valid 

is dependent on the size of the window, A relatively large local neighbourhood may be 

stationary in a smooth region of the image, but the larger the neighbourhood, the greater 

the likelihood that the neighbourhood may indude both smooth and edge regions. A 

small window is more likely to be stationary, but there must be sufficient samples for an 

accurate estimate. 

The reliability of variance estimation can be approached formally by finding a con- 

fidence interval [3] over the varilmce estimate. One technique for finding the confidence 

interval is to consider an unbiased variance estimate of a bcal neighbourhood O contain- 

ing n samples, so 

If the image elements can be modelled by a normally distributed process y - N ( p ,  02), 

then the variance, or second central moment varies according to a Chi squared distribu- 

tion, y2 -- X2. For an n sample estimate, X2 will have n-1 degrees of freedom. The 95% 

confidence interval, that is, the bound within which the sample variance is likely to be 

inside with a probability of .95 is 

For a 49 sample variance estimate, X&25,n- z 71, X&75p-1 1 36. The size of the 95 

% confidence interval is .67a2 < f < 1.5u2 which is quite a large bound. The situation 

only improves to some extent when the number of samples increases to 100 or more. The 

point here is that for second order statistical estimates, a very large number of samples is 

required. It is also important that variance and autocorrelation window sizes be identical, 

otherwise artifacts relating to non- synchronous transition of filter parameters invariably 



lead to a poorer overall result, 

A. 3 Autocorrelation in Images 

If the original, uncorrupted signal is not available, the observed signal f must be used or 

we must estimate a fiom f so 

Consider calculating cri in a 7 by 7 neighbouthood where the f(n) f (n + 1) products 

consist of the 42 cross products 

6 7  

cross products of q = f(i, j)f(i + 1, j) 
i s 1  j=l 

The spanning cross products as in figure A.l will be negative since they consist of one 

element greater than the average and one element Iess than the average. The other cross 

products are positive since they consist of elements either both greater than or both less 

than the average. In a 7 by 7 region, this corresponds to 7 spanning cross products and 

35 other cross products as in the left side of figure A.1. The right side of figure A.1 shows 

positive cross products along an edge. 

The negative contribution to autocorrelation fiom the spanning cross products ate 

overwhelmed by the positive contribution of the non spanning cross products. The ques- 

tion now is, what can we do to have negative autocorrelation across edges? 
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Figure A.1: Autocorrelation Cross Products:Lag 1 
Lag 1 cross products 

across an edge 

this column spanning the 
edge are negative 

Lag 1 cross products 
along an edge 

No - - -  

cross 

span the 
edge 

All cross products are 
positive since all pairs are 
either both positive or both 

negative 

A.4 Lag k Autocorrelation 

The lag is just the distance between observations, so nearest neighbout autocorrelation 

is just lag 1 autocorrelation. The cross products of the lag k autocorrelation are 

7-k 7 

lag k cross products of % = f(i, j)f(i + k, j) (A-5) 
i=l j=L 

For a 7 by 7 neighbourhood the possible lag autocorrelations range from k = 1 to 6, 

the number of products is 7 * (7 - 6). Introducing lag autocorrelations for k > 1 may 

help the problem of positive autocorrelation across edges. 

Using lags raises the question of how the region of support is being used. In the case 

of lag 2, the f is t  and last columns are being used once in the cross products and the 
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others are used twice. In lag 4, the middle elements contribute to two cross products and 

the remaining dements are used in one cross product. 

Figure A.2: Autocorrelation Cross Products: Lags 1 to 6 

Samples of cross products that 
span the edge for lags 1 to 6 

All spanning cross products 
are negative 

Using lags 3 and 4 maximizes Cross 

s~annina cross ~roducts products 

most do not 
span edge 

The lag pairs of 1,6 and 2,5 and 3,4 all use the region of support evenly and all have 

49 cross products, enough for a reasonably robust estimate that also fits the -1 to +1 

theoretical autocorrelation bound. Figure A.2 gives the results for using the autocor- 

relation pairs 3,4. 'Rials so far have shown that the lag 3, 4 autocorrelations seem to 

be appropriately responsive to high and low contrast edges in both high and low noise 

conditions. 

Using lags other than lag 1 suggests that the model should be adjusted appropriately. 

For example, the model could be 
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so that the autocorrelation coefficient would be 

The effect of this change is that the distribution of a tends to be more extreme, the distri- 

bution of values of a favours either a strongly positive or strongly negative response. The 

effect on performance was that the filters were either strong smoothers or all-pass, with 

little intermediate behavior, producing an overall poorer result . This can be explained 

in part due to the relatively rough estimate of a, and subsequent raising of this estimate 

to the third power. In the filters developed, autocorrelation estimates using lags 3 and 

4 were used. This tradeoff enabled the filters to detect edges yet avoid the inacclracies 

associated with raising local statistics measures to high order. 
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