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Abstract

The design of modern integrated circuits is overwhelmingly complicated due to the enor-

mous number of cells in a typical modern circuit. To deal with this di�culty, the design

procedure is broken down into a set of disjoint tasks. Circuit layout is the task that refers

to the physical realization of a circuit from its functional description. In circuit layout, a

connection-list called netlist of cells and nets is given. Placement and routing are subtasks

associated with circuit layout and involve determining the geometric locations of the cells

within the placement area and connecting cells sharing common nets. In performing the

placement and the routing of the cells, minimum placement area, minimum delay and

other performance constraints need to be observed.

In this work, we propose and investigate new approaches to placement and routing

problems. Speci�cally, for the placement subtask, we propose new convex programming

formulations to estimate wirelength and force cells to spread within the placement area.

As opposed to previous approaches, our approach is partitioning free and requires no

hard constraints to achieve cell spreading within the placement area. The result of the

global optimization of the new convex models is a global placement which is further

improved using a Tabu search based iterative technique. The e�ectiveness, robustness

and superiority of the approach are demonstrated on a set of nine benchmark industrial

circuits.

With regard to the routing subtask, we propose a hybrid methodology that combines

Tabu search and Stochastic Evolution as a search engine in a new channel router. We

also propose a new scheme based on Utility Theory for selecting and assigning nets to

tracks in the channel. In this scheme, problem-domain information expressed in the

form of utility functions is used to guide the search engine to explore the search space

e�ectively. The e�ectiveness and robustness of the approach is demonstrated on �ve

industrial benchmarks.
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Chapter 1

Introduction

From 1 its humble beginning in the early 1950's to the manufacture of circuits with

millions of components today, VLSI design has brought the power of a mainframe

computer to a laptop. This tremendous growth in the area of VLSI design is

made possible by the development of sophisticated design tools and software. To

deal with the complexity of millions of components, VLSI design tools must be

computationally fast and generate layouts close to optimality. The future growth

of VLSI systems depends critically on the research and development of Circuit

Layout (Physical Design) automation tools.

The layout of integrated circuits on chips and boards is a complex task. The op-

timization problems that have to be solved during the circuit layout are intractable

[39, 62]. In other words they are usually NP-hard [24]. This implies that, for most

of these problems, the optimal solutions cannot be obtained in polynomial time.

1Most of the background described in this chapter is well established. For those who are

interested in more information, the following references are recommended: [33, 47, 56, 67].
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CHAPTER 1. INTRODUCTION 2

1.1 VLSI Design Cycle

The VLSI design cycle starts with a formal speci�cation of a VLSI chip, follows

a series of steps, and eventually produces a packaged chip. A typical design cycle

may be represented by the 
owchart shown in Figure 1.1. The steps of the VLSI

design cycle can be brie
y outlined as follows [56, 62]:

1. System Speci�cation: As in any design process, the �rst step is to lay

down the speci�cations of the system to be designed. This necessitates

creating a high level representation of the system. The factors to be

considered in this process include: performance, functionality, and the

physical dimensions. The choice of fabrication technology and design

techniques are also considered. The end results are speci�cations for the

size, speed, power and functionality of the VLSI system to be designed.

2. Functional Design: In this step, the behavioral aspects of the system

are considered. The outcome is usually a timing diagram or other re-

lationships between sub-units. This information is used to improve the

overall design process and to reduce the complexity of the subsequent

phases.

3. Logic Design: In this step, the logic structure that represents the func-

tional design is derived and tested. The achieved design is represented by

a textual, schematic or graphic description. The logic design is usually

represented by Boolean expressions. These expressions are minimized

to achieve the smallest logic design which conforms to the functional

design. Logic design of the system is simulated and tested to verify its

correctness.
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4. Circuit Design: The purpose of circuit design is to develop a circuit

representation based on the logic design. The boolean expressions are

converted into circuit representation by taking into consideration the

speed and power requirements of the original design. The electrical be-

havior of the various components are also considered in this phase. The

circuit design is usually expressed in a detailed circuit diagram.

5. Circuit Layout: In this step, the circuit representation of each com-

ponent is converted into geometric representation. This representation

is in fact a set of geometric patterns which perform the intended logic

function of the corresponding component. Connections between di�erent

components are also expressed as geometric patterns. As stated earlier,

this geometric representation of a circuit is called a layout. The exact

details of the layout also depend on design rules, which are guidelines

based on the limitations of the fabrication process and the electrical

properties of the fabrication materials. Circuit layout is a very complex

process, therefore, it is usually broken down into various sub-steps in

order to handle the complexity of the problem. In fact, circuit layout is

arguably the most time consuming step in the VLSI design cycle.

6. Design Veri�cation: The layout is veri�ed in this step to ensure that

the layout meets the system speci�cations and fabrication requirements.

Design veri�cation consists of Design Rule Checking and Circuit Extrac-

tion. Design Rule Checking is a process which veri�es that all geometric

patterns meet the design rules imposed by the fabrication process. After

checking the layout for design rule violations and removing the design

violations, the functionality of the layout is veri�ed by circuit extraction.

This is a reverse engineering process and generates the circuit represen-
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tation from the layout. This reverse engineering circuit representation

can then be compared with the original circuit representation to verify

the correctness of the layout.

7. Fabrication: After veri�cation, the layout is ready for fabrication. The

fabrication process consists of several steps: preparation of wafer, depo-

sition and di�usion of various materials on the wafer according to layout

description. Before the chip is mass produced, a prototype is made and

tested.

8. Packaging, Testing and Debugging: Finally, the wafer is fabricated

and diced in a fabrication facility. Each chip is then packaged and prop-

erly tested.

The VLSI design cycle involves several iterations, both within a step and be-

tween di�erent steps. The entire design cycle may be viewed as transformations of

representation in various steps. In each step, a new representation of the system is

created and analyzed. The representation is iteratively improved to meet system

speci�cations. For instance, a layout is iteratively improved so that it meets the

timing speci�cations of the system. Another example may be detection of design

rule violations during design veri�cation. If such violations are detected, the circuit

layout step needs to be repeated to correct the error. In this thesis, the emphasis

is on the circuit layout step of the VLSI design cycle. The required steps in this

process will be discussed in more detail in the next section.
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1.2 Circuit Layout Cycle

The input to the circuit layout design cycle is a circuit diagram and the output is

the layout of the circuit. This is accomplished in several stages such as partitioning,


oorplanning, placement, routing and compaction. The di�erent stages of circuit

layout are shown in Figure 1.2. To give a global perspective, the following is a

description of these stages.

1.2.1 Partitioning

A chip may contain several million transistors. Layout of the entire circuit cannot

be handled due to the limitations of memory space as well as computation power

available. Therefore, it is normally partitioned by grouping the components into

blocks (subcircuits/modules). The actual partitioning process considers many fac-

tors such as: size of the blocks, number of blocks and number of interconnections

between the blocks. The output of partitioning is a set of blocks along with the

interconnections required by blocks. The set of interconnections required is referred

to as netlist. For more details, refer to [3, 56, 35].

1.2.2 Placement

During placement, the blocks are exactly positioned on the chip. The goal of place-

ment is to �nd a minimum area arrangement for the blocks that allows completion

of interconnections between the blocks. Placement is typically done in two phases.

In the �rst phase, an initial placement is created. In the second phase, the initial

placement is evaluated and iterative improvements are made until the layout has
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Figure 1.2: Design process steps
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minimum area and conforms to design speci�cations. Space between the blocks is

intentionally left empty to allow interconnections between blocks.

The quality of the placement will not be evident until the routing phase has

been completed. Placement may not lead to routable design; i.e, routing may

not be possible in the space provided. In that case, another placement iteration

is required to address this problem. An estimate of the required routing space

is employed to limit the number of iterations of the placement algorithm. A good

routing and circuit performance heavily hinge on a good placement algorithm. Once

the positions of the blocks are �xed, it becomes di�cult to improve the routing and

the overall performance of the circuit.

1.2.3 Routing

The objective of the routing phase is to complete the interconnections between the

blocks according to the speci�ed netlist. The space not occupied by the blocks

is partitioned into rectangular regions called channels and switchboxes. Using the

channels and the switchboxes, the aim is to complete all circuit connections using

the shortest possible wirelength. The routing problem is di�cult and it is usually

done in two phases; i.e, Global Routing and Detailed Routing. In global routing,

connections are completed between the blocks of the circuit disregarding the exact

geometric details of each wire and pin. Global routing speci�es the \loose route" of

a wire through di�erent regions in the routing space. In other words, global router

�nds a list of channels which are to be used as a passageway for each wire. Detailed

routing, follows global routing, performs point to point connections between pins

and blocks; i.e, loose routing is converted into exact routing by specifying geometric

information such as layer assignments of wires. Detailed routing includes channel
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routing and switchbox routing.

1.3 Design Style

Circuit layout is an extremely hard process and even after breaking the entire pro-

cess into several conceptually easier steps, each step is still computationally very

hard. As a consequence, restricted models and design styles are used in order to

reduce the complexity of circuit layout. The design styles can be broadly classi-

�ed into as either macro/full-custom or semi-custom. In macro/full-custom layout,

di�erent blocks of a circuit can be placed at any location on a silicon wafer pro-

vided that they do not overlap. In semi-custom layout, some parts of a circuit are

predesigned and placed on some speci�c place on the silicon wafer.

1.3.1 Macro/Full-Custom

In this design style, the circuit is partitioned into a collection of subcircuits ac-

cording to some criteria such as functionality of each subcircuit. Each subcircuit is

called a block or a cell, see Figure 1.3. Blocks are allowed to be of any size and they

are to be placed at any location on the chip surface without any restrictions. This

design style allows for very compact designs. However, the process of automating

macro/full-custom design has much higher complexity than other restricted mod-

els. For this reason, macro/full-custom design style is only used when area of �nal

design must be minimized and designing time is less important.
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Cells

Figure 1.3: Macro-cell design topology.

1.3.2 Semi-Custom

Standard Cell

In standard cell design style, cells are of the same height and not necessarily same

width. The circuit is partitioned into several smaller blocks each of which is equiv-

alent to some prede�ned sub-circuit (cell). A collection of these cells are called a

cell library. Cells are placed in rows and the space between rows is called a channel.

The channels are used to connect the cells, see Figure (1.4-a).

This design style is well suited for moderate size circuits and medium production

volumes. A standard cell design usually takes more area than macro/full-custom

design.

Gate Arrays

Unlike standard cell design style, in gate array design style all cells are identical.

In other words, all cells have same height and same width. In this design style, the
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channels

Cells

(a)

Horizontal

Cells

(b)

Rows

Figure 1.4: Semi-custom design topologies. (a) Row-oriented standard cells (b)

Gate Arrays.

entire wafer is prefabricated with an array of identical gates or cells. These cells

are separated by both vertical and horizontal spaces called vertical and horizontal

channels, see Figure (1.4-b). The channels are used to perform the interconnections

between the cells. The name \gate array" signi�es the fact that each cell may simply

be a gate, such as a three input NAND gate.

Gate array design style is a simpli�cation of standard cell design. Compared

to standard cell and full custom design styles, gate array design imposes higher

rigidity upon the circuit. However, gate arrays are cheaper to produce.

The gate arrays architecture is the most restricted form of layout. This also

means that it is the simplest for layout algorithms to work with.

Field Programmable Gate Arrays (FPGAs)

The Field Programmable Gate Array (FPGA) is a new approach to Application

Speci�c Integrated Circuits (ASIC) [18, 19, 20]. A FPGA consists of horizontal

rows of programmable logic blocks which can be interconnected by a programmable



CHAPTER 1. INTRODUCTION 12

routing network. The typical FPGA logic block is more complex than a gate and

much simpler than a cell in the standard cell design. In its simplest form, a logic

block is simply a memory block which can be programmed to remember the logic

table of a function. Given a certain input, the logic block look up the corresponding

output from the logic table and sets its output line accordingly. Thus by loading

di�erent look-up tables, a logic block can be programmed to perform di�erent

functions. The rows of logic blocks are separated by horizontal routing channels.

The channels are not simply area in which metal lines can be arranged for a speci�c

design. Rather, they contain prede�ned wiring segments of �xed lengths. Each

input and output of a logic block is connected to a dedicated vertical segment.

Connection between horizontal segments is provided through antifuses whereas the

connection between a horizontal segment and vertical segment is provided through a

cross fuse. The customization (programming) of a generic (unprogrammed) FPGA

is simple. Given a circuit, it is decomposed into smaller subcircuits such that

each subcircuit can be mapped to a logic block. The interconnections between any

two subcircuits is achieved by programming the FPGA interconnects between their

corresponding logic blocks.

1.4 Motivations and Objectives

In this thesis, we focus on the cell placement and detailed routing problems. We

defer the details to later chapters and presently, we brie
y describe the problems

to illustrate and justify the motivations and goals for further investigation.
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1.4.1 Motivations

Placement methods may be broadly classi�ed as constructive or iterative improve-

ment methods. The consensus is that certain iterative improvement methods pro-

duce high quality placements, but excessive computation time is required to do so.

On the other hand, constructive methods yield not as high quality placements as

iterative improvement methods, yet good, in a much shorter time. Ideally, both

quality and computational e�ciency of the solution are crucial for a practical place-

ment method. Quality of solution is important for performance of the circuit and

computational e�ciency is essential for curtailing the design procedure, especially

for large circuits where weeks, months or even years may be required to realize

these circuits.

The fact that future placement and routing tasks will be much more complicated

(due to the increasing size of the circuits and the growing design objectives) implies

that faster placement and routing tools should be developed to handle such immense

complexity. Future placement and routing tools must be adequately 
exible to

handle any modi�cations in VLSI design styles and design objectives. In summary,

they should be (i) e�ective (ii) e�cient (iii) 
exible and (iv) robust.

1.4.2 Objectives

Our main objective is to develop and examine new methods and strategies to per-

form the placement and detailed routing tasks. These new methods should be

robust and 
exible besides, e�ective and e�cient.

For the placement problem, we propose a combination of constructive and iter-

ative improvement methods in which the constructive method provides a good
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initial placement that is further improved by the iterative method. Our con-

structive method performs the placement of the cells in a global sense; i.e, cell-

interconnections are considered simultaneously when the placement is computed.

Previous approaches to global placement rely on mathematical programming and

partitioning of the placement area to spread the cells on the placement 
oor.

The methodology iterates between repartitioning and global optimization until the

placement area is exhausted. The partitioning approach requires the addition of

hard constraints to spread the cells and that increases the amount of computation

time required. It also su�ers from other shortcomings as we will see in chapter 3

and chapter 4.

In this work, we propose new mathematical models to estimate the wirelength

(that is, for global placement) and prevent cells from overlapping while minimizing

the wirelength estimate. The new formulations are convex programming models

and accordingly, any convex programming methodology can be directly applied. In

fact, proofs of convexity of the new formulations are presented in detail. In terms of

forces, the new formulations correspond to cell repellers that prohibit connected

cells from overlapping while minimizing the wirelength (distance) between their

geometric locations. Furthermore, adaptive cell attractors are also added to the

repellers to pull cells to sparse regions without excessively stretching short nets. We

refer to the new formulations based model as the Attractor-Repellermodel. Fur-

thermore, we propose a generic placement method based on the attractor-repeller

approach, and illustrate its competitiveness and e�ectiveness compared to up-to-

date placers.

A signi�cant impact of the new method is on cell placement with no �xed cells

(i.e, I/O pads) such as FPGA placement. Speci�cally, the fact that the new method

relies on cell repellers and attractors in spreading the cells within the placement
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area, implies that the existence or absence of �xed cells in the original netlist is

irrelevant. As we will see later, only one �xed cell is needed to drive the (repeller)

objective function to the convexity region. One way to achieve this without a�ecting

the structure of the netlist, is to �x one of the cells or add a dummy �xed cell to

the netlist.

With regard to the detailed routing problem, we consider the channel routing

problem. Speci�cally, we propose a channel router based on a hybridization of

Stochastic Evolution and Tabu search Methods. Moreover, we propose to express

the problem-domain information in the form of utility functions to guide the

exploration of the search space. Unlike previous search heuristics based routers,

the use of utility functions in our router provides a powerful tool to determine the

best moves (swapping and moving nets between tracks) that guarantee convergence

in shorter times.

1.5 Thesis Outline

The remaining chapters of this thesis are organized as follows. In chapter 2, the cell

placement problem is described in greater details and a taxonomy of existing place-

ment methods is presented. In chapter 3, the new formulations of the proposed cell

repeller model are presented. Proofs of their convexity are also presented. Chap-

ter 4 presents the cell attractor approach to spread the cells within the placement

area without causing any excessive stretching of the nets. The attractor-repeller

model (which combines the cell attractors and cell repellers) for global placement

and a new generic placement algorithm based on the attractor-repeller model are

also presented. Furthermore, an iterative improvement technique based on the

Tabu search metaheuristic [3, 58] is presented. In chapter 5, the new placement
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method is applied to the standard placement problem. Qualitative analysis of the

method and comparisons to up-to-date placers are presented. Chapter 6 describes

the routing problem in general and detailed routing in particular (with emphasis

on channel routing problem). In chapter 7, the new utility-function based hybrid

channel router is presented. Numerical results using a set of benchmarks are also

presented. Chapter 8 concludes the thesis and presents recommendations and fu-

ture directions.



Chapter 2

Cell Placement

Cell placement is the subtask of circuit layout which is concerned with assigning

locations to cells within the chip area according to an appropriate cost function.

The main objective in the placement problem is to minimize the chip area. This

parameter is di�cult to estimate and accordingly cost functions based on other

parameters are employed. There are two prevalent cost functions: (i) Wirelength

based cost function and (ii) Min-cut based cost function [52, 56]. Minimizing either

cost function captures the main objective (minimum chip area). Besides minimum

area, other objectives such as minimum delay, minimum clock skewness and mini-

mum power dissipation are crucial in many VLSI applications.

Cell placement is NP-hard [24]. Attempting to evaluate every possible arrange-

ment or con�guration of the cells to determine the best one requires time propor-

tional to the factorial of the number of cells[3]. Alternatively, researchers employ

heuristic algorithms to obtain reasonable solutions in reasonable times. Placement

heuristic algorithms or methods can be divided into two major classes: constructive

methods and iterative improvement methods [52, 56]. In a constructive method,

17
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a good placement is built in a global sense. That is, circuit description or more

speci�cally, net-cell connections are used in constructing the placement. In itera-

tive improvement placement, algorithms begin with initial placement and search for

better con�gurations by repeatedly modifying the existing placement. Normally,

constructive methods produce reasonable placements in a short time. On the other

hand, iterative improvement methods produce high quality placements but require

large amount of computational e�orts. Figure (2.1) illustrates the taxonomy of the

popular placement methods.

Constructive Methods

Partitioning-basd
Methods

Cell Placement

Force-directed Methods
(Analytical Methods)

Iterative Improvement Methods

Deterministic
Methods

Stochastic (Randomized)
Methods

Figure 2.1: Classi�cation of placement methods.

2.1 Constructive Placement

As we mentioned above, constructive methods employ cell-net connections to con-

struct a placement. The resulting placement is referred to as global placement

because all circuit connections are considered simultaneously while constructing

the placement. Some researchers [34, 48] referred to the resulting placement as

relative placement because only relative and not the �nal positions are typi-
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cally computed. In the remaining parts of this thesis, we will use the two terms

interchangeably whenever this placement is referred to.

For large circuit instances, constructive methods are preferable because (as we

mentioned above) they produce reasonable placements in a reasonable time. In-

tuitively, an approach that combines the advantages of both methods is desirable.

In fact hybrids of the two methods have been investigated [30, 17, 34, 9]. The re-

sultant combined method typically produces high quality solutions in a reasonable

time. Analytical placement [30, 12] and Min-cut placement algorithms [38, 1, 29]

are the most popular constructive methods. In the analytical approach, the place-

ment problem is formulated as a continuous (linear or quadratic) mathematical

program. Continuous optimization techniques are then applied. The result is a

relative (global) placement in which a cell is placed in the immediate neighborhood

of the cell ideal location. Min-cut approach is based on the recursive application

of bipartitioning (or quadpartitioning) algorithms [22, 35, 67]. Basically, the algo-

rithm partitions the set of cells into two or four subsets by either a horizontal or

vertical line such that the number of cut-nets between the two subsets is minimized

and a certain area-based criterion is satis�ed. This procedure is recursively applied

to each subset until the subset contains only one cell.

2.2 Iterative Improvement Placement

Iterative improvement methods start with an initial placement (that can be ran-

domly generated) and iteratively modi�es the exiting placement in an endeavor to

produce a better one. Typically, local changes in the form of moving a cell to a

new location, re
ecting a cell or swapping two cells are employed to perturb the

existing placement and produce a new one. Iterative improvement methods di�er
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from constructive methods in the sense that the later does not directly use cell-net

connections while determining the placement [34]. Iterative improvement methods

can be classi�ed into two categories: (i)deterministic and (ii) randomizedmethods.

In deterministic methods, only local changes that lead to better placements are

accepted. This approach works well for small instances, or if the initial solution is

really good. Otherwise, it may not produce good quality solutions due to its in-

ability to escape local minima. On the other hand, randomized algorithms accept

changes that lead to better placements, and changes that lead to poor (less quality)

placements are also accepted with a certain probability. Randomized algorithms

are much more powerful compared to deterministic algorithms. The power of the

randomized algorithms stems from their capability to escape local minima which is

a direct consequence of accepting poor solutions. Simulated Annealing (SA) [10, 54]

and Genetic Algorithms (GA) [13, 55] are among the randomized algorithms that

have been applied to the placement problem. As a result of their ability to es-

cape local minima, randomized algorithms produce high quality answers, but they

require excessive computation time to produce those answers.

2.3 A Combination of Constructive and

Iterative Methods

The fact that each of the constructive and iterative improvement methods exhibit

strengths and de�ciencies concerning quality and e�ciency of solutions suggests

that a combination (hybrid) of the two methods can be superior to each individ-

ual implementation. For constructive methods, the solution quality can still be

improved if di�erent modeling of the problem is attempted, or if di�erent solution
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methodologies are examined. In a combined method, the overall performance can

be perceived as the average of the performance of the constituent methods. Thus a

combined method is fast and still produces relatively high quality solutions. Nor-

mally, a placement produced by a constructive method is provided to an iterative

improvement algorithm as an initial placement for further improvement. The result

is saving a large amount of time while achieving good placement. A typical com-

bination of constructive and iterative methods involves optimizing analytical for-

mulation of the total wirelength (sum of wirelength across all nets) combined with

adding more constraints and new forces to reduce cell overlap, followed by local

improvement of the resulting legal placement [30, 34]. This heuristic is illustrated

in Figure (2.2). For instance, in [30, 34] the constructive placement methodology

iterates between minimizing a linear or quadratic formulation of wirelength and

slicing (partitioning) the placement area. In each iteration, new constraints are

added to the formulation to reduce cell overlap and help distribute cells among the

regions resulting from the slicing process. The method terminates when the size of

a partition (or region) is less than a prespeci�ed threshold. As it has been indicated

previously, the result of the global optimization is a global (relative) placement in

which the location of a cell relative to where it should eventually reside is deter-

mined. The relative placement is unacceptable from physical standpoint because

of the overlap among the cells. Depending on the cell design style, overlap is elim-

inated by legalizing the relative placement. In case of gate array, standard cell and

FPGA design style, cells are snapped to rows, and di�erent techniques are used

for other design styles. Following the legalization phase, the iterative improvement

begins and further improvement of the initial placement is performed to account

for incorrect enforcement of some cells to non-optimal locations during the compu-

tation of the relative placement and the legalization phases.
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Input problem information
Circuit description

Global Optimization: 
Minimize an estimate of 
wirelength

Cell distribution:
Is distribution of cells on the

Yes

No

Update formulation:
Add more forces/const-
raints to reduc overlap
and force cells to spread
apart.

Legalization:

Postprocessing: 
Further improvement

Output circuit placement:
Final placement

(First level of processing)

Iterative Improvement Method
(Second level of processing)

Constructive Method

placement area even?

Remove Overlap

Figure 2.2: A typical combination of constructive and iterative improvement meth-

ods.
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2.4 Net Length Estimation

The typical wirelength measure in VLSI placement and routing is Manhattan

[52, 67]. This implies that wire segments connecting the di�erent cells in actual

placement are parallel to the x and y axes. Furthermore, the minimum wirelength

of a net (in actual placement) is given by the minimum Steiner tree connecting the

pins of the net. However, �nding the minimum Steiner tree is an intractable prob-

lem owing to the large number of net-associated possible combinations of Steiner

trees that need to be searched. An approximation to Steiner tree is minimum span-

ning tree which (like Steiner tree) has minimum length based on linear distance

[67]. Again, �nding the minimum spanning tree is still expensive given the fact

that the number of nets in a typical modern circuit is quite large. In order to spare

computational e�orts, simpler approximations are introduced. The wirelength of

an individual net is approximated by the half-perimeter of the minimum rectangle

enclosing all the cells in the net. The resulting approximation is referred to as the

Half Perimeter Wire Length (HPWL) of the net. Figure (2.3) shows an example of

estimating the length of a net as the half-perimeter of the smallest enclosing rect-

angle. The total HPWL Ht is computed as the sum of the HPWL of the individual

nets comprising the netlist. That is,

Ht =
NX
i=1

(Hi + Vi) (2.1)

where Hi and Vi are the horizontal and vertical spans of net i respectively.

2.5 Test Circuits

The benchmarks (test cases) used in this work to evaluate the performance of the

new placement method are presented in Table (2.1).
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C1

C5

C2C4 C3

Net

y

x

Min. rectangle enclosing all cells in the net

H

V

Figure 2.3: Estimating the length of a net using the half-perimeter of the minimum

rectangle enclosing the cells in the net. In this example, HPWL=H + V .

Circuit Cells Pads Nets Pins Rows

Fract 125 24 147 462 6

Prim1 752 81 904 5526 16

Struct 1888 64 1920 5471 21

Ind1 2271 580 2478 8513 15

Prim2 2907 107 3029 18407 28

Bio 6417 97 5742 26947 46

Ind3 15059 374 21940 176584 54

Avq.small 21854 64 22124 82601 80

Avq.large 25114 64 25384 82751 86

Table 2.1: MCNC Benchmarks used as test cases
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In Table (2.1), circuit identi�er, numbers of (movable) cells, �xed cells (I/O

pads), nets, pins and rows are presented. All circuits are taken from the MCNC

benchmark test suite [44]. Clearly, the set of test cases covers a large spectrum

(or range) of circuits as long as circuit size is concerned. The motivation behind

choosing such test cases with a wide range of size variability is to be able to assess

the robustness of our method. Also, it is so that we will be able to draw a general

conclusion when we compare our results to those reported in the literature [59, 60,

30, 32].

A useful statistic to help understand the structure of a circuit is the distribution

of nets with respect to the number of cells connected by a net. To draw a general

conclusion about the structure of the test circuits presented above (Table (2.1)), we

assume that the test circuits constitute a single circuit with a number of nets and

number of cells equal to the sum of the individual number of nets and cells in each

of the constituent circuits. Figure (2.4) demonstrates the cumulative distribution

function of the number of nets with respect to the number of cells connected by

a net for the combined circuit. It is clear that nets connecting 10 to 12 cells or

less, overwhelmingly dominate the set of nets. Speci�cally, nets connecting 4 cells

or less represent around 93% of the total number of nets, and nets connecting 12

cells or less account for around 98% of the total number of nets. This indicates

that typically circuits are sparse. It also indicates that when solving the placement

problem, nets connecting more than 12 cells can be ignored with no major risk

of inferior solution quality. Furthermore, ignoring these longer nets may save a

signi�cant amount of computational e�ort.
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Figure 2.4: Cumulative distribution of number of nets.

2.6 Summary

Without loss of generality, placement techniques can be broadly divided into con-

structive and iterative improvement techniques. Constructive methods are fast,

but the quality of solution they attain is not as good as that attained by iterative

improvement techniques. On the other hand, iterative improvement techniques

produce better solution quality, but require larger amount of computation time to

produce such good quality solutions.

A combination of methods is, therefore, desirable since it makes use of the merits

of the di�erent methods. A constructive method can be used to generate an initial

placement which is further improved using iterative improvement method. In such

a scenario, the quality of the �nal placement will not be limited by the constructive

method, and the computation burden of the iterative method will be reduced as a

result of the quality of the initial placement.
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As we indicated previously, the �rst step in a constructive method is typically an

initial placement. In our generic (constructive) placement method, the initial place-

ment is generated by the proposed attractor-repeller model. In the next chapter,

the new convex objective functions for the cell repeller model are presented.



Chapter 3

The Cell Repeller Model

Global placement is the �rst step in a constructive placement method. Global

placement entails determining the relative locations of cells while minimizing a pre-

speci�ed objective. Typically, the prespeci�ed objective is an estimate of the total

interconnecting wirelength , or number of cut-nets according to whether analytic or

min-cut method is used. By simultaneously accounting for all cell interconnections

while determining the relative cell positions, relative placement takes a global view

of the cell geometric locations. Legalizing (removing overlap from) global placement

yields an initial placement in which each cell is placed in the vicinity (immediate

neighborhood) of the location where the cell should eventually reside.

In the global placement, cells are allowed to overlap and are not restricted to

certain positions as long as they fall within the bounds of the placement area. As

a result, a legal solution cannot be obtained by only solving global placement. Cell

positions provided by global placement give insight about the ideal positions of the

cells. An extra step is essential to remove overlap and satisfy placement restrictions.

As we mentioned previously, in this work, the idea is to develop and examine

28
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new analytical formulations for computing global placement. Therefore, in this and

the subsequent chapters, we will limit our discussion to analytical methods while

describing global placement.

Traditionally, analytical placement has been formulated as a mathematical pro-

gram with either linear or quadratic wirelength objective function [15, 30, 34, 8, 17,

64, 43]. In this chapter we present new wirelength objective functions such that,

upon minimization, overlap between pairs of connected cells is diminished if not

entirely prevented. Our main contributions can be summarized as follows.

� we propose a cell repeller model to estimate the wirelength that, upon mini-

mization, a prespeci�ed target distance (TD) is maintained between each pair

of connected cells.

� we propose di�erent classes of convex functions that generate the desired

repelling force.

� the fact that our models are convex suggests that any solution methodology

for convex optimization can be applied.

� besides being convex, our new models are easy to tune and do not impose

any restrictions on the value of the desired distance between the cells. For

instance, the the target distance can be adaptively computed during the op-

timization process based on the information in the problem-domain.

In the next section, the placement problem and the traditional wirelength objective

functions are presented.
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3.1 Problem Formulation and the Quadratic Mea-

sure

A circuit is represented by a hypergraph G(V;E), where the vertex set V =

fv1; v2; � � � ; vNg represent the nodes of the hypergraph; i.e, set of cells to be placed,
and E = fe1; e2; � � � ; eMg represents the set of edges of the hypergraph; i.e, set of

nets connecting the cells. The two dimensional placement region is represented as

an array of legal placement locations. The hypergraph is transformed into a graph

(a hypergraph with all hyperedge sizes equal to 2) via clique model for each net.

Each edge ej is an unorder pair of vertices with a nonnegative weight wj assigned

to it. The placement task seeks to assign all cells of the circuit to legal locations

such that cells do not overlap. Each cell i is assigned a location (xi; yi) on the

XY-plane. The cost of an edge connecting two cells i and j with locations (xi; yi)

and (xj; yj) is computed as the product of the squared l2 norm of the di�erence

vector (xi � xj; yi � yj) and the weight of the connecting edge wij. The total cost

�(x; y) can then be given as the sum of the cost over all edges,

�(x; y) =
X

1�i<j�N

wij[(xi � xj)
2 + (yi � yj)

2] (3.1)

Formulation (3.1) can be written in matrix form:

�(x; y) =
1

2
xTCx+ dTxx+

1

2
yTCy + dTy y+ t (3.2)

Vectors x and y denote the coordinates of the N movable cells; matrix C is the

Hessian matrix; vectors dTx and dTy and the constant term t result from the contri-

butions of the �xed cells. Normally the �rst moment constraints are added to force

the distribution of the cells to be uniform around the center of the placement area.

It follows that the quadratic placement model is given as:



CHAPTER 3. THE CELL REPELLER MODEL 31

Min �(x; y)

s.t. Axx = bx

Ayy = by

lx � xi � ux

ly � yi � uy

where Ax and Ay are q � n matrices; q is the number of regions into which the

placement area has been partitioned. The q � 1 vectors bx and by represent the

centers of the q regions. The parameters lx, ux, ly and uy are lower and upper

bounds on the x and y coordinates of the cells. Clearly, the above optimization

problem can be split into two 1-dimensional subproblems and each subproblem can

then be solved independently.

As pointed out previously, minimizing the quadratic model for wirelength as

given by (3.1) yields a placement where cells overlap. Consequently, extra e�orts

need to be done to remove the overlap. In all previous attempts [15, 30, 34, 8, 64, 43],

the overlap problem is handled by partitioning the placement area and adding new

constraints to the formulation to restrict the movement of the cells before solving

another optimization problem. As a result, partitions are re�ned in each iterate

and overlap between the cells is reduced.

Overlap between connected cells can be prevented if a target distance between

each connected pair of cells is maintained. In other words, place the cells such that

a lower bound on the distance between their respective locations is maintained. For

example the following formulation accomplishes this aim [16].

 (x; y) =
X

1�i<j�N

wij [(xi � xj)
2 + (yi � yj)

2 � dij]
2 (3.3)

Minimizing (3.3) yields a placement with no overlap between connected cells. How-

ever, this model lacks convexity and, therefore, convergence to a global optimal
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answer is not guaranteed. Besides, nonconvex optimization is not studied as well

as convex optimization and identifying a suitable solution methodology is not an

easy task. Another di�culty is that even if a solution methodology is found and

convergence obtained, there is still no guarantee that the solution is a global min-

ima. These di�culties motivated us to seek a di�erent formulation for the repeller

model. Such a model should be convex in the �rst place, besides it should be 
exible

enough to incorporate other performance issues (delays, clock, power dissipation,

etc).

3.2 New Convex Models

In an endeavor to reduce overlap among cells through maintaining a target distance

between their geometric locations, we discovered a class of functions that achieves

this aim. The following theorem summarizes what exactly we have discovered.

Theorem 1 Let � : <m �! < and given by � =k v k22 where v = (v1; v2; � � � ; vm)
is m-dimensional vector, then �(�) = � + �(�) is convex for � 2 [1;1), provided

that the function �(�) 2 � = f�ln(�); e1��g.

To prove this theorem, we use the fact that if a function f(x) 2 C2, then f(x) is

convex over a convex set � if the Hessian matrix of f(x) is positive semide�nite

through � [41]. First, we consider the case when the elements of v are independent,

then we consider the case when the elements of v are dependent; speci�cally when

v = u � r and u and r are also m-dimensional vectors.
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3.2.1 Elements of v are Independent

We start by de�ning

_�(�) = @�(�)=@�

��(�) = @2�(�)=@�2

The gradient of �(�) is given by

r�(�) =

2
666666664

2v1(1 + _�(�))

2v2(1 + _�(�))
...

2vm(1 + _�(�))

3
777777775

subsequently, the Hessian matrix r2�(�) can be computed as follows:

r2�(�) = B + C

where B and C are given as follows:

B = 4��(�)vTv

C = diagf2(1 + _�(�))g (3.4)

Clearly 1 when ��(�) > 0, matrix B is a rank one matrix and, therefore, has m� 1

zero eigenvalues and only one positive eigenvalue. Hence, matrix B is a positive

semide�nite matrix. At _�(�) = �1, the diagonal matrix C vanishes; i.e, C = 0.

Thus, the Hessian matrix r2�(�) is a positive semide�nite matrix when _�(�) = �1.
On the other hand, when _�(�) > �1, C is a positive matrix because C > 0. In

this case C adds to the positiveness of the Hessian matrix r2�(�). As a result, the

Hessian matrix r2�(�) is a positive de�nite matrix when _�(�) > �1.
1Note that function ��(�) � 0 for �(�) 2 �.
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We can now examine if �(�) satis�es theorem (1). In fact we only need to ex-

amine _�(�).

Case 1: �(�) = �ln(�)
In this case _�(�) = �1=�. Matrix C is 0 when _�(�) = �1 or � = 1, thus in this

case r2�(�) = B is positive-semide�nite. When _�(�) > �1 or � > 1, matrix C > 0

and as a consequence r2�(�) is positive-de�nite. Thus Theorem (1) is satis�ed and

accordingly �(�) is convex for � � 1.

Case 2: �(�) = e1��

Function _�(�) = �e1�� � �1 implies that 1 � � � 0 or � � 1. Again when

_�(�) = �1 or � = 1 matrix C is 0 and r2�(�) = B is positive semide�nite. When

_�(�) > �1 or � > 1 C is positive and r2�(�) is positive de�nite. Thus, Theorem

(1) is satis�ed and �(�) is convex for � � 1.

The following corollary demonstrates the e�ect on r2�(�) as _�(�) �! 0 or equiva-

lently as � �!1.

Corollary 1 As _�(�) �! 0, matrix B �! 0, matrix C �! diagf2g, and conse-

quently the Hessian matrix r2�(�) ! C. That is, r2�(�) � 2I, where I is the

identity matrix.

Corollary (1) implies that as _�(�) �! 0 (which implies that � �!1), the Hessian

matrix r2�(�) become less dependent on the variables v1; v2; � � � ; vm. In other

words, the Hessian matrix approaches the Hessian of the quadratic function �.

Since the quadratic function is a perfectly convex function, we conclude that as

� �! 1, the curvature of �(�) resembles that of a quadratic function and it is

fairly reasonable to assume �(�) is a perfectly convex function.
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3.2.2 Elements of v are Dependent

We now turn to investigate the case where the elements of vector v are not indepen-

dent variables. In particular, we are interested in the case where v is given as the

di�erence between m-dimensional vectors pi and pj . We limit our analysis to the

2-dimensional case (see Figure(3.1)) as distances in 2-dimensional space constitute

the objective function in VLSI placement, and also to simplify the analysis.

p
i

p
i p

j

p
j

cell j

(xi , y
i )

(x , y  )j j

Y

X0

cell i

-

Figure 3.1: Coordinates of a two cell net.

It is well known that the standard quadratic formulation given by (3.2) is positive

semide�nite, and is positive de�nite if one (or more) variables is (are) �xed [30, 34].

Now the question to be answered: is the function �(k pi � pj k22) convex? We will

answer this question and use VLSI placement as our framework. In the context of

VLSI placement pi and pj represent the geometric locations (xi; yi) and (xj; yj) of

cells i and j. We can then be more speci�c and ask: is �(k pi � pj k22) convex if

cell i and cell j are movable (free) cells, and what would be the e�ect of �xing one

cell (or adding a �xed cell to the group) on the convexity of �(k pi � pj k22)? Each

interconnection between a pair of cells i and j contributes �(k pi � pj k22) units
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to the overall objective function. In theory, the number of �(k pi � pj k22) terms
constituting the objective function can be1. Practically, the number of terms may

be very large. In both cases it is not feasible to examine such instances. However,

a reasonable alternative is to limit our investigation to small instances and draw a

general conclusion about larger ones. Without loss of generality and to keep the

analysis simple, we consider a two cell netlist (the simplest netlist that can ever

exist) and look at di�erent scenarios with regard to whether all cells are movable

or some of them are �xed. In the �rst scenario, we consider the case where the two

(x   , y )k k

(x   , y )ii (x   , y )j j

(x   , y )j jii

(a)

(b)

Movable cellsMovable (free) cells

Fixed cell

(x   , y )

Figure 3.2: Simple two cell netlist. (a) Both cells are movable. (b) A �xed cell is

added to the netlist.

cells are movable. In the second scenario, we consider the case where a �xed cell is

connected to one of the two movable cells.

Scenario 1: we consider the case of two interconnected movable cells i and j,

see Figure 3.2(a). The quadratic formulation of wirelength is given by

�ij =k pi � pj k22= (xi � xj)
2 + (yi � yj)

2 (3.5)

and the objective function to be minimized �(�ij) = �ij + �(�ij). It follows that the
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Hessian matrix r2�(�ij) is given as

r2�(�ij) =M1 +M2

where

M1 = ��(�ij)�
T�

� =
�

@�ij
@xi

@�ij
@xj

@�ij
@yi

@�ij
@yj

�

and

M2 =

2
666666664

1 + _�(�ij) �(1 + _�(�ij)) 0 0

�(1 + _�(�ij)) 1 + _�(�ij) 0 0

0 0 1 + _�(�ij) �(1 + _�(�ij))

0 0 �(1 + _�(�ij)) 1 + _�(�ij)

3
777777775

Clearly matrix M1 is a rank one matrix (with all zero's but one positive eigen

value). MatrixM1 is, therefore, positive semide�nite matrix. Matrix M2 is positive

semide�nite if _�(�ij) � �1. As a consequence, the Hessian matrix r2�(�ij) is

positive semide�nite for _�(�ij) � �1. For _�(�ij) < �1, M2 is an inde�nite matrix

and consequently r2�(�ij) can be inde�nite matrix. Note that when �(�ij) 2 �,

_�(�ij) � �1 implies that � � 1.

Scenario 2: we consider the case where one of the cells (cell j for instance) is

connected to cell k with a �xed geometric location pk = (xk; yk), see Figure 3.2(b).

For the sake of simplicity, let (xk; yk) = (2; 2). The objective function f is then

given as

f = �(�ij) + �(�jk)

where �ij is given by equation (3.5) and

�jk =k pj � pk k22= (xj � 2)2 + (yj � 2)2
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The Hessian matrix r2f is given by

r2f =M1 +M2 +M3

where

M1 = ��(�ij)�
T�

M2 = ��(�jk)�
T�

��(�ij) =
@2�(�ij)

@�2ij

��(�jk) =
@2�(�jk)

@�2jk

� =
�
0

@�jk
@xj

0
@�jk
@yj

�

and

M3 =

2
666666664

1 + _�(�ij) �(1 + _�(�ij)) 0 0

�(1 + _�(�ij)) 2 + _�(�ij) + _�(�jk) 0 0

0 0 1 + _�(�ij) �(1 + _�(�ij))

0 0 �(1 + _�(�ij)) 2 + _�(�ij) + _�(�jk)

3
777777775

where _�(�ij) =
@�(�ij)
@�ij

and _�(�jk) =
@�(�jk)
@�jk

:

Evidently for ��(�ij) � 0 and ��(�jk) � 0, M1 and M2 are rank one matrices and

therefore they are positive semide�nite matrices. MatrixM3 is positive semide�nite

when _�(�ij) = �1 and _�(�jk) = �1. Also it is unmistakable that the determinant of
every principal submatrix of M3 is positive if _�(�ij) > �1 and _�(�jk) > �1. Matrix

M3 is therefore positive de�nite when _�(�ij) > �1 and _�(�jk) > �1. It follows that
r2f is also positive de�nite when _�(�ij) > �1 and _�(�jk) > �1. Again, _�(�ij) � �1
and _�(�jk) � �1 imply that �ij � 1 and �jk � 1 (provided that �(�ij) 2 �).
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Explanation: Theorem 1 and corollary 1 manifest that adding the nonlinear

function �(�) where v1; v2; : : : ; vn are independent variables, causes the Hessian ma-

trix to be dependent on the problem variables v1; v2; : : : ; vn. Speci�cally, the func-

tion _�(�) recti�es the positive de�niteness of matrix C (given by equation (3.4))

which in turn regulates the positive de�niteness of the Hessian matrix r2�(�).

Based on what we have seen from scenarios (1) and (2), this is applicable to the

case where v1; v2; : : : ; vn are not independent. In Scenario (1), the positive semidef-

initeness of matrix M2 is regulated by the term _�(�ij) which in turn regulates the

semide�niteness of the associated Hessian matrix r2�(�ij). Similarly, in scenario

(2) the positive de�niteness of M3 is regulated by the terms _�(�ij) and _�(�jk) which

in turn regulates the positive de�niteness of the associated Hessian matrix r2f .

These results ascertain the following points:

� As in the case of traditional quadratic formulation, the existence of �xed

cells adds de�niteness to the Hessian matrix. Such augmentation forces the

Hessian matrix to be positive de�nite. The existence of, at least, one �xed

cell attached to, at least, one free cell is su�cient to provide adequate pos-

itiveness to the Hessian matrix. This can be explained in light of the fact

that the netlist hypergraph G (presented in section 3.1) is a connected graph.

Consequently, cells are globally interconnected and the e�ect of a �xed cell

propagates and accordingly sustains the positive de�niteness of the associ-

ated Hessian matrix. In general, the amount of positiveness added to the

associated Hessian matrix is proportional to the number of �xed cells in the

netlist.

� The positive de�niteness of the Hessian matrix is controlled by the terms

_�(�ij), i; j 2 f1; 2; : : : ; Ng, where N is the total number of cells in the netlist.
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We now state the following theorem which in essence a generalization of theorem

(1)

Theorem 2 Let �ij : <m �! < and given by k pi � pj k22; pi 2 <m and pj 2 <m;

i 2 S1 and j 2 S2; S1 � S and S2 � S; S1 \ S2 6= �; S = f1; 2; : : : ; Ng , then
P

i;j �(�ij) is a convex function provided that �ij � 1 8i and 8j, and at least one

vector ph, h 2 S, is constant.

Geometrically, each �ij corresponds in essence to a circle of radius rij 2 <. Ac-

cording to Theorem (2), function
P

i;j �(�ij) is convex if the loci of each �ij occur

outside unit circle. It is quasiconvex if these loci fall on the contour of the unit

circle, and nonconvex if some of these loci fall inside the unit circle. Figure (3.3)

depicts the di�erent regions in <2 for which
P

i;j �(�ij) is convex, quasiconvex and

nonconvex with respect to the unit circle. Clearly, the nonconvex region is insignif-

icant compared to the convex region. This implies that the model can be applied

to real world problems without expecting any major di�culties.

Besides Theorem (2), the following Corollary (analogous to Corollary 1) empha-

sizes the relationship between the Hessian matrix and �ij as �ij !1.

Corollary 2 As �ij !1, 8i and 8j, the Hessian matrix of
P

i;j �(�ij) become less

dependent on the problem variables, and eventually approaches the Hessian matrix

of quadratic function.

Generally the elements of the Hessian matrix of
P

i;j �(�ij) are combinations of vari-

able and �xed terms. Each variable term is comprised in part by _�(�ij). Corollary

2 demonstrates that �ij become large, the variable terms vanish, and the Hessian

matrix become independent on the problem variables (behaves like quadratic func-

tion).
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Figure 3.3: Representation of the regions in which
P

i;j �(�ij) is convex, quasiconvex

and nonconvex.

Before we conclude this section, we would like to stress again that in real circuits,

the number of �xed cells is normally enough to add su�cient positiveness to the

Hessian matrix.

3.3 The Repeller Model

Since �(�ij) is convex in the interval [1;1), it is quite obvious to choose [1;1)

as our working interval. Function �(�ij) is a convex and monotonically increasing

function for each �ij 2 [1;1).

If we let

zij =
�ij
d

=
(xi � xj)2 + (yi � yj)2

d
(3.6)

where d > 0 is a constant, we can then present the convex repeller model for the
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zf( )

h

zij zij >= 1< 1
(Nonconvex region) (Convex region)

ij

Figure 3.4: f(zij) = zij � ln(zij)� 1. The portion of the curve marked with \x's"

represents f(zij) for zij < 1 and the one marked with \+'s" represents f(zij) when

zij � 1. f(zij) is not convex for zij < 1. Note that we subtracted 1 so that at

convergence, zij = 1, f(zij) = 0.

pair of connected cells i and j as:

f(zij) =

8><
>:
�(zij) if zij � 1

0 otherwise
(3.7)

where, again from Theorem (1), �(zij) = zij + �(zij) and �(zij) 2 f�ln(zij) �
1; e1�zij � 2g.

Figure (3.4) and Figure (3.5) illustrate, in 1-dimension, examples of f(zij) for

�(zij) = �ln(zij) � 1 and �(zij) = e1�zij � 2 respectively. In these examples,

zij =k �x+ h��x� �y + h��y k22, h 2 f0; 0:1; 0:2; : : : ; 6g, and vectors �x;��x; �y and ��y

are randomly generated. Note that the nonconvex part of f(zij) is also shown.

The fact that f(zij) is 
at in the interval zij 2 [0; 1] implies that f(zij) has

multiple solutions in this region. However, line search methods concludes the search

when the �rst optimal answer is encountered. Thus, if the initial solution is outside

the 
at region, the search will be concluded when zij = 1. It follows that at
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Figure 3.5: f(zij) = zij + e1�zij � 2. The portion of the curve marked with \x's"

represents f(zij) for zij < 1 and the one marked with \+'s" represents f(zij) when

zij � 1. Again, f(zij) is not convex for zij < 1. Again, note that we subtracted 2

from f(z) so that at convergence , zij = 1, f(zij) = 0.

convergence (zij = 1) the square of the distance equals a target estimate of d units.

The cell repeller based placement model can then be given as

Min F(z) = X
1�i<j�N

wijf(zij) (3.8)

lx � xi � ux

ly � yi � uy

where z = fzij : i; j = 1; 2; : : : ; Ng and wij is the connectivity weight between cells

i and j.
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3.4 Summary

In this chapter, new formulations for estimating wirelength in global placement have

been proposed. The new model is referred to as the cell repeller model since, upon

minimization, pairs of connected cells are placed such that their geometric locations

are spatially separated. Complete theoretical proofs for the convexity of the new

class of formulations have been presented. The fact that the new formulations are

convex guarantees convergence to a global minima using any convex optimization

methodology. The cell repeller model prevents overlap between connected cells,

but cells sharing no common nets still overlap as they are not accounted for in

the repeller model. Thus, uniform distribution of the cells on the placement area

cannot be obtained using only the repeller model.

In the next chapter, a new mathematical scheme to attain uniform distribution

of the cells within the placement area without causing any stretching of the nets

is presented. The new mentioned mathematical scheme is what we, previously,

referred to as cell attractors. Furthermore, a combined model (previously, referred

to as the Attractor-Repeller model) for global placement and a new placement

method based on the combined model are presented. An iterative improvement

technique to further improve the initial global placement is also presented.



Chapter 4

The New Generic Placement

Method

In this chapter, we present our new generic placement method. Additionally, we

describe heuristics to legalize the global placement, and to further improve the legal

global placement.

Before we present the details of the new method, we would like �rst to shed

some light on the partitioning approach and how it has been used to spread the cells

within the placement area. The rationale is that, previous approaches for analytic

placement [30, 34, 15, 2, 63] rely on exhaustive partitioning and hard constraints

to uniformly distribute the cells and fully utilize the placement area . However, the

partitioning approach su�ers from several major de�ciencies. Our aim is to disclose

the inherent de�ciencies of the partitioning approach and demonstrate how these

de�ciencies have been addressed in the new placement method.

The method Gordian [30] has been the most successful analytic placer that

can handle large design instances [30, 34, 15, 60, 43, 32, 2, 63]. Accordingly, we

45
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consider the method of Gordian as our framework while describing the partitioning

approach.

4.1 Cell Spreading and the Partitioning Approach

In Gordian, the placement problem is formulated as a sequence of quadratic pro-

gramming derived from the net-cell interconnections (netlist) according to equation

(3.2). The method iterates between minimizing a quadratic wirelength and parti-

tioning of the placement area. In each iteration, the cell set and placement area are

recursively partitioned. The subsets of cells are assigned to the di�erent partitions

(regions) such that the size (in terms of the total area of cells in a partition) is

the same. Moreover, new constraints are imposed on each subset of cells. The

new constraints restrict the freedom of cells in the subsequent global optimization

iterations and eventually drive cells near their �nal locations. The decision of how

cells are partitioned and assigned to the di�erent regions on the placement 
oor is

based on the concurrent positioning of the cells. It is also based on the number

of cut-nets between the di�erent regions; i.e, number of nets crossing cut-lines be-

tween the di�erent partitions. After each iteration of global optimization, a re�ned

global placement is obtained.

In the �rst iteration, cells are only required to fall within the placement area,

Figure (4.1-a). In other words, the overall placement area is the only region avail-

able for cell positioning. Although cells are allowed to fall anywhere within the

placement area, there is a natural tendency for cells to cluster around the center

of the placement area. This is chie
y because connected cells are pulled together

as a result of the wirelength minimization process. Furthermore, some of the cells

are moved away from the center of the region as a result of the attraction forces
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Figure 4.1: Examples of relative placements [34].
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originated by the I/O pads (�xed cells) located on the periphery of the placement

area. It is quite obvious that the placement obtained in the �rst iteration is not

adequate for creating legal placement as the amount of overlap among the cells

is substantial and cells are not essentially near their �nal locations, Figure (4.1-

a). In the second iteration, the placement area is divided into 4 disjoint regions

and cells are distributed equally among them. Generally, in the nth iteration, the

placement area is divided into 22n regions 1 and, again cells are distributed equally

among them, Figure (4.1-c). As we pointed out previously, a global optimization

is performed in each iteration resulting in a reduction of cell overlap and better

utilization of the placement area. The slicing process is terminated if the size of a

partition is less than a prespeci�ed threshold [30].

Despite the fact that the partitioning approach usually accomplishes decent cell

spreading and utilization of the placement 
oor, it su�ers from many drawbacks.

The following are among the several major shortcomings of the approach.

� solution quality may be deteriorated as a consequence of possible erroneous

assignment of cells to the di�erent regions (partitions).

� the infeasibility of correcting any erroneous assignments as a result of restrict-

ing the movement of cells in a partition within the partition.

� the need for hard constraints to force cells to spread within the placement

area.

� the number of hard constraints increases as the number of partitions increases.

The result is a much harder problem.

1Provided that iteration index n is given as n = 0; 1; 2 � � �. In other words, �rst iteration index

is 0, second iteration index is 1, and so on.
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� since determining the best size for a partition is a hard problem, sizes of

various partitions are assumed equal. However, equal partition-size may result

in a major deterioration in the �nal answer.

These de�ciencies motivated us to seek an alternative to the partitioning approach.

An approach is desired that is robust in terms of quality of cell spreading, area

utilization, and e�cient in accomplishing these objectives. Speci�cally in our ap-

proach, new repelling forces have been added to prevent overlap among connected

cells. Unfortunately, cells sharing no common nets still fold on top of each other as

they are not accounted for in the repeller model. In fact, the repeller engine can

achieve cell spreading if the target distance parameter d in equation (3.6) is chosen

to be relatively large with respect to the average cell width or average cell height.

But, cell spreading achieved this way tends to stretch short nets and accordingly

deteriorate the total wirelength.

Cell spreading needs to be done delicately over the course of several iterations so

that excessive stretching of short nets is avoided. In each iteration, highly connected

cells need to be displaced to �ll some sparse regions on the placement area. In the

following section, we describe our new approach to cell spreading.

4.2 New Method for Cell Spreading

As we just have stated, hinging on the repeller engine to spread cells achieves the

goal at the expense of stretching short nets and accordingly deteriorating total

wirelength. To prohibit this, we propose adding new forces to the repeller model to

regulate cell spreading such that excessive net stretching is avoided and adequate

distribution of cells is attained. The basic idea of our approach is to force cells
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to spread over the placement area without restricting their movement. In other

words, no constraints are imposed on cell positioning, and cell spreading is entirely

driven by the natural movement of cells during the global optimization of the total

wirelength. Speci�cally, the new forces attract cells to sparse regions within the

placement area. As opposed to the partitioning approach, these forces encourage a

cell to move to a sparse region in a direction conforming with the direction of the

cell movement. The approach involves adding dummy �xed cells to the less dense

regions of the placement 
oor and establishing connections between these new �xed

cells and the movable cells in the dense regions. The new connections are, in fact,

new nets added to the netlist. It follows that during the computation of the global

placement, the dummy �xed cells exert additional forces on the movable cells and

force them to move towards the less dense regions where the dummy �xed cells

reside. Thus, movable cells �ll the sparse regions, and accordingly the intensity of

cell spreading increases in each iteration.

The �rst step involves identifying dense and sparse regions on the placement

area. In the following section, we present how these regions are identi�ed.

4.2.1 Identifying Dense and Sparse Regions

The procedure of identifying dense and sparse regions depends on the cell distri-

bution and the variability of cell area (as cell width is not the same for all cells).

Speci�cally, for each cell i with geometric location (xi; yi), an `w � `h rectangular

window wi centered at (xi; yi) is imposed on the placement 
oor and the total area

Aa of all cells with centers enclosed by wi is computed; i.e:

Aa =
rX

k=1

ckwc
k
h
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where ckw and ckh are the width and height of cell k and r is the number of cells

enclosed by window wi. Next, region Ri surrounded by wi is regarded sparse only

if

Aa < Aw

where

Aw = `w`h

In our implementation, `w and `h have been expressed as linear functions of the

chip width W and chip height H and adaptively varied from iteration to another;

i.e:

`w = �tW

and

`h = �tH

where � is a constant that is updated from iteration to iteration according to 2

�t+1 = 0:95�t; t = 1; 2; � � � ;I

where t is the iteration number, I is the total number of iterations and �1 = 0:1.

Cells that have been collapsed in a sparse region are not considered when new sparse

regions are being identi�ed. Each sparse region Ri is then split into 4 quadrants

and the center of the sparsest quadrant (in terms of number of cells that fall inside

a quadrant) (xia; y
i
a) become a center of a new cell attractor. A cell attractor is,

merely, a dummy �xed cell located at (xia; y
i
a). Figure (4.2) illustrates an example

of sparse and dense regions.

Let

A = f(x1a; y1a); (x2a; y2a); � � � ; (xqa; yqa)g
2We need to stress that this formula is empirical and it is entirely based on experimentation

with the benchmarks.
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Figure 4.2: Region R1 is dense, while regions R2, R3 and R4 are sparse.

be the set of locations of the q cell attractors. The attractors in A are used to divide

the set of cells among the di�erent identi�ed sparse regions on the placement 
oor.

Precisely, for each cell i an attractor is selected based on a certain cell-attractor

assignment criteria. Subsequently, a connection is established between cell i and

the selected cell attractor. In other words, a new two-cell net is added to the netlist

of the circuit. The details of the cell-attractor assignment are presented in the

following section.

4.2.2 Cell-Attractor Assignment

When assigning cells to sparse regions, the aim is to attain cell spreading while pre-

venting any possibility of excessive stretching of short nets in subsequent iterations.

As we indicated previously, this objective is di�cult to achieve unless spreading is

done delicately over several iterations. In general, the deterioration in net wire-

length is correlated with the distance between its cells and the attracting dummy

cells in the sparse regions. Greater distances normally correspond to excessive net
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stretching. Thus, the criteria to assign a cell to a sparse region (or equivalently cell

attractor) should be based on how many distance units that separates the geomet-

ric location of that cell from the geometric location of the dummy attracting cell

in that particular sparse region. Based on this, we propose general cell-attractor

assignment criteria that can be expressed in terms of the distance between the ge-

ometric locations of the cells and the attractors. Speci�cally, the criteria are based

on the well known inequality between the minimum, harmonic mean, geometric

mean, arithmetic mean and maximum of a set or a sequence of positive numbers

[45]. To formalize the discussion, let

Di = fd1; d2; � � � ; dqg

be the sequence or set of distance between the geometric location of cell i and that

of each attractor (dummy cell) in A. To facilitate the analysis, we assume Di is the

set of distance between the geometric location of cell i and the attractors in the

x-direction. For instance

d1 = jxi � x1aj

is the distance (in the x-direction) between cell i and the attracting dummy cell

with coordinates (x1a; y
1
a).

The harmonic mean of the nonnegative sequence of numbers Di is de�ned as

H(Di) =
q

1=d1 + 1=d2 + : : :+ 1=dq

The geometric mean of the same sequence is de�ned as

G(Di) = (d1d2 : : : dq)
1=q

and the arithmetic mean is given by

A(Di) =
d1 + d2 + : : :+ dq

q
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We also de�ne

Dmin = minfd1; d2; : : : ; dqg

and

Dmax = maxfd1; d2; : : : ; dqg

For the �nite sequence of positive numbers Di, we have [45]

Dmin � H(Di) � G(Di) � A(Di) � Dmax (4.1)

with equality if and only if

d1 = d2 = : : : = dq

Inequality (4.1) provides a set of intact criteria to control the degree of cell

spreading and accordingly the extent of net stretching. For instance, if Dmin is used

as a cell-attractor assignment criterion, cell i will be connected to an attractor in the

closest zone of sparse regions. In such case, cell i would be displaced by a relatively

small distance with respect to its most recent geometric location while computing

the relative placement in the subsequent iteration. Thus, excessive stretching in

its nets is not highly likely to take place. If H(Di) is employed as a cell-attractor

assignment criterion, each cell i will be assigned to a cell attractor located in a

sparse region that is at least (or it can be at most) H(Di) units from its most

recent location, depending on whether H(Di) is used as lower (or upper) bound

on the distance separating cell i from the di�erent sparse regions. Hence, more

spreading but more stretching in short nets is expected compared to the previous

case.

To make the discussion formal, let s1, s2, s3 and s4 be disjoint subsets such that

Di = [4
j=1sj



CHAPTER 4. THE NEW GENERIC PLACEMENT METHOD 55

and are given by

s1 = fdk : Dmin � dk < H(Di); k = 1; : : : ; qg

s2 = fdk : H(Di) � dk < G(Di); k = 1; : : : ; qg

s3 = fdk : G(Di) � dk < A(Di); k = 1; : : : ; qg

s4 = fdk : A(Di) � dk � Dmax; k = 1; : : : ; qg

Each subset or subsequence sj corresponds in essence to a group of cell attractors

or equivalently a group of sparse regions. In fact, each group of sparse regions

represents a sparse zone on the placement 
oor. The group of sparse regions located

at distances given in s1 represents the closest sparse zone to cell i. Subset or

subsequence s2 corresponds to the next closest sparse zone to cell i and so on.

Clearly, inequality (4.1) provides an ordering of the sparse zones according to

how far they are from cell i. It follows that, a cell attractor can be selected based

on inequality (4.1) and the corresponding ordering of the sparse regions given by

s1; s2; s3 and s4. Dispersion of the distance sequence Di gives clues on how to select

a cell attractor for cell i. Speci�cally, the variability %(Di) of sequence Di

%(Di) =
�(Di)

A(Di)

where �(Di) is the standard deviation of sequence Di given by

�(Di) =

vuut1

q

qX
k=1

(dk �A(Di))2

can be utilized to characterize the dispersion of the distance sequence. Accord-

ingly %(Di) provides clues on a suitable zone of sparse regions where cell i can be

displaced to. If %(Di) is small, then any group of cell attractors can be chosen

without expecting any major change in the solution3. On the other hand, if %(Di)

3if %(Di) is zero or equivalently �(Di) is zero then cell i is at equidistant from all cell attractors.
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Figure 4.3: Region R1 is dense while regions R2 and R3 are sparse. Cell C1 located

in R1 with geometric location (x1; y1) is hooked to the dummy �xed cell C with

coordinates (x2; y3) where x2 and y3 are the x and y coordinates of C2 and C3

(which are the closest cells to C1 in the x and y directions respectively). Note that

Dx(ij) and Dy(ij) are the distances in the x and y directions between cell i and

cell j.
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is relatively large, then a group can be selected depending on the circuit design

style, size and netlist sparsity. For instance, thresholds of %(Di) can be designated

for each group of cell attractors based on experimentation with di�erent problem

size and design style.

In our implementation, we applied the new placement method to standard-

cell design style which is widely used in ASIC (Application Speci�c Integrated

Circuits). In this design style, as we pointed out in previous chapters, cells are

rectangular in shape with same height but not necessarily same width. Also, short

nets represent the majority of the nets in this design style, see Figure (2.4). Based

on our experience, we found that connecting cells to cell attractors corresponding

to the distance subsequence s1 (closest zone of sparse regions) yields the least net

stretching and quite good cell spreading. Accordingly, the results reported in this

thesis (speci�cally, in chapter 5) are all based on cell spreading obtained through

establishing connections between each cell and the closest dummy �xed cell in the

closest zone of cell attractors.

In the following section, we present the complete attractor-repeller model for

global placement.

4.3 The Attractor-Repeller Model

We are now in a position to give the full Attractor-Repeller model for the global

placement; i.e:

Min F(z) + g(x) + h(y) (4.2)
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s.t

lx � xi � ux

ly � yi � uy

Parameters lx, ly, ux and uy are lower and upper bounds on x and y. The �rst term,

F(z), represents the repelling terms or shortly the repellers and is given by equation
(3.8). We have already described in details how the cell repeller works when we

presented and analyzed the new wirelength convex models in chapter 3. The second

and the third terms, g(x) and h(y), represent the attracting terms or simply the

attractors. Minimizing the distance between two connected cells corresponds to

pulling these cells together. If the position of one of the cells is �xed, then the

free cell will be pulled towards the �xed cell and (as we pointed out previously),

this is why the �xed cell is referred to as cell attractor. We repeat again, for each

movable cell, a connection is established with the closest cell attractors in the x and

y directions. It follows that, the geometric location of the cell attractor to which a

movable cell is hooked with is given by the x and y coordinates of the closest cell

attractor in the x and y directions respectively, see Figure (4.3). In other words,

Each movable cell i is assigned to an attractor with a coordinate (x�a; y
�
a) where

� and � are the closest attractors to cell i in the x and y directions respectively.

Accordingly, g(x) and h(y) are given as

g(x) =
X

1�i�N

minf(xi � x1a)
2; � � � ; (xi � xqa)

2g

h(y) =
X

1�i�N

minf(yi � y1a)
2; � � � ; (yi � yqa)

2g

Before we conclude this section, we would like to point out that throughout the

remaining parts of the thesis, we will refer to formulation (4.2) as the Attractor-

Repeller (AR) formulation (or model), and to the new placement method (based

on the AR model) as the Attractor-Repeller Placer (ARP).
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4.4 The Attractor-Repeller Placer: Basic Algo-

rithm

Figure (4.4) illustrates the 
ow of the new placement algorithm ARP. Following the

parsing of the circuit information, the quadratic formulation of wirelength is solved

to obtain an initial placement. Obviously, the majority of cells are on top of each

other with only a small portion shifted towards the boundaries of the placement area

as a result of the attracting forces due to the I/O pads. In the subsequent iterations,

the algorithm proceeds iteratively via minimizing the AR model. In each iteration,

following the termination of the global optimization, the AR model is updated as

a result of the new connections between the movable cells and the cell attractors.

Speci�cally, based on the resulting cell positioning, dense and sparse regions are

identi�ed according to the window-based technique presented previously. Next, the

global placement is legalized through snapping the cells to the rows (section 4.5).

The next step involves improving the global placement slightly through a sequence

of cell swapping and cell displacement within and among the di�erent rows. The

idea behind perturbing the global placement for better positioning of the cells is

to increase the likelihood of connecting cells to cell attractors in sparse regions

that enclose, or at least, located near their �nal ideal positions. In other words,

by improving the current cell positioning, we hope to displace highly connected

cells to the same zone on the placement 
oor so that in the subsequent iteration

they end up hooked to the same cell attractors. In each iteration, new attractors

are created and attractors from the previous iteration are deleted. As depicted in

Figure (4.4), the sequence of creating attractors, establishing new connections with

cell attractors and, solving the updated AR model continues until the termination

criteria is met. Speci�cally, the algorithm stops when the number of iterations
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Figure 4.4: An outline of the new global placement method ARP.

exceeds an upper bound K, or if the ratio of the total area of the identi�ed sparse

regions to that of the placement area is < �%. Experimentally, we found that

5 � K � 8 and � = 10% are quite su�cient to yield uniform cell spreading and

accordingly adequate utilization of the placement area.

The solution methodology used is a quasi-Newton nonlinear algorithm that cal-

culates a step direction based on the gradient and an approximation to the Hessian

[11]. It then performs a line search along that direction to minimize the objective

function, generating a new iterate. The optimization stops if the di�erence in the

objective function values over two successive iterations is su�ciently small. The

Hessian approximation is generated using the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm. This method has the advantage of having a super-linear con-

vergence rate.
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The resulting cell positions do not constitute a valid placement since there is

still minor overlap and cells are not positioned within the rows as required. It is

therefore essential to \legalize" the placement by further adjusting the cell positions

to meet the placement restrictions.

In the next section, we describe a simple heuristic to remove remaining cell

overlap and create a legal global placement.

4.5 Global Placement Legalization

The result of the global optimization is a relative placement where each cell is placed

at or near its �nal destination. The next step is to adapt the relative placement

to the speci�c design style (standard cell, macro-cell, ect.). In standard cells or

row-based design style, cells are snapped to rows. In macro-cell design style, an

optimization of the area utilization is needed and cells need to be packed in a

compact slicing structure.

In this thesis, the focus is on standard cells. In this design style, cells are of same

height but not necessarily same width. The chip area is determined by the width of

the routing channels between the rows and lengths of the rows. The objective is to

accomplish a smaller chip area by reducing channel widths and not exceeding the

maximum row length. The process of snapping cells to rows is called legalizing the

relative placement, or shortly legalization. In this work, we used a simple heuristic

for legalization which was proposed by Dunlop and Kernighan [1]. In this heuristic,

cells are sorted based on their y-coordinates and divided into k subsets (k is the

desired number of rows). Each subset is then assigned to a row while keeping the

row length nearly equal. In fact, cells are allowed to move between the rows in

order to keep the row lengths equal. The sequence of the cells within the rows
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is determined based on their x-coordinates. In other words, cells are positioned

adjacent to each other from left to right within the row based on their sorted x

positions. The complexity of this heuristic is O(n log n) since it is based on the

sorted cell positions [1].

The legal (global) placement is a good placement, however, further improvement

of the placement is still required to account for any incorrect enforcement of some

cells into non-optimal positions during the global optimization or the legalization

phases.

In the following section, we describe an iterative improvement technique that

was developed by other members [3, 58] in our group, and was successful to a decent

extent in enhancing the overall quality of the initial global placement.

4.6 Iterative Improvement Method

The method is based on a meta-heuristic technique known as Tabu Search [3, 58].

Before we describe the method, we present a summary on Tabu search.

4.6.1 Tabu Search

The basis for Tabu search may be described as follows [25, 27]. An objective

function f has to be minimized on a set X of feasible solutions. A neighborhood

N(S) is de�ned for each solution S in X. The set X and the de�nition of the

neighborhood N(S) induce the solution space. Tabu search is basically an iterative

procedure which starts from an initial solution and tries to reach an optimal solution

by moving step by step in the solution space 
. Each step consists of generating a

collection V � of solutions in the neighborhood N(S) of the current solution S, and
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then moving to the best solution Ŝ in V � even if f(Ŝ) > f(S). V � is obtained by

applying one or several moves to S.

A risk of cycling exists as soon as a solution Ŝ, worse than S is accepted.

In order to prevent cycling to some extent, modi�cations which would bring the

search back to a previously visited solution should be prohibited. However, it may

sometimes be useful to come back to an already visited solution and continue the

search in another direction from there. This is realized in Tabu search by keeping

a list T containing the last k modi�cations (k may be �xed or variable). Whenever

a modi�cation is made for moving from S to Ŝ, its reverse (i.e, the modi�cation

which would generate S) is considered tabu. Sometimes it is desirable to suspend

the tabu status of a move if it seems that such a step may be useful. This is called

aspiration and it is used to temporarily release a solution from its Tabu status. A

major feature of aspiration is that: it increases the 
exibility of the algorithm while

preserving the basic features that allow the algorithm to escape local minima and

avoid cycling. Di�erent applications employ di�erent aspiration criteria.

Stopping criteria can be also application dependent. However, in general, if a

lower bound f� on the minimum value of f is known, then the process may be

interrupted when the value of the current solution is close enough to f�. Moreover,

the procedure is terminated if no improvement is made during a given number of

iterations.

The following is a general description of the Tabu search method:

Tabu search algorithm:

S = initial solution in X;

numOfIter = 0; (current iteration)

S� = S; (best solution)
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T = 0;

initialize the aspiration level.

while (f(S) > f�) and (numOfIter < maxNumOfIter)

generate a set of neighbor solutions V � such that

moves are not in the Tabu list or else f(Si) < f(S�);

choose best solution Ŝ in V �;

update Tabu list and aspiration level;

if f(Ŝ) < f(S�) then

S� = Ŝ;

endif

S = Ŝ;

endwhile

Tabu search tends to be very aggressive in regions where good solutions are likely

to be found, while spending little time in regions that are less attractive.

4.6.2 Tabu Search for Placement Iterative Improvement

In the context of VLSI placement, the new solution S0 is obtained from S by the

following procedure. First, cell ci is randomly selected. Then all target cells cj 2
N�(ci) ( N�(ci) the set of cells located in the neighborhood of ci) are exhaustively

examined for interchange with cell ci. The gains are estimated from the di�erence

of the objective function f(S) before and after the interchange. The best target

cell cj associating with the maximum gain is selected for the interchange with cell

ci if the pair of cells (ci; cj) is not in the Tabu list T . The new solution S0 is

obtained by interchanging a pair of cells (ci; cj), even if the gain is negative. In
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determining whether a move is Tabu or not, only one Tabu list T containing the

jT j last cell pair interchanges is used. Such a list is su�cient to prevent cycling.

The Tabu list T is treated as a circular list. Thus, the addition of cell pair removes

the cell pair recorded in its position jT j interchanges ago. Note that the key step

in the Tabu method for placement is to �nd a good solution rather than to �nd

the best solution in the neighborhood N(S). Given the parameter � and cell ci, the

complexity for examining the cells cj 2 N�(ci) is constant. But given the parameter

�, the complexity for examining the cells cj 2 N�(ci) for all cells ci; i = 1; 2; � � � ; N is

O(N). Therefore, the complexity for �nding the best solution in the neighborhood

N(S) is O(N). The complexity of the heuristic to generate cell pair (ci; cj) is

constant. Although it needs more Tabu Search steps to obtain a good result, the

total computation time is still much less than the case of �nding the best solution.

The Tabu Search heuristic used for the placement consists of two stages. Cell

overlap is allowed in the �rst stage and prohibited in the second stage. The main

reason of allowing cells to overlap in the �rst stage is to increase the solution space

being searched. A di�erent objective function is used in each stage.

First Search Stage

The �rst stage minimizes the total half-perimeter wire length while restricting over-

lap to a minimum amount besides ensuring equal row length. The objective function

is given as:

f(S) = cl(S) + co(S) + cr(S) (4.3)

where cl(S) is the total half-perimeter wire length (HPWL) given by equation (2.1).

The second term co(S) is the overlap penalty function, and given by:

co(S) = po
X
j

O(i; j) (4.4)
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where po is a penalty parameter. The function O(i; j) returns the total amount

of overlap area between cells i and j. Certainly, by checking every other cell on

the same row as cell i, it can be determined which of these cells overlap with cell

i. However, the complexity is O(Ni), where Ni is the number of cells in the row.

The time spent doing overlap computation can be substantial. IfWmax denotes the

maximum cell width, it follows that another way to compute the cost co(S) is to

search Wmax units to the left and to the right of cell i to locate all other cells which

overlap with cell i. This is an e�cient method as long as the ratio between the

maximum and minimum cell width is not too large.

The overlap penalty parameter is an empirical parameter. If po is too large,

the Tabu method will be primarily concerned with the minimization of the overlap

penalty function (little attention will be paid to the minimization of the HPWL).

If po is too small, the Tabu method will concentrate on the minimization of the

HPWL (little attention will be paid to the elimination of cell overlap). At the end

of the �rst Tabu Search stage, a large amount of the cell overlap still exists. The

HPWL increases when cell overlap is removed. Experimentally, it has been found

that po 2 (0:1; 0:5) yields the least HPWL [3, 58].

The last term cr(S) is the row length penalty function and is given by

cr(S) = pr
RX
i=1

jLai � Ldij (4.5)

where pr is a row penalty parameter, R is the number of rows, Lai and Ldi are the

actual and desired row length for row i. Experimentally, it has been found that

pr = 5 is approximately the smallest value which would yield uniform row lengths

without placing excessive emphasis on cr(x) in the objective function f(S) [53, 3].
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Second Search Stage

After the termination of the �rst search stage, a simple heuristic is used to remove

all the overlap among cells by shifting them. At this stage, the placement has

no cell overlap, and the row length are changed slightly. The objective here is to

minimize the HPWL only; i.e, f(S) = cl(S). The heuristic avoids causing overlap

in this stage by choosing cells having the same width and are close to each other. To

further re�ne the search, a simple neighborhood interchange heuristic is used since

Tabu Search does not exhaustively search all possible cells in the neighborhood

N(S).

4.7 Summary

In this chapter, we presented our new placement algorithm. The 
ow of the al-

gorithm in general and details of how it deals with cell spreading were throughly

dissected. We highlighted the major de�ciencies of the partitioning approach, and

we presented means to overcome these major shortcomings. Speci�cally, we pre-

sented in some details the di�erent procedures to identify dense and sparse regions,

creating cell attractors in the sparse regions and assigning cells to the di�erent cell

attractors. Moreover, di�erent criteria to assign cells to cell attractors have been

presented. We also presented a simple heuristic to create a legal placement from the

global placement. Finally, we shed some light on the Tabu search method and how

it was adapted to perform local improvement of the globally optimized placement.

Application of the new placer (ARP) to standard-cell placement including qual-

itative analysis of the method and experimental results are the topic of the next

chapter.



Chapter 5

Application To Standard Cell

Placement

In previous chapters, we indicated that standard cell design is widely used in ASIC

(Application Speci�c Integrated Circuits) and standard cell placement is a challeng-

ing problem since cells vary in width and the typical number of cells per circuit is

quite large. In this chapter, we consider applying the new placement method ARP

to standard cell placement. We illustrate the strength and the other various aspects

of the attractor-repeller approach compared to other approaches. Speci�cally, we

present a qualitative analysis in which we examine:

� the individual e�ect of the attractors and the repellers on the spreading of

the cells.

� and the e�ect of the cell attractors on the speed of convergence of the global

optimization.

68
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Moreover, to demonstrate the e�ectiveness and robustness of the method, �nal

results are compared to the state-of-art placement methods, namely, TimberWolf

v6.0, TimberWolf v7.0 [59] and Gordian/Domino [30, 32].

(a) (b)

(c) (d)

Movable Cells

Cell Attractors

Fixed Cells

Figure 5.1: Benchmark Primary1: cell spreading after each pass using no repellers,

�(zij) = 0 and d = 1 in f(zij) (\+" represent locations of movable cells, "x" repre-

sent locations of �xed cells (I/O pads), and \o" represent locations of attractors).

5.1 Qualitative Analysis

We start by examining cell spreading and how it is correlated with cell attractors

and repellers.
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5.1.1 Attractors-Repellers and Cell Spreading

Cell attractors and repellers complement each other in the sense that cell repellers

prevent connected cells from folding on top of each other and cell attractors prevent

excessive displacement of connected cells by the cell repellers.

Figure 5.2: Cell spreading using strict repeller model. \+" represents movable cells

and \x" represents �xed cells.

To demonstrate this, and to draw a general conclusion on whether a combination

of attractors and repellers is better or not, we conducted di�erent scenarios in which

� repellers are inactivated; i.e, �(zij) = 0 and d = 1 in equation (3.7). That is,

the AR model is reduced to a combination of quadratic estimate of wirelength

and cell attractors.

� no attractors (i.e, g(x) = 0 and h(y) = 0 in equation (4.2)) are used and the

model reduces to a strict repelling engine.
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� the AR model (the combination of attractors and repellers) is used.

(a) (b)

(c) (d)
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Figure 5.3: Benchmark Primary1: cell spreading after each iteration ( \+" repre-

sents locations of movable cells, \x" represents locations of I/O pads on the chip

periphery, and \o" represents locations of attractors).

The industrial circuits listed in Table (2.1) are used in each scenario. To dis-

cern between the di�erent scenarios, Figures demonstrating spreading of cells and

attractor distribution for benchmark Primary1 are presented.

Figure (5.1) illustrates cell spreading in the �rst scenario. Part (a) shows the

initial solution obtained via minimizing a quadratic wirelength objective function.

Parts (b)-(d) illustrates the spreading after including the cell attractors. Clearly,

no substantial improvement in cell spreading with respect to the �rst iteration is

noteworthy. This is owing to the fact that in the absence of the repelling forces,

the attraction forces between the connected cells outweigh the forces exerted by the
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cell attractors. In other words, the attraction forces between the connected cells

overwhelmingly dominate the resultant forces acting on the cells.

In contrast, Figure (5.2) demonstrates cell spreading in the second scenario in

which no attractors are included and the model is strictly repelling. Clearly, the

amount of cell spreading is remarkable, but the resultant wirelength is found to

be higher and extra e�orts by the �nal placement improver are necessary to o�set

this undesirable e�ect. As we suggested previously, this is owing to the fact that,

a strictly repelling engine tends to stretch short nets and accordingly deteriorate

total wirelength.

Figure (5.3) illustrates cell spreading in the third scenario (AR model). Part

(a) shows the initial solution obtained from minimizing the quadratic wirelength.

Clearly, the majority of the cells are clustered in the center of the placement region

and the amount of overlap between the cells is substantial. The cell attractors

(shown as circles in the Figure) are created according to the current cell positions.

In parts (b)-(c), the global optimization involves minimizing the AR model. Better

spreading of the cells can be noticed in each iteration compared to the preceding

iterations. In the second iteration, clusters of overlapped cells tend to move to

the same sparse regions and in subsequent iterations, some of these clusters tend

to 
atten out �lling existing empty space in their immediate neighborhood on the

placement 
oor. In this scenario, there is a trend of improvement in both cell

spreading and wirelength reduction in each subsequent iteration. Figure (5.4) il-

lustrates the variability or relative spread of the average wirelength as the global

optimization is carried out for a �nite number of iterations (speci�cally, the al-

gorithm is executed for each benchmark and the average of wirelength across all

benchmarks is computed). Clearly, the wirelength decreases as the algorithm pro-

ceeds from one iteration to another. In fact, for some benchmarks, we observed
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Figure 5.4: Variability of average wirelength over the di�erent iterations of the

algorithm.

that if the algorithm is executed for a fairly large number of iterations, the wire-

length obtained is quite close to the �nal answers obtained after improving the

initial placement generated from a relatively smaller number of iterations.

Figure (5.5), depicts the variability of the average wirelength as a function of

the intensity of the repelling forces (that is, parameter d in equation (3.7)). Based

on experimentation, we found that there is correlation between the intensity of the

repelling forces required to spread the cells apart (prohibit overlap) and average

cell width of a particular circuit. Accordingly, the following empirical formula for

estimating d is used:

d =

p
wa

k
(5.1)

where wa is the average cell width (which is constant for a given circuit) and k

is scaling factor. In fact formula (5.1) was found quite useful. To examine the

correlation between parameter d (which re
ect the strength of the repelling terms)
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Figure 5.5: Variability of average wirelength versus the scaling parameter k, (equa-

tion (5.1)).

and the wirelength, parameter k is varied between 0.01 to 2.5 for each test case.

Experimentally we found that, on average, k = 1 (or equivalently d =
p
wa) yields

best answers in terms of wirelength. This is demonstrated in Figure (5.5). No

correlation between d and the speed of convergence of the global optimization was

observed.

5.1.2 Cell Attractors and Convergence of the Global Opti-

mization

As we have shown in chapter 3, the attractor-repeller objective function is convex

as long as the whole circuit forms one set; that is the netlist graph is connected

and there exist some �xed cells. The convexity and smoothness of the objective

function improves as the number of �xed cells increases.

As indicated previously (Figure (4.4)), the AR model is used after the �rst
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iteration (an initial solution is generated in the �rst iteration via minimizing a

quadratic model; i.e, �(z) = 0 and d = 1 and no attractors exist). Figure (5.6-a)

shows the variability (relative spreading) of the algorithm run time as a function

of the number of iterations. The relationship between the algorithm run time and

the number of attractors is illustrated in Figure (5.6-b) (precisely, the algorithm

is executed for many iterations and the average run time as well as the average

number of attractors are computed and plotted in Figure (5.6)).
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Figure 5.6: Variability of run time. (a) versus passes (b) versus number of attrac-

tors.

Examining these Figures, it is clear that there is a substantial decrease in the

run time after the �rst iteration. That suggests a strong correlation between the

convergence of the global optimization and the existence of the cell attractors. On
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average, the percentage of decrease in run time in the second iteration (that is,

when the cell attractors are added) is almost 62%. That is, on average, the run

time improves by an average of 62% compared to the �rst iteration. After the

second iteration, the rate of decrease in run time is relatively lower, but its general

trend is downward.

Based on these observations, it is evident that there is a strong tendency of

the optimization process to converge in a much shorter time when the attractors

exist. Again, this indicates that the smoothness and curvature (convexity) of the

objective function improve as the number of �xed cells in the circuit increases.

5.2 Numerical Results

The new method is implemented in the C language on a Sun-Ultra1/140 worksta-

tion. Half-perimeter wirelength (HPWL) is used in estimating the wirelengths. The

HPWL has been used in other results presented in the literature ([54, 59, 60, 30, 32]),

since rectilinear wiring is typically used in routing a circuit. Table (5.1) lists the

wirelengths and CPU time of the various benchmarks for the initial (global) place-

ments.

As previously mentioned, the �nal phase in our combined placement method

involves further improvement of the initial placement. The Tabu search based

iterative improvement technique presented in chapter 4 serves as our �nal placer.

To assess the new placement method ARP, we consider comparing solution qual-

ity and e�ciency (computation times) of ARP to the state-of-art placers. Specif-

ically, Simulated Annealing (SA), and a combination of analytic and iterative im-

provement based placers. Namely, TimberWolf v6.0 (TW v6.0) [54], TimberWolf
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Ckt Wirelength CPU seconds

Fract 0.12 5

Prim1 1.03 41

Prim2 5.62 241

Struct 0.39 51

Ind1 2.10 101

Bio 2.17 547

Ind3 64.8 1989

Avq.s 9.1 3792

Avq.l 9.6 5010

Table 5.1: Wire Length estimates and CPU time for initial placements.

v7.0 (TW v7.0) [60, 59] and Gordian/Domino [30, 32].

TW v7.0 [60, 59] is the latest release of TimberWolf placement package. It

has two modes of operation, namely, a 
at mode and hierarchical mode. In the


at mode, the original netlist is placed. In the hierarchical mode, however, the

original netlist is clustered into various levels of netlists. At each level, SA tries

to �nd an optimal placement for the clustered netlist, followed by 
attening the

netlist. Subsequently, the 
attened netlist is admitted to the next level and the

process is repeated until the original netlist is placed. The clustering approach has

the advantage of greatly reducing the complexity of the circuit and consequently,

reducing the computational e�orts required to solve the problem.

The method of Gordian [30] has been described when the partitioning approach

was introduced in chapter 4. The method of Domino is an iterative improvement

technique that has been applied to initial placements generated by Gordian [32].
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In Domino, the placement problem is modelled as a transportation problem and

network 
ow algorithms are employed to solve the resulting optimization problem.

Speci�cally, cells positioned near each other in the existing placement are considered

for improvement. The iterative process produces a sequence of intermediate place-

ments. In each iterative step, an improved placement is generated from the current

placement. The process terminates when after several generations no signi�cant

improvement is obtained.

The metrics used in the comparison of the new method ARP and the other dif-

ferent approaches are total wirelength and longest-row width which re
ect solution

quality, and computation times which typify the e�ciency of the method. Longest

row width determines chip width and accordingly total chip area. Thus, longest

row width is an important parameter in the assessment of a given placement. Nu-

merical results of the other approaches are taken from the literature [59]. For some

benchmarks, no results have been reported in [59] and their entries in the results

tables are left empty.

Tables (5.2), (5.3) and (5.4) list the �nal wirelength, longest row width and

computation times for ARP and the other approaches. The reported computation

times include times for �nal placements. ARP outperforms TW v6.0, TW v7.0 and

Gordian/Domino on the majority of the benchmarks. For benchmark Ind3, ARP

outperforms TW v6.0 but lacks compared to TW v7.0 and Gordian/Domino, and

for benchmark Bio and Prim2, ARP lacks insigni�cantly compared to TW v7.0 in


at mode (FM). We suspect a di�erent positioning of the I/O pads compared to

the other methods, or a scaling problem is the reason for this di�erence in results.

On average, ARP achieves 7:78%, 1:02%, 3:96% and 8:68% reduction in wire-

length compared to TW v6.0, TW v7.0-FM, TW v7.0-H (Hierarchical) and Gor-

dian/Domino respectively.
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Tables (5.3) and (5.6) show comparisons of longest row width obtained by ARP

and the other approaches. On average, ARP outperforms TimberWolf v6.0 and

TimberWolf v7.0 by 4:28% and 0:13%. No longest row width was reported for

Gordian in [59] to compare to.

Ckt TW6 TW7.FM TW7.H Gord/Dom ARP

Fract - - - - 0.034

Prim1 1.0 0.93 0.99 1.08 0.79

Prim2 3.71 3.53 3.72 4.02 3.61

Struct - - - - 0.34

Ind1 - - - - 1.50

Bio 1.97 1.8 1.88 1.98 1.83

Ind3 48.38 43.08 44.67 44.94 48.12

Avq.s 6.72 6.45 6.13 6.42 6.06

Avq.l 6.93 6.50 6.81 7.16 6.54

Table 5.2: Wire Length Comparison, TW v7.0 
at and hierarchical modes, Gor-

dain/Domino and ARP

As for computation times, the results are illustrated in Tables (5.4) and (5.7)

(computation times of the other approaches are scaled). Evidently, ARP consumes

less computation times to place each test case compared to the other approaches.

On average, ARP outperforms TimberWolf v6.0 by 83%, TimberWolf v7.0 (
at

mode) by 87%, TimberWolf v7.0 (Hierarchical mode) by 7:6% and Gordian/Domino

by 13:8%.
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Ckt TW6 TW7.0 ARP

Fract - - 704

Prim1 5260 5100 5170

Prim2 8380 8210 8201

Struct - - 2360

Ind1 - - 4810

Bio 5114 4936 4928

Ind3 28832 26368 26176

Avq.s 9560 9128 9080

Avq.l 9744 9400 9344

Table 5.3: Chip width comparison: TimberWolf v7.0 and ARP. Width is measured

in microns.

Ckt TW6 TW7.FM TW7.H Gor/Dom ARP

Fract - - - 12

Prim1 467 488 130 168 95

Prim2 3127 4307 736 542 504

Struct - - - 116

Ind1 - - - - 376

Bio 8606 12224 1273 1553 1290

Ind3 38619 70873 5156 6087 4253

Avq.s 54681 78248 7657 10261 8534

Avq.l 56802 97612 9175 12403 11202

Table 5.4: Run-time comparison in CPU seconds: TimberWolf v7.0 in 
at and

hierarchical modes, Gordian/Domino and ARP.



CHAPTER 5. APPLICATION TO STANDARD CELL PLACEMENT 81

Ckt TW v6 TW7.FM TW7.H Gor/Dom

%impr. %impr. %impr. %impr.

Prim1 +21 +15 +20.2 +26.8

Prim2 +2.7 -2.2 +2.9 10.2

Bio +7.1 -1.64 +2.9 +7.5

Ind3 +0.53 -10.4 -7.2 -6.6

Avq.s +9.8 +6.0 +1.1 +5.6

Avq.l +5.6 -0.6 +3.9 +8.6

avg. +7.78 +1.02 +3.96 +8.68

Table 5.5: Relative wirelength improvement with respect to other approaches (+

means ARP is better).

Ckt TW v6.0 TW v7.0

%impr. %impr.

Prim1 +1.7 -1.3

Prim2 +2.1 +0.11

Bio +3.6 +0.16

Ind3 +9.2 +0.73

Avq.s +5.0 +0.53

Avq.l +4.1 +0.60

avg. +4.28 +0.13

Table 5.6: Relative chip-width improvement with respect to other approaches (+

means ARP is better).
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Ckt TW v6 TW7.FM TW7.H Gor/Dom

%impr. %impr. %impr. %impr.

Prim1 +79 +80 +27 +3.8

Prim2 +83 +88 +31 +7.0

Bio +85 +89 -1.3 +17

Ind3 +88 +93 +17 +30

Avq.s +84 +89 -10 +16

Avq.l +80 +88 -18 +9

avg. +83 +87 +7.6 +13.8

Table 5.7: Relative CPU time improvement with respect to other approaches (+

means ARP is better).

5.3 Summary

In this chapter, we described the application of the new placement method to

a set of standard cell benchmarks. Correlation between quality of answers and

the intensity or strength of the repelling and attracting forces acting on cells is

presented. We experimentally demonstrated that excessive repelling forces produce

good spreading, but tend to deteriorate wirelength. In addition, we experimentally

found that the strength of the repelling forces necessary to yield su�cient cell

spreading are proportional to the average cell width. Accordingly, we proposed

an empirical formula to determine parameter d (which controls the strength of the

repelling forces) as a function of the average cell width.

Correlation between cell attractors and speed of convergence of the global opti-

mization of the AR-model is presented. We indicated that this correlation is owing
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to the improved smoothness of the model when the cell attractors are added to the

repeller model.

Final results of the method are compared to the state-of-art placers. We demon-

strated that, on average, the new method outperformed these placers in terms of

solution quality and e�ciency.

In the next chapter, the other layout problem addressed in this work will be

presented. Namely, the cell routing problem. Our focus will be on detailed routing

in general and channel routing in particular.



Chapter 6

Routing Problem

In the placement phase [56], the exact locations of circuit cells are determined. A

netlist is also generated which speci�es the required interconnections. Space not

occupied by the cells can be viewed as a collection of regions. These regions are used

for routing and are called the routing regions. Each routing region has a capacity,

which is the maximum number of nets that can pass through that region. The

capacity of a region is a function of the design rules and dimension of the routing

regions and wires. Nets must be routed within the routing region and must not

violate the capacity of any routing region. In addition, nets must not short-circuit,

that is, nets must not intersect each other.

There are two types of routing regions: switchbox routing and channel rout-

ing. A switchbox is a rectangular area bounded on all sides. A channel is a rect-

angular area bounded by two opposite sides. Capacity of a channel is a function of

the number of layers, channel height, wire length and wire separation.

A VLSI chip may contain several million transistors. As a result, tens of thou-

sands of nets have to be routed to complete the layout. In addition, there may

84
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(a) (b)

Figure 6.1: Routing: (a) Global routing; (b) Detailed routing.

be several hundreds of possible routes for each net. This makes the routing prob-

lem computationally hard. In fact, even when the routing problem is restricted to

channels, it cannot be solved in polynomial time; i.e, the channel routing problem

is NP-complete [61]. Therefore, routing has traditionally been divided into two

phases. The �rst phase is called global routing and generates a loose route for each

net. In fact it assigns a list of routing regions to each net without specifying the

actual geometric layout of wires (see Figure 6.1 (a)). The second phase which is

called detailed routing, �nds the actual geometric layout of each net within the as-

signed routing regions (see Figure 6.1 (b)). Unlike global routing which considers

the entire layout, a detailed routing considers just one region at a time. The exact

layout is produced for each wire segment assigned to a region and vias are inserted

to complete the layout. Detailed routing includes channel and switchbox routing.

6.1 Detailed Routing

As previously pointed out, the detailed routing problem is typically solved in an

incremental manner; that is, by routing one region at a time in a prede�ned order

[56]. The ordering of the regions is determined by several factors including the

criticality of routing certain nets and the total number of nets passing through a
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region. Characteristics of a routing problem largely depend upon the topology of the

routing region. Routing regions consist of one or more layers. In the general case,

even single-layer routing problems are NP-complete [49]. In multi-layer routing

problems, the wiring can switch adjacent layers at certain locations using vias. In

many multi-layer models, the layers are restricted to contain either horizontal or

vertical segments. This type of model is known as restricted layer model. Multi-

layer routing problems are also NP-complete [61]. For this reason many of the

algorithms for multi-layer problems are heuristic in nature.

A primary objective function of a router is to minimize the total routing area.

Various secondary objective functions have also been considered. One such ob-

jective is to minimize the number of vias [56]. Other objective functions include

minimization of the average length of a net and minimization of the number of vias

per net.

6.1.1 Channel Routing Problem (CRP)

The majority of modern automatic IC routing systems are based on channel routers

[47]. These systems employ a divide and conquer approach in which the layout

problem is divided into several channel routing problems which are each solved

separately. In descriptive terms, a channel is a routing region bounded by two

parallel rows of terminals [65]. The top and bottom rows are called top boundary

and bottom boundary respectively. Each terminal is assigned a number between 0

and N . Terminals with the same number i (1 � i � N) must be connected by net

i, while those with number 0 designate unconnected terminals (see Figure 6.2).

The horizontal dimension of a channel is called the channel length and the

vertical dimension is called the channel height. The horizontal segment of a net is
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Figure 6.3: Terminology for CRP

called a trunk and the vertical segments that connect the trunk to the terminals

are called its branches. The horizontal line along which a trunk is placed is called

track. A dogleg is a vertical segment that is used to maintain the connectivity of two

trunks of a net on two di�erent tracks. Figure (6.3) illustrates the terms mentioned

above.

A CRP is speci�ed by four parameters [56]: (i) channel length, (ii) top (bottom)

terminal list, (iii) left (right) connection list and (iv) number of layers. Channel

length is speci�ed in terms of number of columns. The top and bottom lists specify

the terminals in the channel. The top list is denoted by T = (T1; T2; � � � ; Tm) and
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Figure 6.4: Netlist representation for routing requirements [65].

the bottom list by B = (B1; B2; � � � ; Bm). Ti (Bi) is the net number for the terminal

at the top (bottom) of the ith column or, if 0 the terminal does not belong to any

net. The left (right) connection list consist of nets that enter the channel from the

left (right) end of the channel. Figure (6.4) illustrates an example of a netlist [65].

Arrows indicate whether nets are to be connected on the top or lower boundary of

the channel.

Given the above speci�cations, the problem is to �nd the interconnections of all

nets in the channel so that the channel uses minimum possible area. A solution to

CRP is a set of horizontal and vertical segments for each net. This set of segments

must make all terminals of a net electrically equivalent. The solution speci�es the

channel height in terms of the total number of tracks required for routing. Thus, the

main objective is minimize the channel height which implies minimizing the number

of tracks and consequently the channel area. There are two key constraints which

must be satis�ed while assigning the horizontal and vertical segments, namely,
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Figure 6.5: Solution of the netlist in 6.4.

vertical and horizontal constraints.

Vertical Constraints

Any two nets must not overlap at a vertical column. If it is assumed that there is

only one horizontal segment per net [65], then it is clear that the horizontal segment

of a net connected to the top terminal at a given column must be placed above the

horizontal segment of another net connected to the lower terminal at that column.

This relation can be represented by a directed graph Gv, where each node cor-

responds to a net and a directed edge from net a to net b means that net a must be

placed above net b. Figure 6.6(a) illustrates the Vertical Constraint Graph (VCG)

for the netlist in Figure (6.4).

Horizontal Constraints

The horizontal segment of a net is determined by its leftmost and rightmost terminal

connections. S(i) represent the set of nets whose horizontal segments intersect

column i. Since horizontal segments of distinct nets must not overlap, the horizontal
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Figure 6.6: (a) VCG (b) HCG for the netlist in Fig 6.4. In HCG, maximal cliques

are (1,2,3,4,5), (2,4,6), (4,6,7), (4,7,8,9) and (7,9,10)
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segments of any two nets in S(i) must not be placed on the same horizontal track.

This relation is represented by a graph G(V;E), where node vi�V represents net

ni and edge (vi; vj)�E if ni \ nj 6= 0 (i.e ni and nj have horizontal overlap [65, 33].

Figure 6.6(b) illustrates the Horizontal Constraint Graph (HCG) for the netlist in

Figure (6.4).

Density

The local density at column i is de�ned as the number of nets whose spans intersects

column i. If lk and rk are the positions of the left most pin and right most pin of

net k, then channel density, denoted by d, is the maximum local density over all

the columns in the channel, i.e:

d = maxfd1; d2; � � � ; dqg

where q is the number of columns in the channel.

Lower Bounds on Channel Width

There are two well known lower bounds on a channel width w [56, 67]. The �rst

bound is due to horizontal constraints and is given by the channel density d. The

second bound is due to vertical constraints and it is given by the longest path in

the vertical constraint graph (VCG).

These bounds can be easily seen. Consider a column with a maximum local

density equals the density of the channel d. Clearly, one track is needed to place

each net. Therefore, at least d wiring tracks are needed to realize such a netlist.

In the VCG, a constraint path (x1; x2; � � � ; xk) implies that net x1 should be placed

above net x2 which in turn should be placed above net x3 and so on. Hence, nets
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x1; x2; � � � ; xk must be placed on k distinct tracks. Thus, the length p of the longest

path in the vertical constraint graph represents another bound on the channel width

w. Clearly, the lower bound on the channel width is the maximum of d and p.

If the vertical constraints graph has no edges (i.e, no two terminals of di�er-

ent nets are in the same column), then the routing amounts to �nding the best

assignment of nets to tracks without having to pay attention to what happens in

columns [37]. The track assignment problem (i.e, which track is assigned to every

net) is reduced to coloring the nodes of the HCG. Coloring the nodes of the HCG

is equivalent to assigning tracks to nets (i.e, each track constitutes a color) and the

chromatic number is the channel density. Obviously, in this case, the lower bound

on the channel width reduces to the channel density d.

In the next section we shall formulate the channel routing problem as an integer

programming problem.

Integer Programming (IP) Formulation

For a routing solution with n horizontal wire segments (nets) and m tracks (m can

be a maximum of n tracks), denote the horizontal wire segments by t1; t2; : : : ; tn.

Assume that the rows and columns are labeled in increasing order with the top-

most row being row 1 and the left-most column being column 1. For each horizontal

wire segment ti, there is a variable Ti, the value of which is the track in which ti

is placed in the �nal solution. Obviously 1 � Ti � m for 1 � i � n. Another 0-1

variable wk, k = 1; : : : ;m is introduced such that:

wk =

8><
>:

1 if any Ti = k

0 otherwise

A vertical constraint from ti to tj can be expressed by the linear constraint
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Ti < Tj [23]. To express a horizontal constraint between horizontal wire segment

ti and tj, the condition \Ti > Tj or Ti < Tj" need to be expressed in terms of

linear constraints. To do so, a 0-1 integer variable zij needs to be introduced. The

essential linear constraints can then be expressed in terms of zij as follows[23].

Ti � Tj > �mzij

Ti � Tj < m(1� zij)

Obviously the di�erence between Ti and Tj is less than m. If zij = 0, the second

constraint is redundant and the �rst constraint is equivalent to Ti > Tj. If zij = 1,

the �rst constraint is redundant and the second constraint is equivalent to Ti < Tj.

Therefore, the �rst and the second constraints are equivalent to \Ti > Tj or Ti <

Tj". The IP formulation can then be given as:

Min
P

k wk

s.t. Ti < Tj (ti should be above tj)

Ti � Tj > �mzij
Ti � Tj < m(1� zij)

Ti 2 f1;mg
wk; zij 2 f0; 1g

Clearly, for large problem instances, the problem size of the IP program may become

very large. No polynomial time algorithms exist to solve such large IP problem [61].

Consequently, heuristic techniques are used to �nd near optimal solutions for the

problem. However, the model can be used to �nd bounds on the optimal solutions

for small size problems.
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Classi�cation of CRP Algorithms

One method of classifying CRP algorithms would be to classify them based on the

approach the algorithms use [56]. Based on this classifying scheme, there are:

� Left-Edge algorithms (LEAs): Left-edge based algorithms start with sorting

the trunks from left to right and assign the segments to tracks so that no two

segments overlap [56, 26].

� Constraint graph-based algorithms: The constraint based routing algorithms

use a graph theoretic approach to solve CRP [56, 65]. The horizontal and

vertical constraints are represented by graphs. The algorithms then apply

di�erent techniques on the graphs to generate the routing in the channel.

� Greedy routing algorithms: The greedy routing algorithm uses a greedy strat-

egy to route the nets in the channel [56, 50]. It starts with the leftmost column

and works towards the right end of the channel by routing the nets one column

at a time.

� Hierarchical routing algorithm: The hierarchical router generates the routing

in the channel by repeatedly bisecting the routing [7] and then routing each

net within the smaller routing regions to generate the complete routing.

� Search heuristics based algorithms: A search heuristic based algorithm starts

from an initial solution, then it moves (by perturbation of the placement of

the nets) from one solution to a neighbor solution. The algorithm terminates

execution if the maximum number of iterations (speci�ed by the designer) is

exceeded or if no signi�cant improvement in the solution quality is obtained

compared to the best solution obtained so far [40].
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A major di�erence [40] between a search heuristics based channel router and

other channel routers is that in the other routers, solutions are built up incre-

mentally while a search heuristics-based router works with complete solutions, i.e;

moving from one complete solution to another. Thus, for a search heuristic based

algorithm, one can trade o� between solution quality and algorithm e�ciency (run-

ning time of the algorithm). In other words, the algorithm can be terminated at any

time (if running time is crucial). In such a case, the best solution obtained so far

is accepted as the optimal (or near optimal) solution found. In fact, this is a very

attractive feature since reasonably good solutions can be achieved in reasonable

running times.

Performance Criteria

Generally, channel routers are compared based on quality of solutions they produce

and how e�cient they are in producing such solutions [37]. Quality of solutions

is judged by a performance ratio de�ned as the ratio of the the channel width

found by the algorithm, to the minimum channel width (optimal width). Such a

performance ratio is, therefore, a measure of how the computed channel is deviated

from the optimal channel width. The e�ciency of the algorithm is measured by the

amount of computation time required to solve a CRP.

Another criterion for comparing channel routers is their adaptability to varia-

tions in the routing problem [47]. Such variations as terminals not on-grid or chan-

nels which are not rectangular are more easily accommodated by some algorithms

than others [14]. Search heuristics based algorithms are more easily adaptable to

the variations in the routing requirements than the other approaches. This is pri-

marily because such techniques work with complete solutions. Simulated Annealing

has been applied to the CRP, Wong et al. [40] and optimal and near optimal results
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are reported for a set of benchmark problems. The solution space presented in [40]

has been adopted in our new hybrid router which is the topic of the next chapter.

In the next section, the adopted solution solution space is described.

Solution Space via Search Heuristics

Let V be the set of nodes in the VCG and let � = fV1; V2; � � � ; Vwg be a partition

of the node set V into w groups. De�ne G�, the merged graph induced by �, to be

the graph with node set fV̂1; V̂2; � � � ; V̂wg where V̂i represents the group of nodes Vi

in the partition �. If there is a directed edge from some node x�Vi to some node

y�Vj in VCG, then there exists a directed edge from V̂i to V̂j in G�. If the merged

graph G� is acyclic and if there is no horizontal constraint between any nodes in

the same group, then partition � is said to be valid.

There exists an equivalence between feasible routing solutions and valid parti-

tions. Given any routing solution that uses w tracks, a partition � = fV1; V2; � � � ; Vwg
can be de�ned where Vi consists of all nets occupying track i. On the other hand

every valid partition can be mapped into a routing solution by topologically order-

ing nodes in G� and assigning each group Vi of nets to a track using the topological

ordering. In general, the number of groups in a partition is equal to the number of

tracks in a solution. Thus search heuristics generate routing solutions by generating

merged graphs with a minimum number of nodes.

Each valid partition represents a feasible solution and hence a state in the

solution space. Transitions between states is made by randomly selecting nets from

group Vi and moving them to group Vj in the partition.

Three types of moves are de�ned to locally modify �, these are:

� Type 1: two nets belonging to two di�erent groups Vi and Vj are swapped.
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Switchbox
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Figure 6.7: Example of a switchbox.

� Type 2: a net is moved from group Vi to group Vj.

� Type 3: a net is removed from group Vi to form a new group.

Two valid partitions �1 and �2 are said to be neighbors if one can be obtained from

the other via one of the three moves. For a given valid partition �, a neighbor

partition �̂ is generated by repeatedly applying moves (moves can be of the same

or di�erent type) on � while observing the vertical and horizontal constraints.

Clearly, a move of type 1 has no e�ect on the number of tracks w, while a move

of type 3 increases w by 1. A move of type 2 will decrease w by 1 if there is only

one net in group Vi. Thus, moves of type 2 are responsible for reducing w, while

moves of type 3 allow the algorithm to escape local minima. Moves of type 1 allow

rearrangements among solutions with the same cost.

6.1.2 SwitchBox Routing Problem (SBRP)

The switchbox routing problem is a generalization of the channel routing problem,

where terminals are located on all sides, [46, 56] (see Figure 6.7 (a)). A switchbox

is sometimes referred to as a \Four Sided Channel".
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A switchbox is formally de�ned as a rectangular region R(h � w) where h and

w are positive integers. Each pair (i; j) in R is a grid point. The ith column and

jth row (track) are the sets of grid points. The 1th and hth columns are the LEFT

and RIGHT boundaries respectively. Similarly, the 1th and wth rows are TOP and

BOTTOM boundaries respectively.

The problem, like channel routing, can be simply described by labeling the

terminal pins by net numbers; pins having the same positive label have to be inter-

connected. As in the channel routing problem, the terminals on the four boundaries

are assumed �xed, and consequently the area in switchbox is �xed. Therefore, the

objective of switchbox routing is not to minimize the routing area but to complete

the routing within the routing area. In other words, the switchbox routing problem

is to decide the existence of a routing solution. An example of a switchbox routing

is shown in Figure 6.7 (b). The switchbox routing problem falls in the category of

NP-hard problems [7].

The switchbox routing problem is similar to the channel routing problem, ex-

cept that nets to be routed are on all sides of the rectangle instead of just two

sides. Although this problem is considered much more di�cult than channel rout-

ing (because it is not clear what to do in case of failing to �nd a routing solution),

it is not di�cult to extend a channel router to handle switchboxes[5]. For instance,

the switchbox routers presented in[57, 42] are extensions of the channel routers

presented in [31, 50].

6.2 Summary

In this chapter, the detailed routing problem was described. The problem is solved

by routing the channels and the switchboxes. As we indicated at the beginning of
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this thesis, our investigation will be limited to the channel routing problem. Ac-

cordingly, the channel routing problem was explained in some details. In addition,

an IP formulation (model) of the problem was presented. Such a model can be very

useful in �nding lower bounds on the optimal solutions for small size problems.

In the next chapter, our new hybrid channel router will be presented.



Chapter 7

Utility Function based Channel

Router

In this chapter, our new hybrid channel router is described [21]. The router is based

on a hybridization of Stochastic Evolution (SE) and Tabu Search (TS) methods. We

have already described TS when we presented our iterative improvement technique

for cell placement in chapter 4. Thus, in this chapter, besides the details of the

hybrid methodology, we will only consider the SE algorithm.

SE is a stochastic method used for combinatorial optimization[66]. SE algorithm

is an instance of a more general class of adaptive heuristics [51, 66]. It is an extension

of the evolution concept suggested by Kling et al. in[36]. In [66], SE has been applied

to graph bisection, travelling sales-man and cell placement problems. The authors

reported obtaining competitive results compared to SA. SE, like SA, diversi�es the

search such that the search space is e�ectively explored. However, in SA, it is

always possible to accept a move with arbitrarily large negative gain (climb uphill)

at any temperature T > 0. On the other hand, large changes in the cost, which

100
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tend to slow the optimization process are not allowed in SE [66]. This is because

the control parameter p (corresponding to T in SA) is set to a smaller value at the

beginning and only incremented if the algorithm gets trapped in a local minima.

In the following section, the SE algorithm is presented in more details.

7.1 Stochastic Evolution (SE)

Stochastic Evolution (like SA) is a stochastic method for combinatorial optimiza-

tion that exploits an analogy between biological evolution and combinatorial op-

timization. In biological processes, species become better as they evolve from one

generation to the next generation. The evolution process generally eliminates the

bad genes and maintains the good genes of the old generation to produce a bet-

ter new generation. This concept has been exploited in the iterative improvement

techniques for some combinatorial optimization problems [36, 66]. In this kind of

approach, each feasible solution to the problem is considered as a generation. The

bad genes of the solution are identi�ed and eliminated to generate a new feasible

solution.

As we stated above, SE algorithm belongs to the class of adaptive heuristics

[51]. An adaptive algorithm uses a set of controlling parameters which are modi�ed

either by the user or the algorithm itself. Therefore, the algorithm adapts to the

particular resulting solution. In order to use SE, a cost function which measures

the quality of the solution must be de�ned. The general outline of SE is as follows:

SE algorithm:

S = So; /* initial solution */
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Sbest = S; /* save initial solution */

Cbest = cost(S);

p = po; /* initialize control parameter */


 = 0; /* initialize counter */

REPEAT

Cpre = COST(S);

S = PERTURB(S; p);

Ccur = COST(S);

UPDATE(p; po; Cpre; Ccur);

IF (Ccur < Cbest) THEN f
Sbest = S ; /* save best solution */

Cbest = Ccur;


 = 
 �R; /* decrement counter by R */

g
ELSE


 = 
 + 1; /* increment counter */

UNTIL 
 > R /* R is a user supplied parameter */

RETURN(Sbest); /* report best solution */

The input to the SE consists of an initial solution So, an initial value of the con-

trol parameter po, and a parameter R which controls the number of iterations. SE

retains the solution of the lowest cost among those produced by the function PER-

TURB. Each time a solution is found which has a lower cost than the currently best

solution, SE decrements the counter 
 by R, thereby rewarding itself by increasing

the number of iterations. The following is a description of the di�erent functions.
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The PERTURB function: During each call to PERTURB, the movable elements

are scanned according to a priori ordering. The details of the move and the choice

of the ordering is problem speci�c. If a move m is applied to the current solution

S to generate a neighbor solution Ŝ, the associated gain of m denoted gain(m) =

cost(S)�cost(Ŝ), is the reduction in cost after the move is performed. The function
PERTURB stochastically decides whether or not to accept move m with the help

of a non-negative control parameter p. The value of gain(m) is compared to an

integer r randomly generated in the interval [�p; 0]. If gain(m) > r, then move

m is accepted; otherwise, it is rejected. Note that r � 0 always; hence, moves

with positive gains are always accepted. The PERTURB function can be outlined

as follows:

function PERTURB(S; p)

FOR each move m do

perform move m to generate Ŝ;

gain(m) = cost(S)� cost(Ŝ);

IF (gain(m) > RANDINT(�p; 0)) THEN
S = Ŝ;

ENDIF

ENDFOR;

RETURN(S)

UPDATE procedure: This procedure is mainly responsible for updating the value of

the control parameter p. Initially p is set to a non-negative value close to zero (e.g

po = 1). Such a choice of p implies that only moves with small negative gains are

accepted. According to Saab et al. [66], moves with large negative gains tend to
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upset the optimization process and only increase the running time of the algorithm.

They recommended increasing the value of p only when necessary. The value of p

is incremented to give the algorithm a chance to escape a local minima via uphill

climb. After each call to function PERTURB, if the cost of the new solution Ccur is

equal to the cost of the previous solution Cpre, this may indicate that the algorithm

is trapped at a local minima and the value of p is incremented accordingly.

An outline of the procedure UPDATE is as follows:

Procedure UPDATE(p; po; Cpre; Ccur)

IF (Cpre = Ccur) THEN

increment p;

ELSE

p = po

ENDIF

Choice of R: The iteration bound R acts as the expected number of iterations

the SE algorithm needs until an improvement in the cost takes place. If such an

improvement occurs at 
 < R iterations, then the remaining R � 
 iterations are

added to the next R iterations to be performed. It follows that, if R is chosen too

large, the algorithm wastes time during the last set of iterations because it cannot

�nd better solutions. On the other hand, if R is chosen too small, the algorithm

might not have enough time to improve the initial solution. In practice, it has been

reported that a value between 10 and 20 gives good results [66].

In the following section, the hybrid methodology is presented in details.
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7.2 Hybrid Methodology

As we mentioned previously, a hybrid algorithm based on combining SE and TS is

chosen as a search engine in our channel router. In this approach, SE is guided by

TS such that duplication of solutions is prohibited. That is, during the generation of

neighborhood solutions, if a move is chosen and its status is Tabu, another move will

be chosen unless the aspiration criteria determines otherwise. Aspiration forces SE

to backtrack to previous solutions to re�ne the search in those regions. Furthermore,

problem-domain information expressed in the form of utility functions, are also

employed to determine the best moves during the search process. Utility is a

measure of a decision certainty [6]. In the context of channel routing, the use of a

certainty based utility function, over which moves are compared can be constructed

to perform calculations indicating the preferability of one move versus another.

Before we present the hybrid algorithm, we �rst shed some light on utility

functions from a theoretical perspective.

7.2.1 Utility Functions

In decision-making theory, multi-attribute utility functions order preferences of

di�erent decision outcomes [6]. The ordering of the classi�cation preferences is

prescribed by the estimates and assumptions in the decision model. The type of

calculation, where a choice is made by maximizing a function is typical of the

analytical models of managerial decision in management science. For management

decision, a utility function is derived which mimics a manager's preference order

for a series of choices. The value of the utility function u(X ); i.e, the utility of

a situation X , has no meaning in an absolute sense. A value is only useful in

comparison to other values acquired from the same utility function. If situation Y
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begets utility value u(Y) and u(Y) > u(X ), then the preference model u predicts

that situation Y is preferable to situation X .

An attribute may be any parameter of the decision model which yields preference

ordering [6]. A multiattribute utility function can be made either additive (linear)

or multiplicative in combining the single attribute utility functions; i.e:

u(X1;X2; � � � ;Xn) =
nX
i=1

�iui(Xi)

u(X1;X2; � � � ;Xn) = �n
i=1ui(Xi)

Where �i is a parameter to control the importance of attribute ui(Xi).

In the context of channel routing, the decisions involve assigning nets to tracks

such that no horizontal and vertical constraints are violated and the number of

tracks is minimum. In the previously developed search techniques based routers,

the neighborhood solutions are generated by randomly selecting nets and tracks

(random moves)[40, 5, 4]. However, random moves do not guarantee convergence

in a reasonable time and the algorithm is highly likely to get trapped in a local

minima. In this work, a variety of problem-domain information are combined using

utility functions such that (during the generation of neighborhood solutions), nets

and tracks are selected based on their respective utilities. The net utility function

expresses information about the goodness of assigning a net to a track. The track

utility function combines information about the goodness of cluster of nets assigned

to a track and about the sparsity of the track.

We now present how the channel routing problem-domain information can be

mapped into net and track utilities.
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7.2.2 Channel Routing Problem-domain Information and

Utility Functions

The VCG (Vertical Constraint Graph) provides an insight about the ideal position

of a net (ideal track) such that no vertical constraint violations are caused. To be

more speci�c, in a typical netlist, nets that come before net ni in p(ni) (p(ni) is

the longest path passing through the vertex corresponding to net ni in VCG) must

be assigned to tracks above ni track, and nets that follow net ni in p(ni) must be

assigned to tracks below ni track.

The certainty of assigning a net ni to track r is given by the following utility

function

�ri = exp(�0:5z2)

where

z =
r � d(ni)

p(ni)
; r 2 1; � � � ; k

If we add two �ctitious nodes to the VCG; i.e, a starting node s and a termination

node t, d(ni) is the longest path from s to the node corresponding to net ni in VCG

and k is the maximum number of tracks. The certainty of a cluster of nets assigned

to a track r is determined as follows

U r =  r
r

 r = �q
i=1�

r
i


r = exp(�0:5�2)

� = 1�
Pq

j=1 lj

L
Here q is the number of nets placed in track r, � is a measure of the sparsity of

a track, lj is the span of net nj and L is the channel length (number of columns
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in the channel). Each of the single-attribute functions f�ri ; 
rg is restricted to the

interval [0; 1]. For a net ni, �ri re
ects the certainty or, in other words, the goodness

of assigning ni to track r. �ri equals 1, correspond to an ideal situation; i.e, track

r is the ideal track for net ni. For track r, 
r is a certainty measure of how good

and e�ective track r is utilized. Again, 
r equals 1, indicates that track r is fully

utilized. By multiplication of the values of single-attribute utility functions in the

interval [0; 1], the resultant multi-attribute utility functions will also be restricted to

the same interval. For instance, utility U r equals 1 corresponds to an ideal situation

with respect to the information of utilities  r and 
r. Generally, the values of the

utilities are designed to correspond to a con�dence in performing a certain move

(in other words, in generating neighbor solutions).

7.3 Algorithm Description

Figure 7.1 illustrates an outline of the hybrid channel router (SETS-CR). The

following is a detailed description of the di�erent phases of SETS-CR.

7.3.1 Initial Solution

Given a set of nets S = fl1; l2; � � � ; lng where lj is the horizontal span of net j, S is

partitioned into three subsets St, Sm and Sb such that St includes the nets connected
to the top boundary of the channel, Sm includes the nets connected to the top and

the bottom boundaries of the channel and St includes the nets connected to the

bottom boundary of the channel. The initial solution is generated by assigning

the nets in St to the channel starting from the top track, then nets in Sm followed

by nets in Sb. Horizontal constraints between the nets are observed and vertical
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Generate Initial Solution

Rip_up and Re_assign 

NO
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Cost variability ρc < ρo

Merge nets for K iterations

Figure 7.1: Outline of the SETS-CR.

constraints are only observed for the nets in Sm because nets in St and Sb cannot
overlap vertically.

Using this strategy to assign the nets guarantees distributing the nets such

that they are relatively in conform with the VCG and their vertical segments are

relatively short compared to selecting and assigning the nets randomly.

7.3.2 Merging Phase

Following the generation of the initial solution, see Figure (7.1), the merging phase

is executed. In the merging phase, nets are selected for merging as follows. The

certainty (value of utility �ri ) of assigning net ni to each track r is determined. The

tracks are then sorted in a descending order based on their respective values of

�ri . Net ni is attempted for merging with other clusters of nets assigned to other
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tracks that exhibit higher certainty compared to the current track (in which ni is

already placed in). The move is accepted if the di�erence in cost �C between the

newly generated solution Snew and the present solution Spre is positive. If �C is

negative, a random number a is generated in the interval [0;�p] and again the move
is accepted if �C > a. Once a net is moved to a new track, it will not be allowed to

move to any other track for a number of iterations equals the Tabu List length T
unless the move satis�es the required Aspiration Level. The Aspiration Level used

is the cost of the best solution obtained so far.

The process of merging the nets continues for K iterations (typically 5 � K �
10). At the end of the K th iteration, the cost variability �c is computed for the K

values of the cost function; i.e:

�c =
�c
�c

where �c and �c are the average and standard deviation of the K values of the cost.

If the value of �c is less than a threshold �o (typically �o < 0:03), it is evident that

the algorithm might have been trapped in a local minima. In this case, the Ripup

and Reassign phase is executed to help the algorithm escape the local minima.

The cost function used is given as follows:

C = �1w + �2ns

where w is the number of tracks and ns is the number of sparse tracks. �1 and �2

are positive weights to control the importance of w and ns respectively (typically

�1 = 10; �2 = 5). A track is considered sparse if the sparsity of the track � is less

than a threshold �0 (typically �0 = 0:1).
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7.3.3 Ripup and Reassign Phase

In this phase, low certainty tracks are identi�ed and clusters of nets assigned to

these tracks are selected for ripping up and reassign. A certainty U r of track r is

considered low if it is less than a speci�ed threshold Uo (typically Uo = 0.2). Tracks

that exhibit low certainty values are selected for ripping up their nets for reassign-

ment to other higher certainty track. A net ni, placed in track r, is ripped up

and attempted for reassignment (provided that the net Tabu List is 0, or the move

satis�es the Aspiration Level) if its assignment certainty �ri is less than speci�ed

threshold �o (typically �o = 0:2). Moving net ni to, say track t, is accepted as a

valid move if the new computed track certainty U t is higher than previous U t (U t

before net ni is moved to track t).

7.4 Implementation and Results

The algorithm was implemented in C++ on a SUN SparcStation 2. A set of

benchmark problems taken from an existing paper [28] and the di�cult problem of

Deutsch [14] are used to evaluate the performance of the algorithm. The optimal

routing width of each benchmark is known. The statistics for these benchmarks are

shown in Table (7.1). Several scenarios were conducted using these benchmarks. In

each scenario, the performance of the algorithm was evaluated based on one of the

following criteria (1) convergence behavior; (2) e�ectiveness of incorporating Tabu

Search; (3) e�ectiveness of using utility functions to select the best moves. Due to

the fact that the SE algorithm is stochastic in nature and to ensure the validity of

the approach, the algorithm was executed for 20 trials in each scenario.

The �rst scenario was designed to investigate the convergence of the algorithm.
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Benchmark No. of nets Global optimum

ex1 21 12

ex3a 45 15

ex3b 47 17

ex3c 54 18

Deutsch ex. 72 28

Table 7.1: Statistics for the di�erent benchmarks.

The algorithm was executed with the SETS (SE and TS) hybrid as the search

engine. Also, utility functions are used to select best moves during exploration of

the solution space. Figure (7.3) illustrates the variation of the average cost versus

the generation number for the Deutsch di�cult example. By observing the average

cost contour, one can easily see that the algorithm climbs hills and descends valleys

of the solution space. This suggests that the algorithm explores the solution space

e�ectively and convergence to the global optimum is very likely. The routing of the

di�cult Deutsch problem is illustrated in Figure (7.2). Furthermore, as shown in

Figure (7.3), the valley representing the optimal routing width was explored at an

average number of generation of 172.

The second scenario was designed to ascertain the e�ectiveness of combining SE

and TS as a hybrid search engine (SETS hybrid). In this scenario, two experiments

were conducted. In the �rst experiment, the algorithm employed only SE as a

search engine, and in the second experiment the SETS hybrid was employed as a

search engine. Moves were randomly selected (i.e, nets and destination tracks are

randomly chosen). The algorithm converged to the global optimal routing width

in both experiments, except for the ex3a benchmark for which the optimal answer
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Figure 7.2: The routing of Deutsch's di�cult example.
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Figure 7.3: The variation of the average cost value as the algorithm progresses over

generations for the di�cult Deutsch problem.



CHAPTER 7. UTILITY FUNCTION BASED CHANNEL ROUTER 114

obtained in the �rst experiment, is one track beyond the global optimum. For all

the benchmarks, the number of generations, AVG-NUM, needed to converge to the

optimal solution and, OPT-SOL, in the second experiment are less compared to the

�rst experiment, see Table (7.2). This observation demonstrates the signi�cance of

SETS hybrid as a search engine.

Benchmark AVG-GEN OPT-SOL

SE SETS SETS-UTFN SE SETS SETS-UTFN

ex1 4 4 4 12 12 12

ex3a 335 160 310 16 16 15

ex3b 297 227 206 17 17 17

ex3c 67 56 45 18 18 18

Deutsch ex. 341 217 172 28 28 28

Table 7.2: For all the benchmarks, average number of generations (AVG-GEN)

required to converge to an optimal solution (OPT-SOL) when the search engine is

(i)only SE; (ii)SETS hybrid; (iii)SETS hybrid and utility functions (SETS-UTFN).

In the third scenario, the e�ectiveness of using utility functions in selecting the

best moves is investigated. The algorithm is executed with utility functions used

to choose candidate nets and candidate tracks for a move. The results obtained are

again reported in Table (7.2). The global optimum for each benchmark is obtained.

Also, the AVG-NUM required to obtain the global optimum is smaller compared

to the previous scenarios (except for ex3a, in which the global optimum was not

found in the previous scenarios). This indicates that using of utility functions

to determine best moves (rather than relying on random moves) in generating

neighborhood solutions is a quite e�ective approach.



CHAPTER 7. UTILITY FUNCTION BASED CHANNEL ROUTER 115

The major limitation of the SETS channel router is in the choice of the con-

trol parameters; i.e, Tabu Length T , stopping parameter R, control parameter
po and the threshold criteria �o; �o; �o and Uo. Our experience shows that: T 2
f4; 5; � � � ; 7g; R 2 f15; 16; � � � ; 25g; po 2 f1; 2g; �o = 0:03; �o = 0:1; �o = 0:2 and

Uo = 0:2 yield su�ciently good results. Regarding the Aspiration Criterion used,

again, our experience shows that such a criterion is quite e�ective in forcing the SE

to backtrack previous solutions and re�ne those search regions.

The implemented version of the SETS based router may be improved in many

ways. For example:

� developing a learning mechanism that allows for data-driven updating of the

parameters

� allowing intermediate solutions (infeasible solutions) may help in exploring the

search space more e�ectively. In this case, including an e�ective mechanism

to resolve the violations is also worth investigation.

7.5 Summary

A hybrid channel routing algorithm based on SE and TS is presented. Problem-

domain information expressed in the form of utility functions is used to guide

the search engine to explore the search space in an e�ective way compared to

previous strategies. The e�ectiveness of the approach was demonstrated on several

benchmark problems. Global optimal solutions are obtained for all the benchmarks.

Unlike Simulated Annealing, Stochastic Evolution does not climb so many hills, and

at the same time it proves to be very e�ective in �nding global optimal solutions.

Combining TS with SE is very simple and it does not need any extra e�ort. The
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use of utility functions to guide the exploration of a problem search space is quite

general. To be more speci�c, utility functions can be used with other heuristic

techniques such as Simulated Annealing and Genetic Algorithms to solve a variety

of combinatorial problems.



Chapter 8

Conclusions and Future Directions

Given the intractability of the VLSI circuit design, it is appropriate to divide the

problem into subproblems and tackle each subproblem independently. However, the

division of the problem does not o�er an ultimate cure to the immense di�culties

associated with the problem. In other words, each subproblem is still NP-hard.

Therefore, more research aiming at yielding more e�ective and e�cient techniques is

still required to handle the existing di�culties and to cope with the future immense

design complexities.

Di�erent mathematical solution methodologies such as numerical optimization,

combinatorial optimization and search heuristic techniques exhibit strengths and

weaknesses and may not o�er the best solution if used individually. Accordingly, it

may be necessary to consider combinations of methodologies as means to capitalize

on their strengths and avoid the inherited weaknesses in each single methodology.
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8.1 Summary and Contributions

In this thesis, we have investigated two subproblems associated with the circuit

layout task in the VLSI design cycle, namely, cell placement and channel routing.

We start by summarizing our contributions with regard to cell placement.

8.1.1 Cell Placement

Previous analytic techniques for global placement relied on iterative partitioning

of the placement area and hard constraints to force cells apart and to attain the

required spreading of cells. The partitioning approach su�ers from many disadvan-

tages. Among these, the high likelihood of moving a cell to the wrong partition

and the infeasibility of correcting this kind of error in the subsequent iterations.

Moreover, the inclusion of hard constraints to force the cells to spread within the

placement area makes the problem much harder and slows down the convergence

of the optimization process.

In this thesis, we proposed a novel approach to global relative placement. The

new approach deals with cell overlap in a di�erent manner and produces uniform

distribution of the cells within the placement 
oor. New repulsive and attractive

forces have been added to the traditional formulation of wirelength so that overlap

among the cells is diminished without repartitioning the placement 
oor nor us-

ing hard constraints. This is achieved as follows. Upon minimization, the repeller

model (or cell repeller) guarantees that the geometric locations of two connected

cells be spatially shifted apart. But, cell repellers cannot guarantee overlap-free

placement as cells with no common nets may still fold on top of each other. The

overlap problem can be substantially diminished if excessive repelling forces are

employed. By excessive repelling forces, we meant using larger value for the target
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distance between connected cells. However, based on what we observed, excessive

repelling tends to stretch nets, especially, short nets which represent the overwhelm-

ing majority of the nets, and consequently deteriorating the overall wirelength.

To resolve this dilemma, we proposed a simple, yet, e�ective approach which

involves the creation and inclusion of adaptive cell attractors (or dummy �xed cells).

The combination of the cell repellers and cell attractors constitute the new model for

the global relative placement which we have referred to as the \attractor-repeller"

(AR) model. To examine the new placement model, we proposed a new generic

placement method based on the AR-model which we referred to as \attractor-

repeller placer" (ARP). The new method is iterative in nature. In each iteration, cell

attractors are created based on the most recent cell distribution (cell distribution

from the previous iteration). The rationale behind this is that, the most recent

cell distribution provides insight about the current sparsity and utilization of the

placement area. In other words, it provides a guiding information on how cells

should be steered to �ll the sparse zones. We presented a set of criteria to assign

cells to the attractors in the di�erent sparse regions, and we indicated that for

the standard cells establishing a connection with the closest attractors produce

the best results. Generally, by establishing a connection between a cell attractor

and a movable cell, the cell attractor exerts extra force on the movable cell in a

direction parallel to the line connecting their geometric locations. The result is a

displacement of the movable cell towards the sparse region where the cell attractor

is located. Thus, cell spreading is attained in this fashion over the course of several

iterations.

In chapter 5, we presented a qualitative analysis of the new placement method

and we showed that best results can be accomplished if the combined model (that

is, the combination of the attractors and repellers) is used. We further showed that
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the cell attractors have a great impact on the smoothness of the objective function

and consequently, on the speed of convergence of the global optimization of the

objective function. We also demonstrated the competitiveness and e�ectiveness of

the new placement method using a set of 9 industrial benchmarks with di�erent

number of nets and cells. Numerical results have been compared to the up-to-

date placers. In terms of solution quality and e�ciency, the new placer achieves

comparable results and, on average, the new placer outperforms the other placers.

A major impact of the AR-model would be on cell placement with no �xed

cells (i.e, I/O pads). This is owing to the fact that, in the absence of �xed cells,

the traditional formulation of wirelength lacks the capability of forcing cells apart

even by a small margin. In such scenario, the partitioning approach would fail

too. This is because, �xed cells attract movable cells to the boundaries of the chip,

and accordingly play a crucial role in spreading the cells in the absence of any

cell-repelling forces. Thus, for the traditional formulations to work, the existence

of the I/O pads is extremely important (in fact, it is a must). In the AR-model,

however, the existence or absence of the I/O pads is not as important as in case of

the traditional formulation. This is because, cell overlap is diminished by the cell

repellers and the uniform distribution of the cells within the placement area is a

result of the joint e�orts of the cell repellers and cell attractors. One thing needs to

be stressed in this case though. That is, the absence of the of I/O pads results in an

overall positive-semide�nite rather than positive-de�nite Hessian matrix. However,

practically, this problem can be alleviated by �xing one or more cells, or creating

dummy �xed cells on the boundaries of the chip. In fact, as we have shown in chap-

ter 3, only one �xed cell is needed to drive the objective function to the convexity

region. We only suggested adding or �xing more cells on the boundaries just to

create a balance in the displacement of the cells. That is, avoiding the situation
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where the cells may be displaced to one side of the placement area.

8.1.2 Channel Routing

For channel routing, we proposed a new channel router that combines two search

heuristic techniques as a search engine. As opposed to previous approaches, the

problem-domain information is utilized in an e�ective way to guide the exploration

of the search space. A new mapping for the problem-domain information is pro-

posed, namely, the utility theory. That is, a variety of problem-domain information

that includes insights on the best track for a net, and the sparsity of the track have

been expressed in the form of utility functions. Subsequently, the utility functions

are used to decide which track a particular net should be placed in, and whether a

track is sparse or not.

The new router has been applied to a set of benchmarks. Qualitative analysis

has been presented and a conclusion that the combination of the hybrid engine and

the utility function mapping of the problem-domain information produces the best

answers in terms of quality and e�ciency.

We need to stress that, to the best of our knowledge, this is the �rst attempt

that ever has been made to utilize utility theory in the VLSI design in general, and

circuit layout in particular. Based on our experience, we can claim that the utility

theory is a very promising tool that can be utilized in solving other problems in

the VLSI design cycle, and other combinatorial problems in general.
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8.2 Future Directions

The basic techniques proposed in this thesis can be extended to enhance their

functionality and performance. The following are several possibilities that can be

investigated for extending these basic techniques.

- Investigating an e�cient and e�ective clustering technique to cluster the original

netlist. Clustering has the advantage of reducing the size of the problem.

Since the computation e�orts increase with the number of variables, they

are expected to be drastically reduced if the netlist is clustered. It has been

reported in [60] that TimberWolf v7.0-hierarchical (which uses clustering) is,

on average, 6 times faster than TimberWolf v6.0 which uses 
at (original)

netlists. This indicates how useful clustering can be.

- Investigating the possibility of integrating the task of legalization with that of

computing the global placement. The idea involves adding constraints to

force cells to cluster in the row locations. Other constraints are required to

avoid violating maximum row capacity while placing the cells. We strongly

believe that assigning the cells to the rows while minimizing the wirelength

will greatly enhance the overall quality and e�ciency of the solution. To be

more speci�c, pushing the cells to the rows while minimizing the wirelength

will diminish, if not eliminate, the e�ect of erroneous assignments of cells to

the rows if traditional legalization is used. This will de�nitely improve the

quality of the initial global placement. Furthermore, it will reduce the burden

of the placement improvement, and consequently improve the e�ciency of the

local improvement technique. Thus, the overall quality and e�ciency of the

solution is expected to improve.
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- Investigating accurate delay models to estimate the timing requirements for

a circuit. A signal propagating along a net from a driver to several sinks

need to arrive quickly enough to guarantee better performance of the circuit.

Typically, each cell in the circuit has a required arrival time to guarantee

the cell provides the correct output. This is especially crucial, given the

immense complexity of today's integrated circuits and their associated timing

requirements.

- Another important point that is worth emphasizing in this respect is that, the in-

clusion of constraints to account for timing requirements and the legalization

task, implies that it is essential to investigate di�erent solution methodologies.

That is, the added constraints may be nonlinear and nonconvex which implies

that a solution methodology that can handle general nonlinear nonconvex

objective functions may be eventually required. Moreover, the inclusion of

nonlinear nonconvex constraints implies that it may be only possible to guar-

antee a locally optimal solution to the global placement problem. Despite

this di�culty, the overall bene�t is worth the e�orts.

- Examining the possibilities of using the utility theory in tackling other issues

in the circuit layout problem, for instance, placement local improvement and

global routing. Moreover, the advent of utility theory to the circuit layout

problem in this thesis paved the way to investigate other tools used in decision

making theory, game theory, etc., and examine their suitability to VLSI design

in general.

- Extending the proposed channel router to other channel models and to multi-

layer channels (channels with more than two routing layers). Furthermore,

extending the router to handle switchbox routing. Another interesting di-
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rection to explore is examining and including models to estimate problems

associated with wires in a channel such as congestion and cross talk.
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