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Abstract

The advancement of quantum theory is rooted in challenging established assumptions.
This trend persists as quantum theory extends into other �elds, including thermodynamics.
One such assumption in thermodynamics is that conserved quantities, known as charges,
commute. Lifting this assumption has led to a new sub�eld, noncommuting charges [1],
at the intersection of quantum information and quantum thermodynamics. The work
presented in this thesis identi�es various e�ects of noncommuting charges and extends the
topic to many-body physics and experiments.

Initially, the �eld's �ndings were conveyed in abstract information-theoretic terms. To
transition these �ndings to experimental practice and tie them to many-body physics,
constructing relevant Hamiltonians is essential. We introduce a method for constructing
Hamiltonians that globally conserve noncommuting quantities while facilitating their local
transport [2].

Having demonstrated the testability of noncommuting-charge physics, we aim to de-
lineate its e�ects. To do so, we construct analogous models that di�er in whether their
charges commute [3]. We �nd that noncommuting models exhibit higher entanglement
entropies. Since entanglement accompanies thermalization, our result challenges previous
assertions that charges' noncommutation hinders thermalization.

Motivated by understanding noncommuting charges' e�ects on entanglement, we in-
troduce them into monitored quantum circuits. Monitored quantum circuits typically
transition from a highly entangled volume-law phase to a less entangled area-law phase as
one increases the rate of measurements. This holds for monitored quantum circuits with
no charges and commuting ones. We �nd that by introducing noncommuting charges into
monitored quantum circuits, the area-law phase becomes replaced with a critical phase [4].
Since critical phases are characterized by long-range entanglement, this result reinforces
entanglement enhancement by noncommuting charges.

Finally, we revisit the puzzle of whether noncommuting charges promote or hinder
thermalization. Most quantum many-body systems thermalize; some don't. In those
that don't, what e�ect do noncommuting charges have? One type of system that does
not thermalize is a system whose Hamiltonian has so-called dynamical symmetries (or
spectrum-generating algebras). We �nd that noncommuting charges promote thermaliza-
tion by reducing the dynamical symmetries in a system [5].
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Chapter 1

Introduction

Thermodynamics problems have surprisingly many similarities with fairy tales. For
example, most of them begin with a familiar opening. In thermodynamics, the phrase
\Consider an isolated box of particles" serves a similar purpose to \Once upon a time" in
fairy tales|both serve as a gateway to their respective worlds. Additionally, both have
been around for a long time. Thermodynamics emerged in the Victorian era to help us
understand steam engines, while Beauty and the Beast and Rumpelstiltskin, for example,
originated about 4000 years ago. Moreover, each conclude with important lessons. In
thermodynamics, we learn hard truths such as the futility of defying the second law,
while fairy tales often impart morals like the risks of accepting apples from strangers.
The parallels go on; both feature archetypal characters|such as wise old men and fairy
godmothers versus ideal gases and perfect insulators|and simpli�ed models of complex
ideas, like portraying clear moral dichotomies in narratives versus assuming non-interacting
particles in scienti�c models.

Of all the ways thermodynamic problems are like fairytales, one is most relevant to
this thesis: both have experienced modern twists. In thermodynamics, the introduction of
noncommuting conserved quantities, or charges, has been one such twist.

1.1 Motivation

Across physics, systems exchange conserved quantities. Such exchanges occur, for ex-
ample, in electrochemical batteries, in a cooling cup of co�ee, and when spins 
ip to align
with a magnetic �eld. We call globally conserved quantities charges. Many of us initially
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Figure 1.1: Common thermodynamic paradigm: A small system and large environ-
ment locally exchange quantities that are conserved globally. Common quantities include
energy, as well as particles of di�erent species.

encounter the concept of charges through the following setup from undergraduate statistical
physics. Consider a global system partitioned into a small systemS and a large environ-
ment E. (Fig. 1.1). S and E exchange quantities which are globally conserved. Suppose
that the systems are quantum. S may thermalize to the canonical state� can / e� �H ( S )

if the system and environment exchange only energy, where the energy can 
ow in the
form of heat. The environment's inverse temperature is� , and H (S) denotes the system-
of-interest Hamiltonian. If S and E exchange heat and particles,S may thermalize to
the grand canonical state� GC / e� � (H ( S ) � � N ( S ) ) . The chemical potential is� , and N (S)

denotes the system-of-interest particle-number operator. This pattern extends to many
exchanged quantities (electric charge, magnetization, etc.) and other thermal states. Since
the exchanged quantities are conserved globally (acrossSE), they are charges. Hermitian
operatorsQa represent the conserved quantities;S has an operatorQ(S)

a , E has Q(E)
a , and

the global system hasQtot
a := Q(S)

a + Q(E)
a � Q(S)

a 
 1(E) + 1(S) 
 Q(E)
a , where1 is the identity

operator. The indexa = 0; 1; : : : ; c.

A common implicit assumption is that charges commute with each other: [Qa; Qa0] = 0
8a; a0. This assumption is rarely mentioned but underlies derivations of the form of ther-
mal states [12, 13], linear-response coe�cients [14], and more. However, observables' abil-
ity to fail to commute enables quintessentially quantum phenomena: uncertainty rela-
tions [15, 16], measurement disturbance [17, 18], foundational quantum tests [19, 20, 21],
etc. Quantum physics, thus, compels us to lift the assumption that charges commute.
Doing so has led to the discovery of new physics [1].
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1.2 Familiar example

To clarify and illustrate the concept of noncommuting charges, we'll begin with a
straightforward example. First, let's introduce some essential notation that will be consis-
tently used throughout this thesis. We call a closed quantum many-body system (e.g., the
compositeSE in Fig. 1.1) a global system.N denotes the number of degrees of freedom
in a global system. Often,SE will consist of N copies ofS. For example, N denotes
the number of qubits in Fig. 1.2. Large but �nite N |the mesoscale|interests us: as
N ! 1 , SE grows classical, according to the correspondence principle [13]. Noncommu-
tation enables nonclassical phenomena1, so we should expect charges' noncommutation to
in
uence thermodynamic phenomena at �nite N . Continuing with notation, we denote
by � a the Pauli-a operator, for a = x; y; z; by � (j )

a , a spin component of qubitj ; and by
� tot

a :=
P

j � (j )
a , a total spin component. Furthermore, we ascribe to the Pauli operators� a

eigenstatesja�i associated with the eigenvalues� 1. Subscripts index charges (as in� (j )
a ),

whereas superscripts index sites or other subsystems (e.g.,S and E). In this and the next
chapter, we often denote commuting charges, or other observables that might commute,
with a tilde ( ~Q0

as).Tensored-on1's are implicit where necessary to make operators act on
the appropriate Hilbert spaces.

We can now present a simple example of a system with noncommuting charges, the
well-known Heisenberg model. Consider a chain of trapped ions. A few (e.g., two) qubits
form S, and the other qubits formE. The chain constitutes a closed quantum many-body
system of the sort whose internal thermalization has recently been studied theoretically and
experimentally (e.g., [22, 23, 24, 25]). According to the main result of Chapter 3, one can

construct a Hamiltonian H that overtly transports quanta of each� a locally,
h
H; � (j )

�

i
6= 0

8� , while conserving the three� tot
a 's globally, [H; � tot

� ] = 0 8� [3]. Denote the� z ladder
operators by � � z := 1

2(� x � i� y). The operator � (j )
+ z� (j +1)

� z + � (j )
� z� (j +1)

+ z transports one � z

quantum from qubit j + 1 to qubit j and vice versa, in superposition. De�ne ladder
operators and couplings analogously for� x and � y. The Hamiltonian

H tot
Heis =

X

hj;k i

X

� = x;y;z

�
� (j )

+ � � (k)
� � + � (j )

� � � (k)
+ �

�
; (1.1)

=
X

hj;k i

~� (j ) � ~� (k) ; (1.2)

1In classical mechanics, the components of the angular momentum vector do not commute under the
Poisson bracket. Thus, noncommutation is not an exclusively quantum phenomenon. How nonclassical is
noncommuting-charge physics is an open question we touch on in Chapter 7.
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Figure 1.2: Example thermodynamic system that conserves noncommuting
charges: Two qubits form the systemS of interest, and the rest form the environment
E. A qubit's three spin components,� a= x;y;z , form the local noncommuting charges. The
dynamics locally transport and globally conserve the charges.

wherehj; k i denotes nearest neighbour coupling, transports the� a's locally, while conserv-
ing them globally. H tot

Heis is often expressed as in (1.2) and rarely expressed as in (1.1)|as
locally transporting and globally conserving three noncommuting charges. We can eas-
ily extend H tot

Heis to nonintegrable models (which promote thermalization) by, for example,
adding next-nearest neighbour coupling. This is one example of a system with noncom-
muting charges. Using the procedure in reference [3], we can readily �nd Hamiltonians that
transport noncommuting charges whose subsystems extend beyond qubits and to charges
beyond spin components.

1.3 Outline

Noncommuting charges have emerged as a distinct sub�eld within quantum thermody-
namics, presenting numerous foundational questions. This thesis, the �rst on the subject,
tackles two of these: identifying the e�ects of noncommuting charges and integrating these
�ndings into broader scienti�c contexts, such as many-body physics and experimental re-
search.

Chapters 2 to 6 of this thesis correspond to references [1, 2, 3, 4, 5], respectively.
References [1, 2, 3, 4, 5] resulted from collaboration with some combination of the following
researchers: U. Agrawal, W. F. Braasch, S. Gopalakrishnan, D. A. Huse, A. Kalev, A.
Lasek, A. Potter, T. Upadhyaya, R. Vasseur, and N. Yunger Halpern. Please refer to
the Statement of Contributions for details of my speci�c contributions to each project.
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Reference [5] I authored independently. I didn't include the work published during my
PhD unrelated to noncommuting charges [6, 7, 8, 9].

The chapters do not precisely replicate the respective papers; while they generally
correspond, content from some papers has been shifted to chapters of others, and many
sections have been rewritten. These edits eliminate redundancy and align with my evolved
writing style on the topic.

Chapter 2 �rst reviews the history of noncommuting charge physics and then introduces
new results that are relevant to this thesis. Chapter 3 introduces a method for constructing
Hamiltonians that globally conserve noncommuting quantities while facilitating their local
transport [2]. This work was done to help transition the abstract information-theoretic
�ndings of noncommuting charges physics to experimental practice, numerical studies, and
many-body physics.

Chapters 4 to 6 focus on uncovering new phenomena arising from the noncommutation
of charges. In Chapter 4, we present analogous models that di�er in whether their charges
commute [3]. We �nd that the noncommuting charge model exhibits higher average en-
tanglement entropy. This increase is quanti�ed with a Page curve: consider partitioning
the system into two subsystems, calculating a subsystem's entanglement entropy, and av-
eraging the entropy over states drawn randomly from the full system's Hilbert space. The
average, plotted against the subsystem's size, forms a Page curve. Entanglement typically
accompanies thermalization in quantum systems, yet noncommuting charges were initially
believed to impede this process. Consequently, Reference [3] opened up a now widely
explored question: do noncommuting charges facilitate or obstruct thermalization?

Chapter 5 integrates noncommuting charges into monitored quantum circuits|unitary
circuits interspersed with mid-circuit projective measurements|to investigate their impact
on entanglement dynamics. Typically, monitored quantum circuits exhibit a transition
from a highly entangled volume-law phase to a less entangled area-law phase. However, we
�nd that noncommuting charges result in a critical phase in place of the area-law phase [4].
Characterized by long-range entanglement, among other features, this critical phase un-
derscores the role of noncommuting charges in enhancing entanglement. Furthermore, we
�nd a new type of phase transition within these systems, a \spin-sharpening" transition.

Chapter 6 concludes our exploration of how noncommuting charges a�ect thermal-
ization. Dynamical symmetries are su�cient conditions for a system not to thermalize,
according to the Eigenstate Thermalization Hypothesis (ETH) [26, 27]. In this chapter,
we establish a link between noncommuting charges and dynamical symmetries, by essen-
tially formulating a \Noether-like" theorem for dynamical symmetries. Using this theorem,
we �nd that noncommuting charges facilitate thermalization by diminishing the number
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of local observables that do not thermalize according to the ETH [5]. This further bolsters
the argument that noncommuting charges are conducive to thermalization.

The thesis ends each chapter with a summary, highlighting the main �ndings and
suggesting directions for future research. Chapter 7 presents a complete summary of the
entire thesis, placing its �ndings within the broader context of the �eld's most pressing
research questions. We have also included an Index that tracks where terminology is �rst
de�ned.
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Chapter 2

Background on noncommuting
charges

Excerpts from this chapter are based on reference [1] and overlap with its text.

2.1 Overview

This chapter reviews the major developments in the physics of noncommuting charges,
excluding those results presented in the later chapters of this thesis. We begin by dis-
cussing the early work on noncommuting charges in Section 2.2. This research underscores
the importance of seriously considering the noncommutation of charges. The Eigenstate
Thermalization Hypothesis has played a signi�cant role in the study of noncommuting
charges, and it is introduced properly in Section 2.3. We then explore some of the new
physics that arises from the noncommutation of charges in Section 2.4.

2.2 Early work

In the studies discussed in this section, a recurring theme becomes apparent: the break-
down of previously understood derivations and the e�orts to formulate a new framework
that incorporates noncommuting charges. These �ndings underscore, but do not entirely
encompass, the many outcomes predicated on the commutation of charges. Challenging
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this assumption can be likened to removing a block from a Jenga tower1, causing a cascade
of subsequent results. Critics may contend, \If you're merely rederiving known results,
isn't this �eld somewhat redundant?" However, the actual situation is more interesting.
As researchers have worked to rebuild this theoretical Jenga tower, they have discovered
ways in which noncommuting charges cause new physics. However, the discussion of new
phenomena is saved for Section 2.4.

2.2.1 First appearance in the 1950s

There is a blink-and-you'll-miss-it reference to noncommuting charges in E.T. Jaynes's
1957 formalization of the maximum entropy principle [28]. The principle of maximum
entropy pinpoints the state � =

P
k pk jkihkj most reasonably attributable to a system

about which one knows little. Imagine knowing about� only the expectation valuesh~Qai

of observables~Qa. The state obeys the constraints Tr
�

� ~Qa

�
=: qavg

a 2 R2, plus the nor-

malization condition Tr( � ) = 1. According to the maximum-entropy principle, whichever
constraint-obeying state maximizes the von Neumann entropySvN (� ) := � Tr ( � log(� )) is
most reasonable. (This subsection's logarithms are base-e.) The entropy maximization
encapsulates our ignorance of everything except the constraints. To maximize the entropy
subject to these constraints, we introduce Lagrange multiplies�; ~� a 2 R. The function
maximized, i.e. the Lagrange function, is

L (�; �; f ~� ag) := SvN (� ) � � [Tr( � ) � 1] �
X

a

~� a

h
Tr

�
� ~Qa

�
� qavg

a

i
: (2.1)

Maximizing L (�; �; f ~� ag) with respect to pk yields3

� =
1
Z

exp

 

�
X

a

~� a
~Qa

!

; (2.2)

where the ~� a's denote generalized chemical potentials. Maximizing with respect to�
�xes the partition function: Z = Tr

�
e�

P
a ~� a ~Qa

�
. Maximizing with respect to ~� a yields

1Jenga is a game with a tower of wooden blocks. Players take turns removing a block and placing it
on top, trying to avoid collapsing the tower.

2The additional notation of qavg
a is introduced for clarity in the calculation of Eq. (2.1).

3You may be asking where the Hamiltonian and� are in Eq. (2.2). The energy is technically a charge
for any closed system sinceH always commutes with itself. SinceH is a special charge, most literature
doesn't refer to it as a charge, but some do. When they do, they often label it using the subscript 0. In
Eq. (2.2), H = ~Q0 and � = ~� 0.
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qavg
a = � @

@~� a
log(Z ). Jaynes noted that this procedure works even if the~Qa's do not

commute. Equation (2.2) is called the generalized Gibbs ensemble (GGE) regardless of
whether the charges commute [29, 30, 31, 32]. However, if the charges don't commute, we
refer to the generalized Gibbs ensemble as the non-Abelian thermal state (NATS) [13],

� NATS :=
1
Z

e� � (H �
P

a � a Qa ) : (2.3)

where � := ~� 0 is a special label given to the Lagrange multiplier corresponding to the
Hamiltonian, and all other � � := � ~� � .

Jaynes's work shows that at least one derivation of the thermal state form remains valid
even when our knowledge is restricted to the expectation values of noncommuting charges.
This derivation is based on information theory. However, the more physical arguments
break down when charges are free not to commute, i.e., when trying to derive the� NATS .
Examples of more physical arguments include those based on resource theories (discussed
in the next section) or arguments like the following by Balian and Balazs [33].

Balian and Balazs were the �rst to seek such a physical justi�cation. They imagined
N copies of the system of interest, in the ensemble tradition of thermodynamics. In
thermodynamics, we regard all copies except one (S) as forming an e�ective environment
(E) [34]. ImagineS exchanging energy and particles withE. How do we typically prove that
S is in a grand canonical state� GC? We assume thatSE has a �xed particle number and
an energy in a small window, i.e., assume thatSE is in a microcanonical subspace, aka a
simultaneous eigenspace of the charges. Tracing outE from the microcanonical state yields
S's state, which equals� GC (if S and E couple weakly [35]). Suppose thatS and E exchange
several commuting charges~Qa. The microcanonical subspace is an eigenspace shared by
the ~Qtot

a 's. However, if S and E exchange noncommuting chargesQa, the Qtot
a share no

eigenbasis. Thus, the charges might share no eigenspaces, and microcanonical subspaces
might not exist. Balian and Balazs tried to overcome this challenge by observing that
the charge densitiesQtot

a =N commute in the in�nite- N limit: lim N !1
1

N 2 [Qtot
a ; Qtot

a0 ] = 0
8a; a0. However, they could not construct a well-justi�ed generalization of microcanonical
subspaces for noncommuting charges. To be clear, what is failing here is that the notion
of microcanonical subspaces does not accommodate noncommuting charges.

2.2.2 Reemergence in the 2010s

For decades, no literature addressed the ability of thermodynamic charges not to com-
mute. The topic gained attention a decade ago at the intersection of quantum information

9



and quantum thermodynamics. In 2014, separate work by Lostaglio and Yunger Halpern
demonstrated that noncommuting charges can defy thermodynamic expectations [36, 12]4.

Lostaglio demonstrated that noncommuting charges overturn an expectation about free
energy [36]. Consider a system of interestS in the state � (S) and an environmentE in the
state � (E) , wherein � (E) has the generalized Gibbs ensemble form (2.2). The system and
environment begin uncorrelated:� (S) 
 � (E) . S and E havec commuting charges,~Q(S)

a and
~Q(E)

a . One can attribute to S a \free energy"5 for each of its charges

F (S)
a (� ) := �

1
�� a

SvN (� ) + Tr
�

~Qa�
�

: (2.4)

We now evolveSE under a charge-conserving unitaryU to a �nal state � (SE)
f : [U; ~Qtot

a ] = 0
8a. Subscript f's will also distinguishS's and E's �nal states. E's j th subsystem ends up
in � (E;j )

f := Tr �j (�
(E)
f ). Here, and throughout the thesis, we use the notation Tr�j to denote

tracing over the complement ofj . Furthermore, D(� 1jj � 2) = � Tr( � 1[log� 1 � log� 2]) is
the quantum relative entropy [37]. The quantum relative entropy is the classical analog of
the classical relative entropy, or Kullback{Leibler divergence, and it quanti�es the distance
between quantum states� 1;2.

Three more quantities change under the charge-conserving unitaryU: S's von Neumann
entropy, by � S(S)

vN := SvN (� (S)
f ) � SvN (� (S)); the ath charge's environmental expectation

value, by � h~Q(E)
a i := Tr( ~Q(E)

a [� (E)
f � � (E) ]); and the system'sath \free energy," by � F (S)

a .
These changes are related (see Eq. 2.24 of Ref. [36]):

D
�

� (SE)
f jj � (S)

f 
 � (E)
f

�
� � S(S)

vN = �
X

a

� a

�
� h~Q(E)

a i � � F (S)
a

�
� D

�
� (E)

f jj 
 j � (E;j )
f

�
:

(2.5)

The right-hand side of the equation contains a sum of terms that depend on distinct charges.
When charges fail to commute, the terms cannot be cleanly attributed to individual charges,
and the derivation fails.

An intuition for why this derivation should break down is that noncommuting charges
do not necessarily move independently of one another. A simple way to see this is to
consider two sites exchanging quanta of spin angular momentum in a spin chain via an
interaction H . Say that H conserves thez-component of the spin

h
H; � (1)

z + � (1)
z

i
= 0, but

4Yunger Halpern's paper was published in 2018 but appeared on the arXiv in 2014.
5The quotation marks re
ect the controversy surrounding free energies de�ned information theoretically

for out-of-equilibrium states.
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transfers the spins locally:
h
H; � (1)

z

i
6= 0 6=

h
H; � (2)

z

i
. The most general Hamiltonian that

satis�es the conservation equation is:H = czi �
(1)
z + ciz � (2)

z + czz� (1)
z � (2)

z + cxx (� (1)
x � (2)

x +
� (1)

y � (2)
y ) + cxy (� (1)

x � (2)
y � � (1)

y � (2)
x ). Any of these coe�cients can be zero. However, to

also satisfy the transport condition, we need thatcxx 6= � icxy . Thus, cxx or cxy must
be non-zero. Thus, this Hamiltonian necessarily transports the quanta of the other spin
components,� (j )

x and � (j )
y . Since noncommuting charges do not move independently, it is

natural then to expect one can not de�ne free energies for them independently.

Yunger Halpern reasoned about noncommuting charges using thermodynamic resource
theories [12]. Resource theories are information-theoretic frameworks used to quantify how
e�ectively an agent can perform a task, subject to some constraints. These constraints are
typically placed on the operations performable and on the systems that are accessible [38].
Using a resource theory, one can calculate the optimal e�ciency for extracting work from
a nonequilibrium quantum system. In thermodynamics, the �rst law constrains operations
to conserve energy. Every unitaryU performable on a closed, isolated system conserves the
total Hamiltonian: [U; H tot ] = 0 [39]. Now suppose thatU must also conserve commuting
global charges~Qtot

a : [U; ~Qtot
a ] = 0 [40]. From which systems can the agent not perform

work for free? Systems in the equilibrium state, Eq. (2.2) [40, 41]. However, the proof
fails if the charges fail to commute [12]. This is ultimately because the noncommutation
of charges does not allow one to use the Backer{Campbell-Hausdor� Formula to equate
Q

� =0 exp
�

� 1
kB

F� Qtot
�

�
= exp

�
� 1

kB

P
� =0 F� Qtot

�

�
whereFi are free energies andQtot

� are
charges.

Building on these two results, three separate groups presented physically motivated
derivations of the form of the thermal state for systems with noncommuting charges using
resource-theory-related argumentss [13, 42, 43, 44]. Ultimately, the form of the NATS was
recovered in each work. The trio of papers physically justi�ed� NATS 's form in various
ways. We highlight one of these below because it will be important in Chapter 4, and it
completes the story that Balian and Balazs started.

The authors of reference [13] realized that noncommuting charges prevent microcanon-
ical subspaces from existing (in abundance). The authors therefore generalized micro-
canonical to approximate microcanonical subspaces. In an approximate microcanonical
subspaceM , every Qtot

a has a fairly well-de�ned value: measuring anyQtot
a has a high

probability of yielding a value near the expectation valuehQtot
a i . In other words, the prob-

ability distribution of possible outcomes has one peak with a variance that is small and
grows slowly with the system size. The authors de�nedM and proved its existence under
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certain conditions [13]. Denote by �M the projector onto M 6. Consider ascribing the ap-
proximate microcanonical state �M =Tr(� M ) to the global system, formed fromN copies
of the systemS of interest. Trace out all copies except thèth : � (` ) = Tr �̀ ( � M =Tr(� M )) .
Compare� (` ) with � NATS using the relative entropy. Average over̀. This average distance
is upper-bounded as



D

�
� (` ) jj � NATS

��
`

�
�

p
N

+ � 0; (2.6)

where�; � 0depend on various parameters (the numberc of charges, their expectation values,
etc.) but not N . As the global system grows (N ! 1 ), the 1=

p
N ! 0, so the distance

shrinks. Hence a physical argument, based on an ensemble in an approximate micro-
canonical subspace, complements Jaynes's information-theoretic derivation of� NATS . Fur-
thermore, the approximate microcanonical subspace enabled later noncommuting-charge
work [3, 45, 46, 47].

2.3 Eigenstate Thermalization Hypothesis

Isolated quantum many-body systems undergo reversible dynamics. How, then, can
they come to thermal equilibrium? This question is largely answered by the Eigenstate
Thermalization Hypothesis (ETH) [26, 27]. The following section and the results of Chap-
ter 5 hinge on the ETH. In the spirit of e�ciently killing birds with stones, 7 we will take
a detour to thoroughly introduce the ETH.

To begin, we need to de�ne what is meant by thermalization. Consider a closed quan-
tum system consisting of a lattice withN sites. Each site corresponds to a Hilbert spaceH
of �nite dimensionality d. The system is governed by a HamiltonianH =

P
k Ek j k ih k j,

where j k i are energy eigenstates with energiesEk . The time-dependent statej�( t)i =P
k exp(� iE k t)ck j k i 8 will have a �xed total energy E = h�( t)jH j�( t)i , where we set

~ = 1. The expectation value of an observableO for the state j�( t)i is

hO(t)i =
X

j;k

e� i (Ek � E j )tc�
j ck h j jOj  k i : (2.7)

6To be clear on terminology, if M was the computational basis � M = j0ih0j + j1ih1j.
7\Kill two birds with one stone" is an idiom for successfully achieving two things with one action.
8Having a pure initial state is not necessary for the ETH. However, the paradox of unitary dynamics

leading to thermalization is most pronounced in pure states; therefore, we consider them.
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hOith := tr[ � th O] is the thermal expectation value, where� th is the thermal state with
temperature �xed by the energy of the initial state. We say a system is in thermal equilib-
rium at time t if hOi (t)i � h Oi i th for a set of observableOi . If the Hamiltonian and local
observables satisfy the ETH, the system will thermalize in this sense.

We can also state the approximationhOi (t)i � h Oi i th in a di�erent and more precise
way. Imagine we begin with an out-of-equilibrium statej�(0) i . We expecthO(t)i to (i)
initially deviate greatly from hOith , (ii) approach hOith over time, and (iii) 
uctuate around
hOith . Thus, if we take the time-average ofhO(t)i for a long enough time, we expect it to
equalhOith up to some correction:

lim
t !1

1
t

Z t

0
dt0 hO(t0)i = hOith + O(N � 1): (2.8)

Throughout this subsection, big-O notation means \scales as."

Myriad numerical and experimental observations support the ETH, which has been
applied across many-body physics. Despite the apparent tension between unitary dynamics
and thermalization, most quantum many-body systems thermalize [48]. However, not all
combinations of Hamiltonians, states, and observables obey the ETH, nor should we expect
them to, based on classical thermodynamics. Below, we explain more precisely when the
ETH holds and what its physically motivated assumptions are.

What are the conditions for the ETH? The �rst two conditions restrict the initial state
so that it is possible to de�ne a notion of temperature. The �rst condition is that the
energy scales with the system size,

E = h�( t)jH j�( t)i � N: (2.9)

This ensures we have a �nite amount of energy per degree of freedom, which is necessary
for de�ning a �nite temperature. Second, the energy uncertainty is small,

� E =
q

hH 2i � h H i 2 � N 
 (2.10)

where 
 < 1. Expand your initial state in energy eigenstates; this condition restricts the
range of energies one is superposing to be small compared to the total energy. This is also
necessary for de�ning a temperature. If your initial state is, for example, a superposition of
two states with extremely di�erent energies, then it is unclear how to de�ne the temperature
because if the energy is not well de�ned, the temperature is not well de�ned. These �rst
two conditions place restrictions on the statesj�(0) i , but most physically realistic states
satisfy these �rst two conditions. States that do not satisfy these conditions exist; however,
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we do not expect those states to adhere to classical statistical mechanics, which is what
the ETH is trying to derive.

The ETH is largely an ansatz for the forms of matrix elements. We can break Eq. (2.7)
into two terms,

hO(t)i =
X

k

�
jck j2 h k jOj  k i

�
+

X

j 6= k

�
e� i (Ek � E j )tc�

j ck h j jOj  k i
�

: (2.11)

The �rst term is time-independent, thus we expect it to correspond to the time-independent
average value around whichhO(t)i 
uctuates, denoted byhOith . We then expect the second
term to correspond to the 
uctuations. However, the �rst term in Eq. (2.11) contains
detailed information about the initial state, speci�cally the sum ofjck j2. In contrast, hOith
contains very little information about the initial state, only its energy.

To resolve this discrepancy, we add a third assumption|if we plottedh k jOj  k i against
the Ek in ascending order, the function would vary smoothly. We can then plotjck j2 against
the sameEk . This second plot will not vary smoothly. However, since �E is small, the non-
negligible values ofjck j2 should be concentrated in a small energy window. Sinceh k jOj  k i
varies smoothly, the exact values ofjck j2 become less signi�cant, and multiplying them with
the eigenvalues of some operator will yield approximately the same value. Thus, our second
and third assumptions explain why the �rst term depends only on the energy and not the
speci�c jck j2.

We now turn to the second term, which needs to account for the 
uctuations. We
need these 
uctuations to be small. To ensure this, we add a fourth assumption|the
Hamiltonian is nondegenerate and thath j jOj  k i are exponentially small inN . Note that
it is still possible to have speci�c times when the second term is large due to the majority
of the small terms interfering constructively. In fact, we know this is possible because
non-equilibrium needs to be possible, for example, att = 0. However, most times, this is
not true. Finally, the degeneracy condition is not strictly necessary but is for mathematical
convenience. Assumptions three and four place restrictions on the observables. There exist
many observables which satisfy these conditions.

2.4 New physics

We are �nally ready to introduce the new physics related to noncommuting thermo-
dynamic charges that were not discovered by the research presented in this thesis. We
organize the results indicating that noncommuting charges obstruct thermalization in the
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�rst subsection (Section 2.4.1) and the remaining results in the second subsection (Section
2.4.2).

2.4.1 Why noncommuting charges may inhibit thermalization

Earlier works in the �eld proposed that noncommuting charges may inhibit ther-
malization, o�ering two justi�cations. One justi�cation is that charges impede phys-
ical derivations of the thermal state's form [12, 13]. Another is that noncommuting
charges force degeneracies onH tot according to Schur's lemma, a group-theoretic result
(App. A.1 and [49, 50, 45]). Nondegenerate Hamiltonians underlie foundational assump-
tions of thermalization, mixing, and equilibration present in conventional theories (refer
to [27, 26, 51, 52]), which noncommuting charges challenge. The following results give
three further reasons.

Decreased thermodynamic-entropy production

Noncommuting charges reduce entropy production, which quanti�es irreversibility [14].
Throughout this subsection, by entropy, we mean, thermodynamic entropy, not entan-
glement entropy. Moreover, reference [14] studies the entropy production per collision in
a collisional model where each collision is governed by unitaryU. The collision model
consists of two systems each composed of many subsystems. One subsystem from each
system is drawn at random, the two subsystems \collide" by evolving underU, and are
then returned to their respective systems. With collisions as a proxy for time, we can think
of the entropy production per collision as the entropy-production rate.

Consider systemsX = A; B with chargesQ(X )
a that might or might not commute. Each

system begins in a generalized Gibbs ensemble� (X )
~� ( X ) / exp

�
�

P
a � (X )

a Q(X )
a

�
, wherein

~� (X ) = ( � (X )
0 ; � (X )

1 ; :::) [53] (Fig. 2.1). HenceAB begins in � (0) := � (A )
~� ( A ) 
 � (B )

~� ( B ) . Let
us specialize to the linear-response regime, where small external perturbations lead to
proportional changes in the system's behavior. For example, when a small force is applied
to a spring, the spring stretches by an amount proportional to the force (Hooke's Law).
If the force is doubled, the displacement doubles. To stay in this regime we restrict the
di�erences in chemical potential between the systems to be small:~� (A ) � ~� (B ) . A charge-
conserving unitaryU can shuttle charges between the systems, producing entropy. Denote
by �� a := � (A )

a � � (B )
a the di�erence between the systems'a-type chemical potentials.

System A's a-type charge changes, in the Heisenberg picture, byUyQ(A )
a U � Q(A )

a . We
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combine the foregoing two quantities into

~� :=
X

a

�� a
�
UyQ(A )

a U � Q(A )
a

�
: (2.12)

Taking the expectation value of~� in the initial state, we obtain the net entropy production,
� = Tr ( ~� � (0)) .

According to the linear-response assumption9, the initial state lies near the �xed point.
This will be a tensor product of Gibbs ensembles for each subsystem:� := � (A )

~� ( A ) 
 � (B )
~� ( A ) of

U. � and ~� have a Wigner{Yanase{Dyson skew information

I y(�; ~�) := �
1
2

Tr
�
[� y; ~�][ � 1� y; ~�]

�
; (2.13)

whose parametery 2 (0; 1). I y(�; ~�) quanti�es the coherence that ~� has relative to � 's
eigenbasis. Said di�erently,I y(�; ~�) quanti�es the amount of information that is lost due
to the non-commutativity of an observable and a state. Thus, it is natural to expect that
the Wigner{Yanase{Dyson skew information contributes to the entropy production. The
exact expression was found in Ref. [14]:

� =
1
2

�
�

~�
�

�
1
2

Z 1

0
dy I y(�; ~�) (2.14)

I y is always� 0 and is positive if and only if the charges fail to commute. Therefore, non-
commuting charges lower �. Noncommuting charges decrease the entropy production [14].
Since entropy production accompanies thermalization, noncommutation may inhibit ther-
malization.

Two extensions support [14]. First, Shahidani numerically simulated an optomechanical
system interacting with a squeezed thermal bath [54]. Second, Upadhyayaet al. progressed
beyond the linear-response regime [55]. Even there, charges' noncommutation decreases
entropy production.

Constraints on charge-conserving dynamics

A key result in quantum computing is that every N -qubit unitary decomposes into
gates on pairs of qubits [56, 57, 58]. This decomposition can further reduce to gates acting

9In � , unlike in � (0), A and B have the same lists of chemical potentials.
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Figure 2.1: Two thermal reservoirs exchange charges, producing entropy: Blue
spheres represent charges of one type, and red cubes represent charges of another.

on spatially local qubits. Can charge-conserving local unitaries implement every charge-
conserving global unitary? Marvian proved that they cannot [59]. Locality-constrained
charge-conserving unitaries fail to even approximate the global unitariesU. The reason
is that the two types of unitaries form Lie groups of di�erent dimensions [59, 60, 61,
62]. Marvian also highlighted that noncommuting charges uniquely impose more stringent
restrictions on the global unitariesU. Speci�cally, noncommuting charges impose four
types of constraints on the implementable global unitaries, in contrast to only two types
from commuting charges [62]. These additional constraints might limit chaos, which often
facilitates thermalization. Therefore, Marvian's results suggest that noncommuting charges
could inhibit thermalization.

Con
icting with the ETH

Noncommuting charges cause the ETH to con
ict with the Wigner{Eckart theorem [63],
violating the ETH. Reference [47] therefore posited a non-Abelian ETH, which shows that
noncommuting charges can lead to larger corrections to the ETH.

We brie
y review the Wigner{Eckart theorem. Consider N qubits whose global spin
componentsStot

x;y;z are conserved, as in Section 1.2. Denote byfj �; m ig the eigenbasis
shared byH tot , (~Stot )2, and Stot

z : if ~ = 1, then H tot j�; m i = E � j�; m i , (~Stot )2j�; m i =
s� (s� +1) j�; m i , and Stot

z j�; m i = mj�; m i . The Wigner{Eckart theorem governs spherical
tensor operators formed from componentsT (k)

q [63]. TheT (k)
q 's form a basis for the space of

operators de�ned on the system's Hilbert space. For example, consider an atom absorbing
a photon (of spin k = 1), gaining q = 1 quantum of z-type angular momentum. T (k=1)

q=1
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represents the photon's e�ect on the atom's state. Consider representingT (k)
q as a matrix

relative to the energy eigenbasis. That matrix obeys the Wigner{Eckart theorem [63]:

h�; m jT (k)
q j� 0; m0i = hs� ; mjs� 0; m0; k; qih� jjT (k) jj � 0i : (2.15)

hs� ; mjs� 0; m0; k; qi denotes a Clebsch-Gordan coe�cient, a conversion factor between the
product state js� 0; m0; k; qi � j s� 0; m0i j k; qi and the total-spin eigenstatejs� ; mi . h� jjT (k) jj � 0i
is a reduced matrix element|the part of h�; m jT (k)

q j� 0; m0i that does not depend on mag-
netic spin quantum numbers. Clebsch{Gordan coe�cients are used for adding a couple of
spins, while the ETH is about many-body systems. However, the pairwise addition can be
repeated iteratively. First, add two spins using the Clebsch-Gordan coe�cients to �nd the
possible resultant spin states and their corresponding coe�cients. Next, take each resul-
tant spin from this initial pairwise addition and add it to the next spin in the sequence.
Continue this process iteratively, each time using all resultant spins from the previous step,
until all spins have been added.

Continue Iteratively: Continue this process iteratively until all spins have been added.
Each step involves adding the resultant spin from the previous step to the next spin in the
sequence.

We can now see the source of con
ict. Consider the term on the left-hand side of
Eq. (2.15). The Wigner{Eckart theorem states this term should equal the right-hand
side of Eq. (2.15). However, ETH states this term should equal something else, the right
side of Eq. (2.11). The ETH states that o�-diagonal elementsh�; m jT (k)

q j� 0; m0i must be
exponentially small in N . The Wigner{Eckart theorem implies that these elements may
be O(1).

Reference [47] therefore posited a non-Abelian ETH. This ansatz depends on the average
energyE := 1

2(E � + E � 0), energy di�erence! := E � � E � 0, average spin quantum number
S := 1

2(s� + s� 0), and di�erence � := s� � s� 0. Denote by Sth (E; S ) the thermodynamic
entropy at energyE and spin S . The observableT (k)

q and Hamiltonian H tot satisfy the
non-Abelian ETH if, for smooth real functionsT (k)(E; S ) and f (k)

� (E; S ; ! ),

h� jjT (k) jj � 0i = T (k)(E; S ) � �;� 0 + e� Sth (E;S )=2 f (k)
� (E; S ; ! ) R�;� 0: (2.16)

R�;� 0 is an erratically varying number. The matrix element (2.15) deviates from the or-
dinary ETH through S -dependent functions and a Clebsch{Gordan coe�cient. Equa-
tion (2.16) has withstood numerical checks with a Heisenberg Hamiltonian on a two-
dimensional qubit lattice [64].
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The non-Abelian ETH predicts thermalization to the usual extent in some, but not all,
contexts. Consider preparing the system in a statej (0)i in an approximate microcanonical
subspace (Section 2.2). Suppose thatj (0)i has an extensive magnetization along an axis
that we call ẑ: h (0)jStot

z j (0)i = O(N ). According to the non-Abelian ETH,

lim
t !1

1
t

Z t

0
dt0h (t0)jT (k)

q j (t0)i = Tr
�
T (k)

q � NATS
�

+ O
�
N � 1

�
: (2.17)

However, if h (0)jStot
z j (0)i = 0, the correction can becomeO(N � 1=2)|polynomially

larger. This result relies on an assumption argued to be physically reasonable: the smooth
function T (k) in (2.16), akin to a microcanonical average, can contain a nonzero term of
O(s� =N). The unusually large correction constitutes further evidence that charges' non-
commutation can alter thermalization.

2.4.2 Other new physics

The e�ects of noncommuting charges have not been limited to topics related to ther-
malization. In this subsection, we complete our discussion on the new physics engendered
by noncommuting charges.

More stationary states

Consider an open quantum system with a Liouvilian superoperatorL . � stat is a sta-
tionary state of L if L � stat = 0. One might associate a system'sj th stationary state, � (j )

stat ,
with a classical alphabet'sj th letter, L j : � (j )

stat $ L j .To encodeL j in the system, one would
prepare any state that thermalizes to� (j )

stat .The more stationary states the system has, the
more classical information the system may store. Denote bynstat the number of stationary
states. Zhang et al. derive a lower boundnNC on nstat for a system with noncommut-
ing charges [65]:nNC =

P
j D2

j , wherein D j denotes the symmetry group'sj th irreducible
representation's dimension. For example,nNC � N 3 for the Heisenberg model (Section
1.2) coupled to an environment that conserves the system-of-interest charges� (S)

x;y;z . If the
charges commute, the lower boundnC scales as the number of simultaneous eigenspaces
shared by all theQ(S)

a 's. SincenNC and nC scale di�erently, noncommuting charges could
alter the number of stationary states and so the amount of information storable.
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Hybrid energy-level statistics

Energy-level statistics diagnose quantum chaos and integrability [66]. Denote by! =
E j +1 � E j the spacing between consecutive eigenenergies of a many-body Hamiltonian.
Any given spacing (near the spectrum's center) has a probability densityP(! ) of being of
size! . A Poissonian10 P(! ) diagnoses integrability [66, Section 2.3]; and a Wigner{Dyson
distribution, A � ! � exp(� B � ! 2), chaos. The parameter� 2 f 1; 2; 4g depends on the Hamil-
tonian's time-reversal and rotational symmetries. Normalization and the mean! determine
the coe�cients A � and B � . Noncommuting charges break the Poisson-vs.-Wigner{Dyson
dichotomy as commuting charges cannot: the charges generate a non-Abelian algebra,
which has multidimensional irreducible representations. They induce statistics that inter-
polate between the two distributions [67, 64, 68]. Noh observed such statistics numerically
using a 2D Heisenberg model [64].

Many-body localization

Many-body localization (MBL) is an e�ect that may occur in disordered interacting
quantum systems. For example, consider a qubit chain subject to the disordered Heisenberg
Hamiltonian H tot

MBL =
P N

j =1

�
J~� (j ) � ~� (j +1) + hj �

(j )
z

�
. The disorder term,

P N
j =1 hj �

(j )
z , acts

as an external �eld whose magnitudehj varies randomly across sites. If the disorder is
much stronger than the interaction,hj � J , the system localizes. Imagine measuring each
qubit's � z. The qubits approximately maintain the measured con�guration long afterward.
This behaviour contrasts with how thermalizing systems, such as classical gases, change
con�gurations quickly. Hence MBL resists thermalization for long times. The reason is,
the Hamiltonian decomposes as a linear combination of quasilocal degrees of freedom [69].

My examining committee asked me to comment on the controversy surrounding MBL,
which I have added here. The theoretical existence of MBL in one-dimensional systems is
mostly accepted, and its existence in higher dimensions is highly unlikely. Furthermore, it
is clear that for any �nite system and in any dimension, some regime exhibits MBL [70].
The controversy surrounding MBL concerns its late-time thermodynamic limit behaviour.
There is debate over MBL being a distinct phase with its unique class, the precise conditions
for MBL, and experimental evidence of MBL [71, 72].

Noncommuting charges seem to destabilize MBL [73]. Consider forcing a non-Abelian
symmetry onH tot

MBL . The resulting Hamiltonian, H tot
MBL 0, will have degeneracies, by Schur's

10This P(! ) is the Poisson distribution whose average-rate-of-occurrence parameter vanishes. The reason
is, P(! ) d! equals the probability that zero eigenenergies lie in a width-d! interval.
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lemma (App. A.1). So will the quasilocal degrees of freedom, which can therefore become
\excited" at no energy cost. Consider adding toH tot

MBL 0 an in�nitesimal �eld that vio-
lates the symmetry. The resulting Hamiltonian,H tot

MBL 00, can mapH tot
MBL 0 eigenstatesj i to

same-energy eigenstatesj ~ i : h~ jH tot
MBL 00j i 6= 0. Two such eigenstates can be zero-energy

\excited" states of neighbouring quasilocal degrees of freedom. HenceH tot
MBL 00 can transport

zero-energy \excitations" between quasilocal degrees of freedom|across the system. Such
transport is inconsistent with MBL. In summary, non-Abelian symmetries force degenera-
cies in the spectrum, leading to instability once you allow for perturbations. This is the �rst
result reviewed in this thesis that contradicts the earlier expectations that noncommuting
charges hinder thermalization.
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Chapter 3

Bridging to experiments and
many-body physics

This chapter is based on reference [2] and overlaps with its text.

3.1 Introduction

In quantum information theory, \an abstract view of dynamics, minimal in the details
of Hamiltonians, is often employed"[74], and so in quantum-information-theoretic thermo-
dynamics. This approach has also been prevalent in the study of noncommuting charges.
However, the realm of experiments and many-body theory necessitates detailed microscopic
Hamiltonians. It is essential to construct Hamiltonians that facilitate the local transport
of noncommuting charges while ensuring their global conservation to connect the result
of noncommuting charges with practical experiments and many-body physics. Achieving
this integration will allow using many-body tools to study the dynamic of noncommuting
charge physics. Furthermore, the literature on noncommuting-charge physics is �lled with
results that merit experimental testing.

Before the work presented in this chapter, it was unknown (i) whether Hamiltonians
that transport noncommuting observables locally, while conserving them globally, exist;
(ii) how such Hamiltonians look, if they exist; (iii) how to construct such Hamiltonians
for given noncommuting charges; and (iv) for which charges such Hamiltonians can be
constructed. We answer these questions, enabling noncommuting charges to progress from
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its quantum-information-theoretic-thermodynamic birthplace to experiments and many-
body physics.

This chapter introduces a procedure for constructing Hamiltonians that overtly move
noncommuting charges between subsystems while conserving the charges globally. The
Hamiltonians can couple arbitrarily many subsystems together and can be integrable or
nonintegrable. The procedure is general, being independent of any physical platforms.
Consequently, the Hamiltonians can be realized with diverse physical systems, such as
superconducting circuits, neutral atoms, and trapped ions.

The rest of the chapter is organized as follows. We detail our setup and review the math-
ematical background in Section 3.2. Section 3.3 presents our procedure. We �rst synthesize
the procedure, crystallize the main result, and present two properties of the procedure. We
then illustrate the procedure using an example familiar in quantum information, the Lie
algebrasu(2). A richer example provides intuition in Section 3.4: Hamiltonians that trans-
port and conserve charges in the Lie algebrasu(3). Section 3.5 concludes with a summary
of our results.

3.2 Preliminaries

We begin by outlining our setup and then review the mathematical foundation pertinent
to our study, focusing on the basics of Lie algebra theory. In Chapter 5, we revisit Lie
algebras. To prevent redundancy, we include a few additional details in this section that
will be relevant later.

3.2.1 Setup

Consider a closed quantum system consisting of a lattice withN sites. Each site
corresponds to a Hilbert spaceH of �nite dimensionality d. The system is governed by a
global Hamiltonian H tot . Let Q� denote a Hermitian operator de�ned onH. We denote by
Q(j )

� the observable de�ned on thej th subsystem'sH . We denote an extensive observable

Qtot
� :=

NX

j =1

~Q(j )
� �

NX

j =1

1
 ( j � 1) 
 ~Q(j )
� 
 1
 (N � j ) : (3.1)

We will construct H tot that conserve noncommuting charges globally, [H tot ; Qtot
� ] = 0,

while transporting them locally,
h
H tot ; Q(j )

�

i
6= 0 for some sitej .
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3.2.2 Lie Algebra background

ChargesQ� that generate Lie algebras are important in physics because they describe
many conserved physical quantities, including angular momentum, particle number, electric
charge, color charge, and weak isospin [1, 11, 75, 76], i.e., everything in the Standard
Model of particle physics. The Lie algebras relevant to studying noncommuting charges are
�nite-dimensional because we study systems with a �nite number of linearly independent
charges [2]. The algebras are de�ned over the complex number because the operators are
Hermitian. Finally, the algebras are semisimple so that the operator representation of the
charges can be diagonalized (not necessarily simultaneously diagonalized) [77]. From this
point onward, we denote byg a �nite-dimensional semisimple complex Lie algebra.

An algebra's dimensionc equals the number of generators in a basis for the algebra.
The algebra's rankr is the dimension of the algebra's maximal commuting subalgebra, the
largest subalgebra in which all elements are commuting. For example, consider the usual
basis for su(2)|the Pauli-operators. There are three generators in this basis, soc = 3,
and none of these operators commute with one another, sor = 1. A Cartan subalgebra is
a maximal Abelian subalgebra consisting of semisimple elements,h 2 h. Every g will have
a h.

The g de�nition includes a vector spaceV de�ned over a �eld F . A form is a map
V � V ! F . A representation ofA is a Lie-bracket-preserving map fromA to a set of
linear transformations. The Killing form of operatorsx; y 2 g is the bilinear form

(x; y) := tr(ad x � ady) (3.2)

where adx is the image ofx under the adjoint representation ofg.

We have justi�ed studying algebras that are �nite-dimensional, semisimple, and over
the complex numbers. We also assume that onA is de�ned a Killing form that induces a
metric. Many physically signi�cant algebras satisfy all of these assumptions|for example,
su(N ), so(N ), and all other simple Lie algebras (see Appdenix B.1 and [11, 75, 76]).
Table 1 lists the simple Lie algebras. Every Cartesian product of simple Lie algebras yields
a semisimple Lie algebraA . Such an algebra generates a semisimple Lie groupG. For
example, ifA consists of angular momentum,A = su(D), the correspondingG consists of
rotations: G = SU(D). To clarify, the script notation refers to the algebra, e.g.su(D),
and the non-script notation to the corresponding group, SU(D).

Essential to our study are Cartan{Weyl bases [77]. Such a basis consists ofr elements
forming a Cartan subalgebra andc� r root vectors. We introduced the Cartan subalgebra
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Algebra Dimension (c) Rank (r ) c=r

so(2D) D(2D � 1) D 2D � 1
sl(D + 1) ( D + 1) 2 � 1 D D + 2
so(2D + 1) D(2D + 1) D 2D + 1

sp(2D) D(2D + 1) D 2D + 1
g2 14 2 7
f4 52 4 13
e6 78 6 13
e7 133 7 19
e8 248 8 31

Table 3.1: Simple Lie algebras: c denotes an algebra's dimension, andr denotes the
rank. We implicitly omit so(2) and so(4), which are not simple [11]. Also,su(D) is a
simple Lie algebra. However, includingsu(D) would be redundant: the complexi�cation
of su(D) is isomorphic to sl(D).

above and will introduce the root vectors here. Let� (h) := ( h0
� ; h) where h; h0

� 2 h. � (h)
is a root of g relative to h if there exists a non-zero operatorL � 2 g such that

[h; L � ] = � (h)L � : (3.3)

These operatorsL � are the root vectors. Denote by � all roots of g with respect to h.
If � 2 �, then so is � � . Thus, root vectors always come in pairsL � � . In practice,
root vectors often have the form of ladder operators. Each� corresponds to two ladder
operators, one raising (+� ) and one lowering (� � ). Hence� runs from 1 to c� r

2 . EachL � �

raises or lowers at least oneQ� . Every �nite-dimensional semisimple complex Lie algebra
A has a Cartan-Weyl basis. In fact,A has in�nitely many. The choice of Cartan-Weyl is
not unique.

3.3 Procedure

We �rst synopsize our procedure before o�ering a guided walkthrough to facilitate a
more comprehensible presentation.

Below, we will refer to a preferred basis of charges. It is preferable for two reasons.
First, the basis endows the Hamiltonian with a simple physical interpretation: the two-
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body interaction we construct transports all these charges locally while conserving them
globally. Second, the basis is (Killing-)orthogonal.

3.3.1 Synposis

We construct, as follows, Hamiltonians that transport noncommuting charges locally
and conserve the charges globally:

1. Identify an arbitrary Cartan-Weyl basis for the algebra,A .

2. The Cartan-Weyl basis containsr Hermitian operators that commute with each other.
Scale each such operator such that it has a unit Hilbert-Schmidt norm [Eq. (3.5)].
Label the resultsQ� =1 ;2;:::;r . Include them in the preferred basis for the algebra.

3. The other Cartan-Weyl-basis elements are ladder operators that form raising-and-
lowering pairs: L � � , for � = 1; 2; : : : c � r . From each pair, form one term in the
two-body interaction, H (j;j 0) [Eq. (3.6)].

4. Write out the form of the most general elementU 2 G of the Lie groupGgenerated by
A . Conjugate each chargeQ� and each ladder operatorL � � with U [Eq. (3.7)]. The
new charges and new ladder operators, together, form another Cartan-Weyl basis.

5. Constrain U such that every new chargeQ� is Killing-orthogonal to (i) each other
new charge and (ii) each charge already in the basis [Eq. (3.9)].

6. Include each newQ� in the basis forA .

7. From each new pairL � � of ladder operators, form a term in the two-body interaction
H (j;j 0) [Eq. (3.10)].

8. Repeat steps 4-7 until having identi�edc=r Cartan-Weyl bases, whereinc denotes
the algebra's dimension. Each Cartan-Weyl basis contributesr elementsQ� to the
preferred basis forA . The basis is complete, containingr � c

r = c elements.

9. Constrain the two-body interaction to conserve each global charge [Eq. (3.14)], for all
� = 1; 2; : : : ; c. Solve for the hopping frequenciesJ (j;j 0)

� that satisfy this constraint.
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10. If a k-body interaction is desired, for anyk > 2: Perform the following substeps
for ` = 3; 4; : : : ; k: Multiply together ` unconstrained two-body interactions (3.12)
cyclically:

H ( j;j 0;:::;j ( ` ) ) = H (j;j 0)H (j 0;j 00) : : : H ( j ( ` � 1) ;j ( ` ) )H (j ( ` ) ;j ) : (3.4)

Constrain the couplings so that [H ( j;j 0;:::;j ( ` ) ); Qtot
� ] = 0 for all � . If H ( j;j 0;:::;j ( ` ) )

contains fewer-body terms that conserve all theQtot
� , subtract those terms o�.

11. Sum the accumulated interactionsH ( j;j 0;:::;j ( k ) ) over the subsystemsj; j 0; : : : to form
H tot .

12. If H tot is to be nonintegrable, add longer-range interactions and/or large-k k-body
interactions until breaking integrability, as signalled by, e.g., energy-gap statistics1.

Having synopsized our procedure, we present two properties of it. The �rst property
ensures that the procedure runs for an integer number of iterations (step 8).

Proposition 1. Consider any �nite-dimensional semisimple complex Lie algebra. The
algebra's dimension,c, and rank, r , form an integer ratio: c=r 2 Z> 0.

We prove this proposition in Appendix B.4. It seems possible that this Proposition has
been proved before. However, we could not �nd such a deviation, so we provided one.

Theorem 1. The chargesQ1; Q2; : : : ; Qc produced by the procedure form a basis for the
algebraA .

Proof. The charges are Killing-orthogonal by construction: (Q� ; Q� ) = 0 for all �; � .
The Killing form induces a metric onA by assumption. Therefore, theQ� are linearly
independent according to this metric.

The procedure producesc charges (step 8). c denotes the algebra's dimension, the
number of elements in each basis forA . Hence every linearly independent set ofc A
elements forms a basis forA . Hence, theQ� form a basis.

1This is saying that if you want the system to be nonintegrable, you can keep adding interactions until
it is
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3.3.2 Pedagogical explanation using su(2)

The procedure's starting point is an algebra. We �rst identify an arbitrary Cartan{
Weyl basis for the algebra. For this example we choose� z and � � z = 1

2(� x � i� y). We
assign the Hermitian operators to our basis of charges,Q1 = � z. If r > 1, we rescale these
operators to endow them with unit Hilbert-Schmidt norms,

Tr
�
Qy

� Q�
�

= 1; (3.5)

before including them in our preferred basis. In thesu(2) example, the ladder operators
raise and lower� z: L � z j� zi = j� zi . In other algebras, anL � � can raise and/or lower
multiple Q� 's. Examples includesu(3) (Section 3.4).

From each ladder-operator pair, we construct an interaction that couples subsystems
j and j 0. Let J (j;j 0)

� denote a hopping frequency. An interaction that transports all the
charges betweenj and j 0, while conserving each charge globally, has the form

H (j;j 0) /
(c� r )=2X

� =1

J (j;j 0)
�

�
L (j )

+ � L (j 0)
� � + L (j )

� � L (j 0)
+ �

�
: (3.6)

We assemble the other terms inH (j;j 0) from other Cartan-Weyl bases, constructed as
follows. Let U denote a general element of the groupG. We conjugate, with U, each
element of our �rst Cartan-Weyl basis: for� = 1; 2; : : : ; r and � = 1; 2; : : : ; c� r

2 ,

Q� 7! UyQ� U = Q� + r ; and (3.7)

L � � 7! UyL � � U = L � (� + c� r
2 ): (3.8)

We include the newQ� 's (for which � = r + 1; r + 2; : : : ; 2r ) in our preferred basis for the
algebra.

We constrain U such that each newQ� is Killing-orthogonal to (i) each other new
chargeQ� and (ii) each original chargeQ
 :

(Q� ; Q� ) = ( Q� ; Q
 ) = 0 (3.9)

for all �; � = r +1; r +2; : : : ; 2r and all 
 = 1; 2; : : : ; r . For su(n) the Killing form reduces to
(Q� ; Q� ) = 2 n tr( Q� Q� ). This orthogonality restricts U, though not completely. The new
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Q� 's generate a Cartan subalgebra Killing-orthogonal to the original Cartan subalgebra.
The new ladder operators contribute to the interaction:

H (j;j 0) /
c� rX

� =1

J (j;j 0)
�

�
L (j )

+ � L (j 0)
� � + h :c:

�
: (3.10)

In the su(2) example, U can be represented by the matrix
�

a � b�

b a�

�
; wherein a; b 2

C and jaj2 + jbj2 = 1. The procedure restrictsU only via the Killing-orthogonality of
Uy� zU to U. We enforce only this restriction in Appendix B.2. Here, we choose aU for
pedagogical simplicity: U = ( 1 + i� y)=

p
2, such that Q� + r = Q2 = � x . The new ladder

operators, � � x :=
�

1+ i� yp
2

�
� � z

�
1+ i� yp

2

�
, create and annihilate quanta of thex-component

of the angular momentum. The interaction becomes

H (j;j 0) /
X

� = z;x

J (j;j 0)
�

�
� (j )

+ � � (j 0)
� � + h :c:

�
: (3.11)

We repeat the preceding steps: write out the form of a generalU 2 G. Conjugate each
element of the original Cartan-Weyl basis withU. Constrain U such that the newQ� 's
are orthogonal to each other and to the olderQ� 's. Include the newQ� 's in our preferred
basis for the algebra. Form a term, inH (j;j 0) , from the new ladder operatorsL � � .

Each Cartan-Weyl basis contributesr elementsQ� to the preferred basis. The basis
contains c elements, so we formc=r mutually orthogonal Cartan-Weyl bases.c=r equals
an integer for the �nite-dimensional semisimple complex Lie algebras, according to Propo-
sition 1 in Section 3.3.1. Table 1 con�rms the claim for the simple Lie algebras. Our
algebra's �nite dimensionality ensures that our procedure halts. The two-body interaction
is now

H (j;j 0) =

c� r
2 � c

rX

� =1

J (j;j 0)
�

�
L (j )

+ � L (j 0)
� � + h :c:

�
: (3.12)

In the su(2) example, c=r = 3=1 = 3. Hence, we construct three Cartan-Weyl bases
using two SU(2) elements. If the �rst unitary was (1 + i� y)=

p
2, the second unitary is

(1 � i� x + i� y + i� z)=2, to within a global phase. Consequently,Q3 = � y, the preferred
basis forA is f � z; � x ; � yg, and

H (j;j 0) =
X

� = x;y;z

J (j;j 0)
�

�
� (j )

+ � � (j 0)
� � + h :c:

�
: (3.13)
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Next, we constrain the interaction to conserve every global charge:

[H (j;j 0) ; Qtot
� ] = 0 8� = 1; 2; : : : ; c: (3.14)

The commutation relations (3.14) constrain the hopping frequenciesJ (j;j 0)
� . The frequencies

must equal each other in thesu(2) example: J (j;j 0)
� � J (j;j 0) for all � . We show this in

Appendix B.2.3. In this case, the Hamiltonian simpli�es to the familiar Heisenberg model:

H (j;j 0) = J (j;j 0)~� (j ) � ~� (j 0) = J (j;j 0)
X

� = x;y;z

� (j )
� � (j 0)

� (3.15)

We have constructed a two-body interactionH (j;j 0) that couples subsystemsj and j 0.
We construct k-body terms H ( j;j 0;:::;j ( k ) ) by multiplying two-body terms (3.12) together,
constraining the couplings such that [H ( j;j 0;:::;j ( k ) ); Qtot

� ] = 0, and subtracting o� any fewer-
body terms that appear in the product. Section 3.3.1 details the formalism. In thesu(2)
example, a three-body interaction has the form (see Appendix B.2)

H (j;j 0;j 00) / H (j;j 0)H (j 0;j 00)H (j 00;j ) (3.16)

/ J (j;j 0;j 00) [(� x � y � z + � y � z� x + � z� x � y) � (� z� y � x + � x � z� y + � y � x � z)]: (3.17)

wherein J (j;j 0;j 00) 2 R.

The Hamiltonian we constructed may be integrable. For example, the one-dimensional
(1D) nearest-neighbor Heisenberg model is integrable [78]. Integrable Hamiltonians have
been featured in studies of noncommuting charges in thermodynamics [79]. But one might
wish for the system to thermalize as much as possible, as is promoted by nonintegrabil-
ity [66, 80]. Geometrically nonlocal couplings, many-body interactions, and multidimen-
sional lattices tend to break integrability. Hence one can add termsH (j;j 0) and H (j;j 0;:::;j ( k ) )

to the global Hamiltonian H tot , and keep growing the lattice's dimensionality, untilH tot

becomes nonintegrable. Nonintegrability may be diagnosed with, e.g., energy-gap statis-
tics [66]. In the su(2) example, one can break integrability by creating next-nearest-
neighbor couplings or by making the global system two-dimensional [45].

3.4 su(3) example

Section 3.3.2 illustrated the Hamiltonian construction procedure with the algebrasu(2).
The su(2) example o�ered simplicity but lacks other algebras' richness. In other algebras,
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each Cartan-Weyl basis contains multiple Hermitian operators and ladder-operator pairs.
We demonstrate how our procedure accommodates this richness by constructing a two-
body Hamiltonian that transports su(3) elements locally while conserving them globally.
Such Hamiltonians may be engineered for superconducting qutrits, as sketched in Chapter
7. However, thissu(3) example only illustrates our more general procedure, which works for
all �nite-dimensional semisimple complex Lie algebras on which the Killing form induces
a metric.

Each basis forsu(3) contains c = 8 elements. The most famous basis consists of the
Gell-mann matrices,� i =1 ;2;:::;8 [81]. The � i generalizes the Pauli matrices in certain ways,
being traceless and Killing-orthogonal. From the Gell-mann matrices is constructed the
conventional Cartan-Weyl basis [82], reviewed in Appendix B.5. Ther = 2 Hermitian
elements are Gell-mann matrices:

Q1 = � 3; and Q2 = � 8: (3.18)

Q1 and Q2 belong in the preferred basis of charges forsu(3). For pedagogical clarity, we
will identify all the charges before addressing the ladder operators.

A general elementU 2 SU(3) contains eight real parameters. In the Euler parameteri-
zation [83],

U = ei� 3 � 1=2ei� 2 � 2=2ei� 3 � 3=2ei� 5 � 4=2ei� 3 � 5=2ei� 2 � 6=2ei� 3 � 7=2ei� 8 � 8=2 : (3.19)

The parameters� 1; � 3; � 5; � 7 2 [0; 2� ); � 2; � 4; � 6 2 [0; � ]; and � 8 2 [0; 2
p

3� ). We now
constrain U, identifying the instances Ui that map the �rst charges to Q3 = Uy

i Q1Ui

and Q4 = Uy
ii Q2Uii that are Killing-orthogonal to each other and to the original charges.

Appendix B.5 contains the details. We label with a superscript (i) the parameters used
to �x Ui : � (i)

1 , � (i)
3 , � (i)

7 , � (i)
8 , and n(i) . For convenience, we package several parameters

together: a(i) := 1
2

�
� (i)

3 � � (i)
7 �

p
3� (i)

8 + �n (i) + �
2

�
, and b(i) := a(i) + � (i)

7 . In terms of

these parameters, the new charges have the forms (see Appendix B.5)

Q3 =
1

p
3

h
(� 1)n (i) +1 sin

�
a(i) � b(i)

�
� 1 � (� 1)n (i)

cos
�
a(i) � b(i)

�
� 2 � sin

�
a(i)

�
� 4 (3.20)

� cos
�
a(i)

�
� 5 + sin

�
b(i)

�
� 6 + cos

�
b(i)

�
� 7

i
and

Q4 =
(� 1)n (i)

p
3

h
(� 1)n (i) +1 cos

�
a(i) � b(i)

�
� 1 + ( � 1)n (i)

sin
�
a(i) � b(i)

�
� 2 + cos

�
a(i)

�
� 4 (3.21)

� sin
�
a(i)

�
� 5 + cos

�
b(i)

�
� 6 � sin

�
b(i)

�
� 7

i
:
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Q3 has the same form asQ5 and Q7, which satisfy the same Killing-orthogonality con-
ditions. Similarly, Q4 has the same form asQ6 and Q8. We denote the later charges'
parameters bya(` ) and b(` ) . These parameters are more restricted (see Appendix B.5). We
have identi�ed our preferred basis of charges.

Let us construct the ladder operators and Hamiltonian. Each Cartan-Weyl basis con-
tains c � r = 8 � 2 = 6 ladder operators. The conventional Cartan-Weyl basis contains
ladder operators formed from Gell-man matrices:

L � 1 := 1
2(� 1 � i� 2); L � 2 := 1

2(� 4 � i� 5); and L � 3 := 1
2(� 6 � i� 7): (3.22)

Transforming these operators with unitariesUii ;iii ;iv yields L � 4 through L � 12, whose forms
appear in Appendix B.5. From each ladder operator, we form one term in the two-body
Hamiltonian (3.6).

Finally, we determine the hopping frequenciesJ (j;j 0)
� , demanding that [H (j;j 0) ; Qtot

� ] = 0
for all � . For all possible values of thea(` ) , b(` ) , and n(` ) , if all the frequencies are nonzero,
then all the frequencies equal each other. We setJ (j;j 0)

� � 4
3 J (j;j 0) , such that

H (j;j 0) = J (j;j 0)
8X

� =1

� (j )
� � (j 0)

� /
8X

� =1

Q(j )
� Q(j 0)

� : (3.23)

The Hamiltonian collapses to a simple form analogous to thesu(2) example's Eq. (3.15)
(see Appendix B.3).

3.5 Summary & Outlook

We have presented a procedure for constructing Hamiltonians that transport noncom-
muting charges locally while conserving the charges globally. The Hamiltonians can couple
arbitrarily many subsystems together and can be integrable or nonintegrable. The pro-
cedure produces, as well as Hamiltonians, preferred bases of charges that are (i) overtly
transported locally and conserved globally and (ii) Killing-form-orthogonal. This construc-
tion works whenever the charges form a �nite-dimensional semisimple complex Lie algebra
on which the Killing form induces a metric. Whether there exists any Hamiltonians that
transport charges locally, while conserving the charges globally, outside of those found by
our procedure, is an interesting open question for theoretical exploration.

This work systematically bridges noncommuting thermodynamic charges from abstract
quantum information theory to condensed matter, AMO physics, and high-energy and
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nuclear physics. The mathematical results that have accrued can now be tested experi-
mentally via our construction. When we �rst wrote reference [2], we presented the follow-
ing predictions that merited experimental exploration: (i) the emergence of the quantum
equilibrium state in [43, 42, 12], (ii) the decrease in entropy production by noncommuting
charges [14], (iii) applications of the entropy decrease to quantum engines [84], (iv) the
conjecture that noncommuting charges hinder thermalization [13], and (v) the conjecture's
application to quantum memories. Since then, the �rst bullet has been experimentally
veri�ed [46] using one of the Hamiltonians identi�ed in this work2. Furthermore, other
results have since been proposed that merit testing|increases in entanglement [3], critical
phases [1], etc. Such experiments' bene�ts include the simulation of quantum systems
larger than what classical computers can simulate, uncovering behaviours not predicted by
theory, and grounding abstract QIT thermodynamics in physical reality.

As mentioned above, the Heisenberg model (3.13) can be implemented with various
hardware. Reference [45] details how to harness these setups to study noncommuting
thermodynamic charges. Here, we present a more intricate proposal by employing current
superconducting qubit experimental platforms to implement our general framework'ssu(3)
instance.

Superconducting circuits can serve as qudits with Hilbert-space dimensionalitiesd �
2 [85]. Qutrits have been realized with transmons [86]. The lowest two energy levels often
serve as a qubit, but the second energy gap nearly equals the �rst. Hence, the third level
can be addressed relatively easily [87]. Superconducting qutrits o�er a tabletop platform
for transporting and conservingsu(3) charges as in Section 3.4.

Experiments with � 5 qutrits have been run [88, 89]. Furthermore, many of the tools
used to control and measure superconducting qubits can be applied to qutrits [87, 90, 91,
92, 93]. T �

2 relaxation times of � 39 � s, for the lowest energy gap, and� 14 � s, for the
second-lowest gap, have been achieved [89]. Meanwhile, two-qutrit gates can be realized in
� 10� 102 ns [89, 94, 95]. Some constant number of such gates may implement one three-
level gate that simulates a term in our Hamiltonian. If the number is order-10, information
should be able to traverse an 8-qutrit system� 10 times before the qutrits decohere
detrimentally. According to numerics in [13], a small subsystem nears thermalization
once information has had time to traverse the global system a number of times linear
in N . Therefore, realizations of our Hamiltonians are expected to thermalize the system
internally. The states of small subsystems, such as qutrit pairs, can be read out via
quantum state tomography [87, 90, 91, 92, 93]. Hence, by simulating the Hamiltonians
constructed here, superconducting qutrits and other platforms can import noncommuting

2To be fair, this same Hamiltonian had come up in earlier literature on noncommuting charges[12]
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charges from quantum thermodynamics to many-body physics.
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Chapter 4

Noncommuting charges can increase
average entanglement

This chapter is based on reference [3] and overlaps with its text.

4.1 Introduction

In Chapter 3, we successfully connected noncommuting charge physics with many-body
physics and experiments. Now, we study the implications of charge noncommutation in
quantum many-body theory. Entanglement tends to accompany thermalization in quantum
systems. Justifying how a pure initial state can evolve unitarily to a state that looks
thermal locally requires entanglement. Thus, entanglement serves as an ideal focal point
for exploring the impacts of charge noncommutation.

Entanglement has illuminated quantum many-body phenomena from space-time's struc-
ture [96, 97, 98] to phases [99, 100, 101, 102] and thermalization [69]. A large, isolated
many-body system thermalizes internally when evolved under a nonintegrable Hamilto-
nian (Section 2.3). Such dynamics tend to imbue an initial pure state, after long times,
with properties closely approximated in pure states drawn randomly from the available
Hilbert space. The random state's average bipartite entanglement is quanti�ed with a
Page curve [103]: consider partitioning the system into two subsystems, calculating a sub-
system's entanglement entropy, and averaging the entropy over states drawn randomly
from the full system's Hilbert space. The average, plotted against the subsystem's size,
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forms a Page curve. (We present a more technical introduction to Page curves in Section
4.2).

Page curves have been studied in the context of Abelian symmetries, i.e., commuting
charges [104, 105]. This is done by drawing random pure states from a chosen particle-
number sector, a microcanonical subspaceS, instead of the full Hilbert space. More
generally, the system may have multiple charges that commute with each other, so that
the symmetry remains Abelian.S can be chosen to be an eigenspace shared by the charges.
We aim to quantify how charges' noncommutation|a symmetry's non-Abelian nature|
a�ects Page curves.

This comparison calls for two models that parallel each other closely, yet di�er in
whether their charges commute. Whether such models exist, what \parallel closely" should
mean, and how to construct such models is unclear. We therefore posit criteria to encapsu-
late models' analogousness. Furthermore, we construct two models that meet these criteria.
Each model consists of two-qubit sites. Every local charge is a product of two-qubit Pauli
operators and/or identity operators.

We compare these models' Page curves in two settings. Conventional thermodynamics
suggests one: a microcanonical subspace, a simultaneous eigenspace of the charges. The
noncommuting-charge model has only one microcanonical subspace. Thus, we also identify
approximate microcanonical subspaces (see Section 2.2.2) in the noncommuting-charge
model and analogs in the commuting-charge model. Each pair of such subspaces yields
another pair of Page curves.

We estimate the Page curves numerically and, in the microcanonical comparison, an-
alytically. In every setting where we can do so, the nonconcommuting-charge Page curve
lies above the commuting-charge curve. On average, therefore, charges' noncommutation
appears to promote entanglement. For systems ofN � 1 sites, the Page curves' separa-
tion decreases, but only polynomially in the system size, as 1=N. We posit that the gap
arises solely from whether the charges commute, due to the close parallel between our two
models. This conjecture calls for testing with more parallel models and for more-general
explanations, which we partially leave as a challenge for future research.

The rest of this paper is organized as follows. In Section 4.2, we overview Page curves;
in Section 4.3, we present the analogous models. We compare the models' Page curves using
microcanonical subspaces (Section 4.4), then using approximate microcanonical subspaces
(Section 4.5). Section 4.6 concludes with opportunities established by this work.
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4.2 Page-curve background

To introduce Page curves, we must introduce entanglement entropy. Consider an iso-
lated (\global") system, associated with a Hilbert spaceH, in a pure statej� i . Denote by
A a subsystem associated with a dimension-DA Hilbert space. Denote byB the rest of the
system. The full system's Hilbert space is the tensor product of the subsystems' Hilbert
spaces. The entanglement entropy is the von Neumann entropy of� A := Tr B (j� ih� j) [37]:

SE := S(� A ) := � Tr( � A log� A ) � logDA : (4.1)

The logarithms are basee, giving entropies in units of nats. A is entangled with B if
SE > 0.

The Page curve quanti�es the average entanglement in a subspaceS of interest. Let
A consist ofNA identical sites, and letB consist ofNB more, such thatNA + NB = N .
Consider selecting a global pure state fromS uniformly at random according to the Haar
measure [106]. CalculatingSE, then averaging over Haar-random states, yields

hSE i S := � h Tr( � A log� A )i S : (4.2)

Plotted against NA , hSE i S forms the Page curve for subspaceS [103].

We estimate the curve numerically as follows. Denote byfj  ` ig any basis for the
subspace. We weight thè th element with a random numberc̀ drawn from a complex
normal distribution. Summing the weighted elements, and renormalizing with a constant
Cnorm , we form a Haar-random state: 1

Cnorm

P
` c̀ j ` i . We sample 103{104 states, calculate

each state'sSE, and average to estimate the Page curve.

In the best-known example, no charges constrain the system [103]. Denote byH the full
Hilbert space and byd the local dimension (of a site's Hilbert space). The unconstrained
Page curve is, forNA � NB ,

hSE i H � NA logd �
1
2

dNA � NB : (4.3)

The terms in Eq. (4.3) stem from di�erent physics, as do the analogous terms in con-
strained Page curves. Consider averaging the Haar-random states overS before calculating
any entropy. The averaged state,h� i S, is the maximally mixed state within S. Tracing
out B yields h� A i S := Tr B (h� i S), whose entropy follows from state-counting arguments
(App. C.1). We therefore callS (h� A i S) the subspace-S Page curve's state-counting term.
In terms of it, the curve decomposes as

hSE i S = S (h� A i S) + [ hSE i S � S (h� A i S)] : (4.4)
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Sinceh� i S is maximally mixed, S (h� A i S) equals the greatest possible entropy:hSE i S �
S (h� A i S). Hence the bracketed term in Eq. (4.4) is� 0. That term encodes the interference
between di�erent states' contributions to the Page curve's Haar average. This interference
term is exponentially small inNB � NA [103]. In the unconstrained curve (4.3),NA logd
is the state-counting term, and� 1

2dNA � NB is the interference term.

4.3 Analogous noncommuting-charge and commuting-
charge models

We aim to identify how charges' noncommutation a�ects the Page curve. Therefore,
we need two models that di�er in whether their charges commute and otherwise di�er
minimally. Whether such models exist, what \di�er minimally" should mean, and how to
construct such models is unclear. For instance, the most commonly studied non-Abelian
symmetry group is SU(2); the associated charges are the Pauli operators,X , Y, and
Z . How to construct an analogous model with three commuting charges is not obvious.
For example, the group U(1)� 3 is generated by three charges that commute but are not
multiplicatively interrelated. In contrast, XY = iZ .

We address this challenge by positing �ve criteria that capture what renders the model
with noncommuting charges and commuting charges analogous. Then, we construct two
models that meet these criteria. As in the last chapter, we denote byQtot

� the global
noncommuting charges. We denote byCtot

� the global commuting charges. The criteria
concern also the subspaces used to calculate the Page curves. Denote byj i any state
from the noncommuting-charge subspaceQ. MeasuringQtot

� yields outcome� with some
probability. This probability, averaged over the j i , we denote bypQ

� (� ). De�ne pC
� (� )

analogously for the commuting-charge subspaceC.

We de�ne as analogous any commuting-charge and noncommuting-charge models that
satisfy �ve criteria:

1. In each model, the system consists ofN sites, each formed from ad-level qudit. Each
model hasc charges.

2. Each global charge (i) is a sum of single-site observables and (ii) acts nontrivially
and identically on all sites.

3. Each chargeQtot
� has the same spectrum as its analogCtot

� .
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Figure 4.1: Analogous noncommuting-charge and commuting-charge models.
Each model consists ofN sites. A site consists of two qubits,a and b. The local non-
commuting observables of interest includeQ1; and the local commuting observables,C1.

4. Any two commuting charges form a product analogous to the analogous noncommut-
ing charges' product.

5. The constrained subspaces,Q and C, are such thatpQ
� (� ) = pC

� (� ).

We now construct two models that satisfy the criteria (Fig. 4.1). Each global charge
(Qtot

� or Ctot
� ) follows from summing single-site observablesQ� or C� . Denote by Q(j )

� an
observable de�ned on sitej 's Hilbert space, and de�neC(j )

� analogously. As in the last
chapter, the global charges are extensive:

Qtot
� :=

NX

j =1

1
 ( j � 1) 
 Q(j )
� 
 1
 (N � j ) �

NX

j =1

Q(j )
� ; (4.5)

and Ctot
� :=

P N
j =1 C(j )

� .

The noncommuting charges can generatesu(2) if each site contains one qubit (d = 2).
By criterion 2, three charges impose up to three restrictions on each site1. A fourth
restriction follows from the normalization of the site's state. These restrictions suggest
that, to support a model with three commuting charges,d should be� 4. Choosingd = 4
for simplicity, we form each site's qudit from two qubits,a and b. The noncommuting local
observables are

Q1 = X a 
 1b; Q2 = Ya 
 1b; and Q3 = Za 
 1b; (4.6)

and the commuting local observables are

C1 = X a 
 X b; C2 = Ya 
 Yb; and C3 = Za 
 Zb: (4.7)
1The restrictions are on the global system. Depending on the charges, there could be less than three

independent restrictions per site.
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It is straightforward to check that [Q� ; Q� ] = 2i� ��
 Q
 and [C� ; C� ] = 0.

These models satisfy criteria 1{3 overtly and by simple calculation. Criterion 4 concerns
products of charges. For unequal indices�; �; 
 2 f 1; 2; 3g,

Q� Q� = i� ��
 Q
 ; and C� C� = � C
 : (4.8)

These equations parallel each other because multiplying two distinct charges yields the
third charge times a constant. Furthermore,Q� Q� = C� C� = 1 8� .

Criterion 5 is satis�ed if we choose subspaces adroitly. In the microcanonical subspaces
identi�ed below, the pQ

� (� )'s and pC
� (� )'s equal Kronecker delta functions and so each other.

As detailed below, we can also construct approximate microcanonical subspaces such that
pQ

� (� ) = pC
� (� ) for all � and � .

4.4 Microcanonical-subspace comparison

The noncommuting-charge model has exactly one microcanonical subspace,Q0: the
eigenvalue-0 eigenspace shared byQtot

1;2;3. This subspace exists only ifN is even. The
analogous commuting-charge subspace,C0, is the eigenvalue-0 eigenspace shared byCtot

1;2;3.
This subspace exists only ifN equals a multiple of four (App. C.1.2).

We estimate Page curves numerically using the procedure outlined in Section 4.2 and
using [107]. Here,hSE i S denotes the Page curve for a subspaceS, and hSE i H denotes the
unrestricted Page curve (4.3). To highlight the gap between the noncommuting-charge and
commuting-charge curves, we plothSE i S �h SE i H for S = Q0, C0 in Fig. 4.2. At all partition
locationsNA , the noncommuting-charge Page curve lies above the commuting-charge Page
curve. For example, at the midpoint (NA = N=2), the gap is 0:124 nats (17:8% of the
average of the two Page curves atNA = N=2) when N = 4 and 0:0797 nats (10:5%) when
N = 8. In this microcanonical case, therefore, the subspace constrained by noncommuting
charges has more entanglement, on average.

We posit the following possible explanations for this phenomenon in our setting. First,
the subspace's dimensionality upper-bounds the entanglement entropy:SE � logDA

[Eq. (4.1)]. The bound tends to approximate random states' entropies. Hence one might
expect a higher Page curve of whichever model has the larger subspace. Indeed, the
noncommuting-charge subspace is of dimensionality 32, whenN = 4, exceeding the commuting-
charge dimensionality of 24. WhenN = 8, the noncommuting-charge dimensionality is
3584, again exceeding its commuting-charge analog, 2520. Our analytical results below
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(a) Global-system sizeN = 4 (b) Global-system sizeN = 8

Figure 4.2: Page curves constructed from microcanonical subspaces. hSE i S denotes
any Page curve restricted by charges; andhSE i H , the unrestricted Page curve. The red x's
form the noncommuting-charge model's Page curve, and the circular blue markers form the
commuting-charge model's Page curve. The connecting lines guide the eye. We calculated
the top panel's (N = 4) Page curves from 104 samples each and the bottom panel's (N = 8)
Page curves from 103 samples each. Thex-axis ends atNA = N=2 for conciseness; the
Page curves are symmetric according to numerics. The error bars are present but are too
small to see.

agree at largeN : the noncommuting-charge curve lies above the commuting-charge curve
if approximated with the state-counting term, which depends essentially on subspace di-
mensionality.

We expect this dimensionality argument to explain our results only partially, the Page
curves do not saturate the upper bound (4.1). Hence we posit that, when the compared
subspaces have similar dimensionalities, their minimally entangled bases may help deter-
mine the Page curves' relative locations. The commuting-charge model's microcanonical
subspace,C0, has a tensor-product basis. The reason is, every global chargeCtot

� commutes
with all the subsystem chargesC(A )

� 0 and C(B )
� 00 . In contrast, in the noncommuting-charge

model, each global chargeQtot
� fails to commute with some subsystem chargesQ(A )

� 0 and
Q(B )

� 00 . Hence the microcanonical subspaceN0 has no tensor-product basis. Therefore,
the minimally entangled basis has more entanglement in the noncommuting-charge model.
Hence one might expect a higher Page curve there. Additionally, in App. C.3, we show
that sequentially introducing charges restricts the Page curve subadditively if the charges
fail to commute, and superadditively if the charges commute, at �niteN .

We now analytically calculate the di�erence between the noncommuting-charge and
commuting-charge Page curves in these microcanonical subspaces at largeN . Recall that
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the interference term [Eq. (4.4)] is exponentially small inNB � NA [103]. Consequently, the
state-counting term approximates the Page curve whenNB � NA � 1 2. We calculate state-
counting terms in App. C.1, using large-N expansions. We assume thatNA ; NB = O(N );
the subsystems' sizes are near their average values. Both subspaces' Page curves have the
leading, O(N 0) term

L := NA logd �
3
2

log
N
NB

+
3NA

2N
: (4.9)

The noncommuting-charge Page curve is

L +
3NA

4N 2
+

N 2
A

2N 2NB
+ O

�
N � 3

2

�
; (4.10)

and the commuting-charge Page curve is3

L +
3NA

4N 2
�

N 2
A

2N 2NB
+ O

�
N � 3

2

�
: (4.11)

The noncommuting-charge Page curve is greater by an amountN
2
A

N 2NB
, at leading order.

The di�erence decreases asN grows. This decline is consistent with the correspondence
principle [63]|as systems grow large, they grow classical. Noncommutation is nonclassical,
so its e�ects on observable phenomena should diminish asN ! 1 [13]. More precisely, the
charge densitiesQtot

� =N have commutators that vanish in the thermodynamic limit [108,
13]: [Qtot

� =N; Qtot
� 0 =N] ! 0, for all � and � 0, asN ! 1 . However, the Page-curve di�erence

shrinks relatively slowly|as 1 =N, rather than exponentially|as N grows.

To be clear, we have posited explanations for the di�erence we observed in the model's
Page curve. However, we do not prove that one of these reasons is the cause of the di�erence
in the entanglement entropy.

4.5 Approximate-microcanonical-subspace comparison

Having compared our two models using microcanonical subspaces, we progress to ap-
proximate microcanonical subspaces, generalizations that accommodate charge noncommu-
tation [13, 46, 45]. Instead of having well-de�ned values in an approximate microcanonical

2Computational restrictions prevent NB � NA from growing very large in the numerics. Therefore, we
refrain from plotting our analytics in Fig. 4.2.

3In both expressions, theO
�

N � 3
2

�
term may vanish, so the next nonzero term may beO

�
N � 2

�
.
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subspace, the charges have fairly well-de�ned values: measuring anyQtot
� has a high prob-

ability of yielding an outcome close to the expected value. This section outlines how to
construct analogous approximate microcanonical subspaces in the noncommuting-charge
and commuting-charge models. We then compare the models' Page curves numerically.
The noncommuting-charge Page curve is always higher, as in the microcanonical-subspace
comparison.

One can construct as follows approximate microcanonical subspaces in the noncommuting-
charge model. De�ne thea-qubit magnetization Z tot

a :=
P N

j =1 Za, which has eigenvalues

2m. De�ne the a-type spin-squared operator (~Stot
a )2 :=

P 3
a=1 (Qtot

a )2, which has eigenvalues
s(s + 1) (we set ~ = 1). ( ~Stot

a )2 shares withZ tot
a eigenspacesQ labeled by the quantum

numbers (s; m). Thus, (~Stot
a )2 
 1tot

b shares withQtot
3 eigenspacesQ labeled by the quan-

tum numbers (s; m). Some such eigenspaces are approximate microcanonical subspaces, we
�nd by direct calculation. For each (s; m) value, we calculate the probability distributions
pQ

� (� ). Each distribution exhibits one peak, as required by the de�nition of \approximate
microcanonical subspace," for certain (s; m) (App. C.4). Having identi�ed approximate mi-
crocanonical subspaces de�ned by noncommuting charges, we construct analogsC de�ned
by commuting charges. Appendix C.4 details the process. We identify six pairs of paral-
lel (commuting-charge and noncommuting-charge) approximate microcanonical subspaces,
labeled bys = m = 1; N=2, for N = 4; 8, as well as bys = m = N=2, for N = 2; 6.

We estimate each approximate microcanonical subspace's Page curve numerically. In
every comparison, the noncommuting-charge (Q) Page curve lies above its commuting-
charge (C) partner. An illustrative example is parameterized byN = 8 and s = m = 1.
We compare the two curves at the midpointNA = N=2. Recall that hSE i S denotes a Page
curve for the subspaceS. When NA = 4, hSE i Q � h SE i C = 0:027 nats, which is 7:11%
of the two Page curves' average. The percent di�erence varies across the approximate-
microcanonical-subspace pairs from 0:272% to 7:11%. Hence charges' noncommutation
increases the average entanglement entropy in approximate microcanonical subspaces as
in the microcanonical comparison.

4.6 Summary & Outlook

We have demonstrated that constrained charges' noncommutation promotes average
entanglement. Numerical and analytical calculations support this conclusion in micro-
canonical and approximate microcanonical subspaces. In the microcanonical comparison,
the Page-curve gap stems from the discrepancy between the subspaces' dimensionalities.
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This work reveals how one hallmark of quantum theory|operators' failure to commute|
in
uences another|entanglement. Due to entanglement's role in thermalization, our re-
sults are suggestive of how charges' noncommutation a�ects quantum many-body thermal-
ization (as discussed more below).

Our conclusions rest on two models that resemble each other closely but di�er in
whether their charges commute. Our models can now be used to explore e�ects of charges'
noncommutation on other quantum phenomena. Possibilities include chaos [109, 66], as
analyzed with out-of-time-ordered correlators [110, 111, 112, 113] and random unitary
circuits [114, 115]; bounds on quantum-simulation errors [116]; and quantum-machine-
learning algorithms' performances [117].

After publishing rerence [3] we came across other works that concern non-Abelian sym-
metries' e�ects on entanglement entropy, but focus less on what charges' noncommutation
changes and not on normal Page curves. For example, a non-Abelian symmetry raises the
entanglement in Wess{Zumino{Witten models, (1+1)-dimensional conformal �eld theories
with Lie-group symmetries [118, 119]. Second, holographic calculations highlight another
correction that non-Abelian symmetries introduce into entanglement entropy [120, 121].
This correction appears to be negative. However, [120, 121] concern symmetry-resolved
Page curves, in contrast with the conventional Page curves of [3]. A symmetry-resolved
Page curve models the entanglement, averaged over time, of a system whose charges move
only within A and within B , not between the subsystems. Conventional Page curves
model less-restricted thermalization. Third, algebraic-quantum-�eld-theory calculations
agree that non-Abelian symmetries should raise Page curves [122].

These works suggest several research opportunities. The entanglement entropy's in-
crease merits checking with other comparable models �a la Fig. 4.1. Additionally, one
might adjust the Page-curve calculations following Marvian's revelation that local charge-
conserving unitaries constrain globalU's tightly [59]. Under locality constraints, the Haar
distribution may model chaotic dynamics inaccurately.

Additionally, our results raise a puzzle. We �nd that charges' noncommutation pro-
motes entanglement, which accompanies thermalization. This result links noncommuting
charges to enhanced thermalization. In contrast, charges' noncommutation was found to
restrict thermalizing behaviours in several ways detailed in Section 2.4.1. These results
invite a more general understanding of when non-Abelian symmetries enhance or suppress
entanglement and thermalization.

Apart from the foregoing theoretical opportunities, the di�erence between commuting-
charge and noncommuting-charge entanglement entropies may be observed experimentally.
For example, at the Page curves' midpoints (NA = N=2), the di�erence is 0:124 nats in the
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microcanonical setting forN = 4. A precision of � 0:05 nats should, therefore, su�ce to
observe the di�erence. Such a precision has been achieved with trapped ions [123, 124, 125]
and ultracold atoms [22, 126, 127]. Fortunately, noncommuting-charge thermodynamics
has been shown to be observable on these platforms [2, 46].
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Chapter 5

Noncommuting charges induce a
critical phase in monitored quantum
circuits

This chapter is based on reference [4] and overlaps with its text.

5.1 Introduction

In the preceding chapter, we found that the noncommutation of charges can lead to
increased entanglement. This �nding warrants further examination for two primary rea-
sons. Entanglement is necessary to explain how closed quantum systems thermalize lo-
cally. In this sense, we say entanglement accompanies thermalization. However, numerous
studies have suggested that noncommuting charges should impede thermalization (see Sec-
tion 2.4.1). While the �ndings in Chapter 4 do not technically contradict these studies
due to di�erences in the set-up, this discrepancy prompts a deeper inquiry. Secondly, our
results were derived from a single model, raising the question of their generality. It is
important to explore more diverse settings to understand the broader implications of non-
commuting charges on entanglement dynamics. Another setting is in monitored quantum
circuits.

Monitored quantum circuits are random unitary circuits augmented with mid-circuit
projective measurements [114, 128, 129]. A typical monitored quantum circuit acts on a
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chain of L qubits. The circuit contains layers of unitary gates applied between nearest-
neighbour qubits. We say two-qubit gates acting on qubits 0-1, 2-3, etc., act on even-bonds,
and others, on odd bonds. These layers alternate between the unitaries applied on the even
and odd bonds, creating a so-called \brick-work" circuit as shown in Fig. 5.1. A unitary
gate can also be applied between the �rst andLth qubit during the even-bond layers to
introduce periodic boundary conditions. Between each layer of unitaries, single-site projec-
tive measurements are performed with probabilityp on each qubit. Since the unitaries are
random, the choice of measurement basis is arbitrary. A hallmark of monitored circuit is
that they exhibit measurement-induced phase transitions due to the competition between
entangling unitaries and disentangling measurements. These transitions have received sig-
ni�cant attention recently (see the reviews [114, 128, 129] for a survey of the results).
A measurement-induced phase transition is a transition between phases with distinct en-
tanglement scalings: volume-lawindex (scaling asL in 1D) and area-law (constant,L0, in
1D) [99, 100].

In principle, random circuits reduce quantum dynamics to their most fundamental as-
pects: unitarity and locality. This simpli�cation allows for the examination of generic,
model-independent properties of quantum systems. As a result, random circuits have
emerged as a valuable tool for isolating speci�c properties to analyze their in
uence on
entanglement dynamics. Monitored circuits, in particular, have been enhanced by incorpo-
rating commuting charge conservation [130, 131, 132, 133, 134, 135], targeted measurements
of speci�c operators (such as the generators of the toric-code stabilizer) [136, 137], and the
substitution of qubits with free fermions [138, 139, 140, 141, 142, 143]. Introducing a sin-
gle charge, represented as a U(1) symmetry, did not signi�cantly alter the entanglement
dynamics; both volume-law and area-law entanglement persisted. The phase transition
between two entanglement regimes occurred at a smaller value ofp (at p � 1=10 instead of
p � 1=6). To further understand the impact of noncommuting charges on entanglement,
we explore monitored quantum circuits that incorporate such charges.

Having numerically constructed monitored circuits with noncommuting charges, it's
sensible to extend our study to the in
uence of these charges on other phase transitions.
The entanglement phase transition can equivalently be seen as a puri�cation transition
between a mixed phase and a pure phase [144]. When the measurement ratep is low,
the chaotic dynamics scramble information about the initial state. Local measurements
cannot extract that information in this mixed phase. An initially mixed state becomes
pure, conditionally on measurement outcomes, in a timetP � exp(L), with L the number
of qubits. In contrast, at largep, the measurements can distinguish di�erent initial states
e�ciently. In this pure phase, an initially mixed state puri�es quickly, often at an L-
independent rate [99]. Furthermore, U(1)-symmetric monitored circuits exhibit a second
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type of phase transition|a charge-sharpening transition [132] between a charge-fuzzy phase
and a charge-sharp phase. In the charge-fuzzy phase, it takes much longer to learn the
global charge from local measurements than in the charge-sharp phase. This is what
distinguishes the two phases.

In this work, we explore monitored-random-circuit dynamics of one-dimensional qubit
chains with SU(2) symmetry. Equivalently, the circuits conserve three noncommuting
charges: the total spin angular momentum's components. Our main �rst result is the
identi�cation of a transition from a volume-law entangled phase to a critical phase. We
have three pieces of evidence that support this result. First, we explore the puri�cation
dynamics of a spin chain initially entangled with an ancilla spin. We identify a puri�cation
transition between a mixed phase, in which the ancilla puri�es over an exponential-in-
L time, and a critical phase with scale-invariant puri�cation and entanglement growth.
Above a critical measurement rate (atp > pc), we observe an extended-in-p critical phase
in which the puri�cation time scales di�usively: tP � L2. Second, we examine the entan-
glement dynamics undergone by an initially unentangled state. The puri�cation transition
doubles as an entanglement transition between volume-law entanglement scaling, atp < pc,
and subextensive (logarithmic or small-power-law) scaling, atp > pc. The critical entan-
glement dynamicsp > pc|even in the measurement-only limit ( p = 1)|due to the local
measurements' noncommuting nature. Finally, we study the mutual information between
sites on opposite ends of the chain. Since the chain has periodic boundary conditions, it
is like a ring, so these qubits areL=2 sites apart. As one approaches a criticalpoint, the
mutual information begins to peak and drops back down as one passes the point. However,
the mutual information will grow and stay large in the critical phase. We observe such
behaviour.

Observing the puri�cation/entanglement transition experimentally would require many
instances of the same set of measurement outcomes. Such instances occur with vanishing
likelihood in the thermodynamic limit. This challenge is the postselection problem. To
evade this di�culty, we explore a \spin-sharpening/learnability" transition. Denote by s
the total spin quantum number. We examine whether the dynamics collapse an initial
superposition of states in di�erents sectors. Unlike in the U(1)-symmetric problem, the
sectors generally cannot be shared by the (extensive) charges: our system's three charges,
failing to commute, share only one sector. We identify a spin-sharpening transition at a
measurement ratep = p# , which is numerically indistinguishable from the entanglement-
transition rate: p# � pc. In the \spin-sharp" phase (p > p# ), an observer can, in principle,
determine the system'ss in a time scalet � L2, with a probability tending to unity as
L ! 1 . In contrast, in the \spin-fuzzy" phase (p < p# ), the time scale ist � L3. This
\learning" perspective might be used to probe the transition experimentally.
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Figure 5.1: SU(2)-symmetric monitored quantum circuits. L qubits (circles) are
prepared in the state� i . Each \brick" in the brickwork circuit is an SU(2)-symmetric
unitary gate with a probability 1 � p and is a two-qubit projective measurement with a
probability p. The circuit acts for some time (some number of layers) before the �nal state,
� f , is read out. One brick illustrates which bonds have even (odd) indices.

The rest of this paper is organized as follows. In Section 5.2, we introduce SU(2)-
symmetric monitored quantum circuits. We present the numerics revealing the critical
phase in Section 5.3 and the spin-sharpening transition in Section 5.4. Section 5.5 �nishes
with opportunities established by this work.

5.2 SU(2)-symmetric monitored circuits

Consider a brickwork circuit acting on a 1D chain of qubits, as depicted in Fig. 5.1. The
number L of spins is even for convenience. Denote by� (x;y;z )

j the Pauli matrices acting on

qubit j . The total spin componentsS(x;y;z ) = 1
2

P L
j =1 � (x;y;z )

j generate the algebra associated

with a global SU(2) symmetry. We set~ to 1. The spin-squared operator~S2 has eigenvalues
s(s + 1) labelled by the total spin quantum number s. We denote the eigenvalues ofS(z)

by m, the two-qubit singlet state by js0i , and the two-qubit eigenvalue-m triplets by jtm i .

Each brick is, with a probability 1 � p, a gate, or, with a probability p, a projective
measurement. The gates are chosen randomly from SU(2). The most general such gate
acting on spinsj and j + 1, has the form1

cos(� )1 � i sin(� ) SWAP j;j +1 ; (5.1)

1This is found by solving for the unitary U which satis�es
h
U; � ( � )

j + � ( � )
j +1

i
= 08� .
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