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Abstract

Functional profiling of genomes and metagenomes, as well as data mining for novel
proteins, all rely on computational methods for functional annotation of protein sequences.
Standard methods assign protein function based on detected homology to reference sequences,
but often leave behind a significant fraction of hypothetical sequences (“dark matter”)
that cannot be annotated. To maximize our ability to extract new biological insights from
newly sequenced genomes, it is critical to understand the advantages and limitations of
homology-based annotation, and explore alternative methods for inferring function. In
this thesis, I performed a comprehensive exploration of computational protein annotation,
with a focus on bacterial genomes and metagenomes. First, I applied homology-based
methods to functionally annotate and analyze original datasets including newly sequenced
Streptomyces strains, a wastewater metagenome, and microbial communities involved in
vertebrate decomposition. These studies identified genes and functions of interest including
cellulases, antibiotic resistance genes, and virulence factors. I then explored the limits of
homology-based annotation by measuring annotation coverage, the fraction of annotated
proteins in a proteome, across ∼27,000 organisms in the microbial tree of life. This study
demonstrated a wide range in annotation coverage across bacteria, from 2-86%. In addition,
it revealed multiple factors including taxonomy, genome size, and research bias, as heavy
influences on the degree to which proteomes could be annotated. To gain biological insights
into hypothetical proteins of unknown function, I analyzed 4,049 domains of unknown
function (DUFs) from Pfam. Using phylogenomic, taxonomic and metagenomic information,
I detected statistical associations between domains and biological traits. Association-based
methods uncovered environment, lineage, and/or pathogen associations in just under half
of all DUFs and highlighted new families such as DUF4765 as intriguing virulence factor
candidates. Finally, I constructed a database of “ORFan” metagenomic sequences that
cannot be annotated using standard approaches, and inferred functions for tens of thousands
of these sequences using profile-profile comparison approaches. Motif analysis and genomic
context validated these predictions, enabling the discovery of hundreds of novel candidate
metalloproteases. Protein “dark matter”, which includes a large pool of unannotated
coding sequences, is an incredible resource to find new proteins and functions of interest,
and included are suggestions on how to prioritize these sequences for future study. A
combination of homology-based and alternative annotation methods will be most effective
for broad functional profiling of genomes and metagenomes, and can push the boundaries
for functional interpretation of sequence data.
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Chapter 1

Introduction

[...] there seem to be two possible views on functional completeness: �rst,
that we can reliably predict functions for the majority of proteins; or
second, that there is a seemingly endless repertoire of specialized families
and we cannot predict whether we are approaching the limits of protein
function space.

Protein Function Space: Viewing the Limits or Limited by our View?
Jeroen Raes et al. 254

Material in this chapter has been published as part of Lobb and Doxey (2016).177 The
published manuscript is available here:

B. Lobb and A. C. Doxey. Novel function discovery through sequence and
structural data mining. Current Opinion in Structural Biology, 38:53-61, 2016.177

https://doi.org/10.1016/j.sbi.2016.05.017

Function is an expansive and complex term that is hard to de�ne. With regards to biology,
this can refer to a biochemical level (e.g. with residues interacting to facilitate reactions), a
molecular network (e.g. metabolic pathways within the cell), and a higher-level cellular
role (e.g. in a community or within a multi-cellular organism). The concept of function
used within this thesis is broad and includes \molecular function" as well as \biological
process", consistent with functional ontologies19 and assessments of prediction methods.253

This functional information comes from a patchwork of puri�cation, biochemical assays,
physiological experiments and phenotypic observations. One experiment alone cannot fully
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describe a protein's role at all perceived levels. In order to build a picture of the protein's
functional facets, multiple sources of functional information must be compared and combined.
Translation of experimentally-derived functions into usable functional terms,annotations, is
an on-going process, with 40,230 molecular function and biological process Gene Ontology
(GO) terms currently applied to proteins across many databases1. Annotations also include
other database ontologies/vocabularies, compiled notes (e.g. functional summaries from
Interpro or Uniprot), researcher-bestowed protein names (e.g. autoagglutinating adhesin),
identi�ed domains, and protein family associations.

With the development of cheaper and faster sequencing technologies, sequence databases
have been ooded with new submissions. Since Dec. 2019, there have been over 1,000,000
new entries in Genbank alone2. In the absence of thorough experimental characterization,
a protein would be without any functional annotations without some kind of transfer of
functional information from one sequence to another. As orthologous3 proteins generally
possess the same functions, �nding a protein's homologs can provide a source for annotation
transfer. Thus, classic methods, like BLAST,8 were developed in order to e�ciently �nd
similar sequences with a high probability of homology. However, the sequence alignments
that BLAST uses are sometimes not sensitive enough to �nd divergent, but still functionally
similar, protein homologs. Newer methods, discussed in this thesis, incorporate protein
family models, search iterations, and combinations of di�erent reference databases to
achieve greater levels of annotation success. When these homology-based methods do
not �nd sequence matches, other annotation strategies including domain, motif, genomic
neighborhood, association, co-occurrence, and strucural analyses can be explored.

Annotation is used to gather putative functions for a sequence, analyze the functional
potential of genomes and metagenomes, and to guide future study. With a pool of
uncharacterized proteins, �nding novel proteins, that have unexplored roles or locations,
is an added bene�t of annotation. Data mining, or the extraction of useful, interesting
information from a dataset, is the basis for many important discoveries (e.g. proteolytic
agellin 63). With the wealth of sequence data available, in databases and through new
sequencing ventures, �nding interesting novel proteins is eminently achievable. Tailored
approaches leverage known information from di�erent sources and methods in order to
strengthen predictions. In this chapter, I will introduce some of the many di�erent strategies
for �nding proteins of interest, and discuss how this can be accomplished through di�erent
annotation techniques.

1http://geneontology.org/stats.html for the current release v2020-06-01
21,789,213 sequences were deposited into GenBank from Dec. 2019 - Jun. 2020 (https://www.ncbi.

nlm.nih.gov/genbank/statistics/ )
3Sequences that are related across a speciation event.
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1.1 Homology-based functional annotation

1.1.1 Protein sequence and homology

Homologous sequences share a common ancestor and are thus more similar to each other
than they are to other unrelated sequences. As homologs, especially orthologs4, are
generally considered to be functionally similar, this concept forms the basis for functional
annotation.160 Using sequence alignments enables one to infer homology between sequences,
by comparing their sequence similarity. In an alignment, ideally the related amino acids or
nucleotides are aligned, with gaps indicating insertions or deletions relative to their most
recent common ancestor. The alignment is then scored, to get a sense of alignment quality.
In the classic BLAST8 (basic local alignment search tool) implementation, a statistical
measure of alignment \signi�cance" is also used, theE-value(expect value). TheE-value
does not only look at the alignment itself but also the context in which the match was
found5, taking into account the chance that it is a random match and not a homologous
sequence. For example, anE-value of 1 means that one sequence match is expected by
chance in a database of the same size, with a similar alignment score. If theE-value is
low, it indicates that the two sequences have a good alignment quality and therefore, have
evidence for homology. It is important to note that low alignment quality is not a guarantee
that there is no evolutionary relationship between sequences, as the sequences may have
diverged so far that signi�cant sequence similarity is no longer detected. BLAST is not
the only sequence-sequence search tool. There are many sequence alignment tools with
di�erent levels of sensitivity and speed.27,66,236,263,291 These can all be used in order to �nd
sequences with high similarity, transferring functional information from one sequence to
another.

1.1.2 Protein and domain family pro�les

Groups of related sequences with a common ancestor together form a protein family.
Multiple sequence alignments (MSAs), with multiple family members aligned, enable an
exploration of shared sequence traits between the proteins. After aligning family members,
certain positions often show up as less variable. Conserved residues in these families are
sometimes catalytic sites or ligands, like in the metalloprotease HExxH motif found in the

4Paralogs, sequences related across a gene duplication event, generally diverge to the point of shifting in
function.160, 231

5The E-value incorporates the length of query sequence and the database size as well as the bit-score of
the sequence alignment.
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PeptidaseM60 (PF13402) family. These residues can also be conserved due to structural
importance (e.g. disul�de bridges or binding site pockets).38,147,172 These conserved residues
are used as a functional and structuralsignature for the family, allowing more divergent
members to be discovered. PSSMs and HMMs6 act as models or pro�les of these protein
families, using information about the amino acid distribution at each position to inform
sequence searches. Example sequence-model searches are hmmscan,64 that scan protein
sequences against models of protein and/or domain families, and PSIBLAST7 (position-
speci�c iterative BLAST), which builds a model of top-scoring database hits across multiple
iterative model-to-sequence searches.

Models can be built, not just from full-length proteins but also from domains. A domain
is a folded structural unit within a protein and proteins are made up of one or more of these
domain units. Domain pro�les are used to �nd matches to building blocks of proteins (such
as catalytic or binding regions), sometimes allowing functional information transfer even in
the absence of a full protein match.75 Thus, a domain model is a powerful tool for functional
annotation, taking advantage of the evolutionary phenomenon of domain recombination as a
means of generating new functional combinations.22,163 Through sequence-pro�le methods,
functional annotations are transferred based on either collective information about a protein
or a domain family, with a more sensitive approach for protein classi�cation.

1.1.3 Where are we now?

Modern sequencing technologies continue to accelerate the collection of new genes and
genomes. This sequence information has become invaluable to protein researchers, fuelling
advances in computational methods for structure and function prediction,89,119,362 analysis
of protein family evolution,26,92,192,361 and protein design.25,185 Sequence databases are
improving with regards to annotations5,34 and coverage of protein domain space.67,286

Interpro announced in 2019 that its annotation coverage had further increased to 80.9%
of the � 125,000,000 sequences in UniProtKB.214 In addition, structural data is growing
through structural genomics initiatives,97,140 further enabling large-scale homology modelling
e�orts. 168,244

The accuracy of protein function prediction has improved over the years as a result of
better methods, as well as increased experimentally-based annotations.126,253 Many proteins
predicted from genomes can now be at least partially annotated166,214 through detected
homology to existing proteins (e.g., via BLAST search) or through matches to domain
databases such as CDD,183 Pfam,67 CATH, 286 and FIGFAMs.210 CDD and Interpro,115

6HMMs also incorporate information about gap propensity.
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in particular, combine domain and protein models from their own and other databases
in order to have more comprehensive annotations. Focused, niche databases have also
been created for speci�c functions (antibiotic resistance - Comprehensive Antibiotic Resis-
tance Database;125 CARD) and organisms (http://iant.toulouse.inra.fr/S.meliloti )
which seek to collect exceptionally well-curated annotations. These predictions form the
initial landscape of functional annotations in newly sequenced genomes, upon which further
questions may be investigated.

One important and common question following functional annotation is how to pinpoint
the most functionally novel and biologically interesting predictions. This task is challenging
due to the scale at which function predictions are often made and also because of the
complexities surrounding the de�nition of \function". 254 As a result, expert biological
knowledge is needed to interpret predictions and identify those providing particularly novel
or unexpected biological functionality.

1.1.4 Finding homologs in unexpected places

Homology search has been described as the single most powerful tool in bioinformatics and,
for decades, has been the core strategy in protein annotation.8 Beyond its utility in �nding
new members or relatives of existing families, homology search can also reveal profound
functional novelty when a homolog is found in a novel/unexpected biological setting. This
setting may be a new species or environment,54,190,264,327 or an unexpected co-occurrence
with other proteins/pathways.40,324 The discovery of bacterial rhodopsins,16,327 archaeal
ammonia monooxygenases,155,327 and, complete nitri�cation by Nitrospira,40,324 are all
examples of important biological phenomena predicted through sequence homology.

The discovery of complete nitri�cation40,324 illustrates the power of detecting unex-
pected enzyme combinations. By identifying genes encoding ammonia monooxygenase
and hydroxylamine dehydrogenase together in a single genome, two studies40,324 were able
to identify the microbial basis for the long-sought-after process of complete nitri�cation
(oxidation of ammonia to nitrate, \comammox"). Undersampled phyla from the tree of
life are a likely hotspot for functional novelty of this kind as their genomes have been less
explored. Indeed, analyses of hundreds of new microbial \dark matter" genomes obtained
by single-cell genome sequencing have revealed novel and unexpected metabolic features
such as archaeal sigma factors previously considered exclusive to bacteria.264 Ultimately,
even if molecular function is completely conserved in newly detected homologs, �nding
homologs in unexpected biological settings can reveal novelty at the pathway to organismal
to ecological level.40,264,324,327
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1.1.5 Problems with homology-based annotation

Homology-based annotation techniques can be used to �nd protein novelty but there remain
serious pitfalls with these methods. Sequence similarity is not a guarantee of a full overlap of
function. As proteins diverge, their function at lower and higher levels can change (e.g. a shift
in binding a�nity and/or substrate leading to a change in a protein's cellular role). Large
protein families have subdivisions within them that can be regulated in entirely di�erent
ways and have di�erent functions.277,290 While proteins evolve at di�erent rates, Tian and
Skolnick311 found that a sequence identity of 40% was enough to transfer the �rst three
levels7 of an Enzyme Classi�cation (E.C.) number between sequences but for a full enzyme
classi�cation per-family thresholds were needed for accuracy.160,277 To combat the problem
of overannotation8, databases like Pfam and CARD125 have implemented model-speci�c
thresholds in order to provide guidelines for higher accuracy. Without careful attention to
the way that certain residues, insertions and deletions can alter function, misclassi�cation is
possible. A recent look at the DmdA family of peptidases,92 prone to paralogous divergence
within its family phylogeny, found overannotation of the protein using automated methods.
A more accurate model was constructed by incorporating environmental data to �ll in
underepresented taxa, identifying sequences directly annotated by experimental data, and
re�ning the model with phylogenetic analysis.92 Once a protein is given an incorrect
functional association, that error can propagate throughout a database. For example,
during the discovery of \comammox" organisms, ammonia monooxygenase subunit A
sequences were found in the NCBI nr database misclassi�ed as methane monooxygenases.324

Annotation errors, either due to sequence divergence or incorrect database entry, are the
reason that clear history from annotation to experimental data is so vital. This allows
researchers to trace information back to its source and assess the validity of an annotation.

Another shortcoming is that homology-based annotation methods are not able to func-
tionally annotate all query sequences. Experimental characterization of proteins is an
expensive, time-consuming task and, as an example, there are still 23% (4155) of the
domain families in Pfam v33.1 that are called domains of unknown function (DUFs). There
are also still genomic and metagenomic CDSs without database coverage. Some of these
may be pseudogenes or a result of inaccurate or fragmented assemblies. This problem is
enhanced in metagenomes where many predicted coding sequences are incomplete. High
community complexity combined with low coverage can seriously impact the annotation

7The levels of E.C. numbers are denoted by digits.
8Overannotation refers to assigning a \full" function to a new protein where it may only be loosely

related in function to its sequence match (i.e. should be found within a protein superfamily like the enolases
but not in the speci�c subgroup in which it was placed).
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process as short contigs lead to short CDSs. Sequencing technology, �nal assembly quality,
and the coding sequence prediction software can also a�ect the length and accuracy of
the CDSs.245,254 Shorter sequences are harder to annotate due to lower possible alignment
scores and poor database coverage. Viral sequences are also extremely underrepresented in
current databases, with viromes having some of the worst annotation coverage.4,44,245 The
majority of taxonomically classi�ed genomes in NCBI Genome are from Proteobacteria and
Firmicutes,232 with a study in 2019 �nding them overrepresented in 16S rRNA databases
compared to the estimated taxonomic diversity in other phyla.182 Lack of taxonomic
representation and protein characterization for unculturable or hard-to-culture organisms
creates limits for homology-based functional annotation. Due to the naive aspects of
homology-based functional annotation, and its inability to �nd accurate functional annota-
tions for underrepresented protein families and organsisms, alternate methods for extracting
functional information are an increasingly popular option.

1.2 Alternative approaches for analyzing and infer-
ring protein function

1.2.1 Detecting functional shifts in sequences

As newly identi�ed homologs may have diverged in function with respect to their refer-
ence, �nding functional shifts in sequences or families (for example through detection of
site-speci�c changes in evolutionary rate or amino acid preference297) is another way to
uncover function. Several studies have applied the evolutionary trace (ET) method172 to
identify conserved and likely functional sites that di�er between protein subfamilies.134,266,301

Applications of these methods to families of G protein-coupled receptors have uncovered
speci�city-determining residues (SDRs) that di�erentiate substrate a�nity and speci-
�city. 134,266,301 These studies also highlight the important role of changes to allosteric
pathways in shaping the evolution of speci�city.

Analyses of functional diversi�cation have also been expanded to entire protein su-
perfamilies.26,79,111,200 An e�ective approach has been to map structural and functional
properties onto large-scale sequence similarity networks of enzyme superfamilies, thus
revealing broad-scale di�erentiation of substrate speci�city and how it correlates with
sequence and structural features.26 Such approaches have revealed functional di�erentiation
in ligases,111 cytosolic glutathione transferases,200 dipeptide epimerases,184 and diverse
trans-polyprenyl transferases.332 In a recent study, Furnham et al.79 examined changes in
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enzymatic function within 379 protein domain superfamilies, revealing how both subtle and
large-scale changes in enzymatic machinery can lead to functional changes in chemistry
and substrate speci�city.

Building on past approaches,1 databases have attempted to subdivide known protein
families into functionally distinct subfamilies. The FunFHMMer method has subdivided
6,119 CATH superfamilies into 67,598 subfamilies (FunFams) with increased functional
coherency.43,286 Similarly, the Selectome database has predicted positive selection across
thousands of vertebrate protein phylogenies, facilitating large-scale exploration of adaptive
evolution.220

While the above approaches tend to examine functional shifts over macroevolutionary
time scales, others are better suited to detecting microevolutionary positive selection on
single nucleotide polymorphism (SNP) and indel variants.330 Genome-wide scans for positive
selection for example have revealed a wide array of adaptive events in recent microbial233

and human evolution.99 Methods such as SIFT/Provean151 have been used to estimate
the functional impact of protein variants, and genome-wide screens using these methods
have uncovered bacterial protein adaptations for increased pathogenicity and antibiotic
resistance.297,315

1.2.2 Remote homology detection

While many proteins can at least �nd a match in popular annotation databases, anywhere
from 2-81% of genomes and up to 86% of metagenomes are frequently left without any
assigned functional information, lacking detectable homology to proteins of known function
(Figure 1.1). These are the most challenging, yet biologically intriguing, targets for
function prediction. These sequences include so-called ORFans,76,284 DUFs,123,221 and
protein \dark matter". 240 Many apparent ORFan proteins have been predicted to be
highly divergent homologs of known structural families.90,123 For these cases, remote
evolutionary relationships to known families can potentially be predicted using methods
such as HHpred,261 Protein Homology/Analogy Recognition Engine138 (PHYRE2), and
Iterative Threading Assembly Re�nement345 (I-TASSER).
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Figure 1.1: Annotation coverage of genomes and metagenomes from JGI's201 Integrated
Microbial Genomes and Metagenomes (IMG/M) database. GOLD (Genomes Online
Database) analysis project IDs are: Ga0244168, Ga0334891, Ga0334942, Ga0376466,
Ga0373948, Ga0373643, Ga0335017, Ga0325419, and Ga0326737. For the metagenomes, all
but the human stool sample were sequenced with the Illumina Novaseq (Illumina HiSeq
2500 was used for the human sample) and annotated with the IMG Annotation Pipeline
v.5.0.1-3 (v.4.16.4 used for the human sample). The number of annotated coding sequences
were divided by the number of predicted coding sequences provided to get a fraction.Figure
based on Prakash and Taylor, 2012.245

HHpred261 uses pro�le HMM-HMM searches to sensitively compare the conservation
pro�les between families, ideally discovering shared functional or structural signatures that
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suggest an evolutionary link or convergent evolution. This tool is used for �nding templates
in threading methods like PHYRE2 and I-TASSER9, which subsequently model the query
sequence onto the chosen templates and further re�ne the structures by incorporating
secondary structure information and using ab initio modelling on unaligned regions.138,346

Resulting models can then be compared to functionally annotated proteins to gain functional
insights, like enzyme superfamily, ontology terms, and possible ligand binding sites, from
their distantly-similar match.

Remote homology detection has been successful in elucidating the structures and possible
functions of apparent protein dark matter.123,221,240 Perdig~ao et al.240 surveyed the \dark
proteome" (segments of proteins that lack detectable similarity to known structures).
Surprisingly, dark matter made up almost half of the eukaryotic proteome, and again dark
proteins were found to be associated with certain functions such as secretion, disul�de-
bonding and proteolytic cleavage.

Ultimately, protein dark matter is a particularly intriguing target for future characteri-
zation e�orts. Recent studies suggest that the proportion of novel folds in newly discovered
domain families may be as high as 36%.265 Identifying which DUFs are most likely to provide
new folds is thus an important goal. Developments in de novo structure prediction (e.g.,
covariation approaches112,197) have been suggested as a promising strategy to complement
experimental approaches and accelerate the identi�cation of new structures.

If structural data is available for a protein or can be modelled (either through threading
or ab initio methods), attempts can be made to predict biochemical functiondirectly from
structure. Structure-based function prediction is therefore a potential solution to uncovering
function for DUFs solved by structural genomics initiatives.70,360 In addition, these methods
may uncover new functionality in structures with existing annotations and predict new
protein interactions.355

1.2.3 Motifs and domain architectures

In the absence of global sequence homology, motifs and domains can be used to identify
a protein's functional or structural pieces. These techniques can also be used to try
and support, expand, or further re�ne the functions determined from remote homology
(or other methods). Linear motifs10, examples of which include the PxxP (SH3 domain

9I-TASSER uses LOMETS339 to �nd templates which incorporates predictions from nine di�erent tools,
including HHpred.

10Also called short linear motifs (SLiMs), these are stretches of 3-15 adjacent amino acids that are a mix
of high and loosely conserved residues.96
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binding motif) and PxY (WW domain binding motif), tend to be embedded in disordered
regions and mediate protein{protein interactions.50,226,314 \Binding motifs" like these
(together with posttranslational modi�cation sites) are widespread in proteomes, with
repositories in the PROSITE285 and Eukaryotic Linear Motif 150 (ELM) databases, and
yet are largely understudied.314 Because they are short and have a propensity to arise
independently they can also capture convergent evolution of function in unrelated proteins,
but are statistically di�cult to predict without additional (e.g. structural) information.
One example application of motif predictions in function discovery is the identi�cation of
host-like proteins in pathogenic organisms, or so-called \mimicry".35,57,329 This feature of
many pathogen proteins has been exploited by computational methods to predict novel
virulence factors.57,241 For example, Doxey and McConkey57 predicted widespread mimicry
of human extracellular matrix proteins across a diverse range of human pathogenic bacteria,
based on detected similarities between motifs in collagen and leucine-rich repeat proteins.
The predicted mimics represent new candidate virulence factors.

Multi-domain architectures, or combinations of domains across a protein, can reveal
information about the protein itself, but also about which domains cooperate together.
Domains have been duplicated and recombined extensively throughout protein evolution.163

Experimental and computational approaches have shown that domain shu�ing can signif-
icantly impact the organization of signalling networks,239,364 and new domains may also
alter protein function and enzymatic activity.63,163 This was demonstrated in a recent study
of the domains found in the agellin hypervariable region of bacteria. A metallopeptidase
insertion between the two agellin domains indicates an enzymatic role for agella, making
the agella the largest known proteolytic complex.63 Identi�cation of novel domain combi-
nations may signify new functionality, however, predicting the functional consequences of
domain combinations is a challenging and important goal.253

1.2.4 Genomic context and inferred functional associations

In contrast to methods that identify function directly within protein sequence and structure,
function can sometimes be inferred using associated information. Functional associations
may be inferred using a wide variety of techniques including detected protein enrich-
ment in certain species or environments,57 genotype-phenotype correlations,62,173 networks
analysis,331 and analysis of neighbouring gene or domain functions (genomic or domain
context).114,288 For example, a comparison of genomes with and without a certain phe-
notype can reveal genes associated with the phenotype in question (genotype-phenotype
correlations), whereas prokaryotic genome organization (i.e. genes with similar functions or
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genes for similar pathways end up near each other42,81,145,195,271,344)11 enables high-level
function predictions based on proximity (genomic context). In addition, databases such
as STRING provide predicted interactions based on gene fusions, gene neighbourhoods,
coexpression, and gene co-occurrence.303 Since these methods use contextual information,
they can be used to infer function of completely uncharacterized sequences. Indeed, these
methods have been instrumental in historical examples of function discovery (e.g., the initial
prediction of the CRISPR/Cas system187,188).

One area in which these methods have played an important role is metagenomic enzyme
discovery.320 The human gut microbiome has become a major target for �nding novel
Carbohydrate-Active enZYmes (CAZymes) due to its considerable diversity of uncharac-
terized glycan-degrading activities associated mostly with the phylum Bacteroidetes.135

To discover novel enzymes with important roles in the human gut, studies have searched
for proteins with increased relative abundance in gut metagenomes,68,225 high sequence
novelty282 and genomic context suggestive of carbohydrate metabolism.308 Taking advan-
tage of the tendency for CAZymes to be genomically clustered in operons, Terrapon et
al.308 used both genomic and domain context to automate the prediction of polysaccharide
utilization loci (PUL) in Bacteroidetes genomes (see Figure 1.2 for an example). Predicted
PULs facilitate hypothesis generation and experimental discovery of new metabolic activ-
ities.110,158 For example, Martens et al.198 identi�ed a PUL in Bacteroides ovatusthat
was transcriptionally upregulated by galactoxyloglucan, which led to the discovery of a
novel xyloglucan metabolism locus found ubiquitously in human gut metagenomes.158 The
same study also illustrates how context-based predictions can sometimes be misleading.
The study's characterization of the \Bacteroidetes-Associated Carbohydrate-binding Often
N-terminal (BACON)" domain, a domain initially predicted to have carbohydrate-binding
activity based on its recurring association with CAZyme families,206 found no evidence of
carbohydrate-binding.158 Instead, the domain played a role in membrane anchoring and
positioning of its partner catalytic domain.

11This phenomenon is exempli�ed by operons, a single promoter-controlled gene cluster.
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Figure 1.2: Genomic data mining for novel CAZyme activities by integration of genomic
context with structural modelling. The genomes of human gutBacteroides species are
an excellent resource of novel carbohydrate-active enzymes and associated proteins. For
targeted discovery of new carbohydrate metabolic functions, one approach is to �rst identify
general genomic regions called polysaccharide utilization loci (PULs) that contain a high
density of predicted carbohydrate-active enzymes (CAZymes).308 Second, based on gene
neighbourhood, possible CAZyme activity can be inferred for hypothetical genes found
within these loci. To provide added evidence of CAZyme activity, predicted protein
sequences can be structurally modelled and analyzed for similarity to CAZyme structures.
The three structure predictions shown above were made using PHYRE.139 Proteins satisfying
all conditions are potentially new CAZymes with novel speci�cities or activities.

1.3 Applications of integrative approaches to function
prediction

An important, long-standing theme in computational function prediction is the gain in
predictive accuracy from data and methodological integration.156,195,362 Greater con�dence
in function prediction can also be gained from multiple lines of evidence as demonstrated in
Figure 1.2, which illustrates the use of genomic context and remote homology detection to
predict novel CAZymes. Indeed, the best performing method in the latest Critical Assess-
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ment of Functional Annotation (CAFA) challenge362 combined �ve component classi�ers
including information about sequence properties (e.g. molecular weight, the isoelectric
point, and a measure of instability), sequence alignment scores, GO term frequency, and
domain and motif matches.352 Increased coverage of protein structure space has also lead
to an increase in data integration, as this enables a greater fraction of predicted protein
sequences to be homology modelled and analyzed using structural bioinformatics.243

Studies have seen a considerable integration of data and methods including combinations
of homology modelling, docking, sequence similarity networks, phylogenetics, genomic
context, and metabolic analysis.14,70,184,332,360,361 For example, the combination of homology
modelling and ligand-docking has allowed sequences that lack available structural data
to be virtually screened for novel activity. This approach successfully predicted pterin
deaminase activity in a protein of unknown function.70 Bastard et al.14 combined homology
modelling, docking, phylogenetic comparisons, genomic context, and metabolic analysis
with high-throughput enzymatic screening, and uncovered 14 new enzymatic activities
in the DUF849 family (now renamed as Pfam family \BKACE"). This impressive study
reveals DUFs as an important source of new enzymatic functions and also highlights the
tremendous functional diversity to be found within single enzyme families. Finally, Zhao et
al.360 combined structure-based approaches with genomic context information to predict
the substrate speci�city of several enzymes in a bacterial gene cluster. The approach not
only predicted the function of an uncharacterized protein in the gene cluster, but also
identi�ed its role within a speci�c catabolic pathway by integrating information from the
surrounding gene neighbourhood.

1.4 Thesis outline

As described thus far, there are a wide range of computational approaches available for
assigning and analyzing protein function from sequence information. However, with the
explosion of new sequence data from increased genome and metagenome sequencing, there
are a number of important questions concerning functional annotation which form the basis
of my thesis.

� How can new functions or biological insights be gained both by homology-based or
alternative methods of functional annotation?

� How e�ective are standard methods of homology-based protein annotation at anno-
tating entire genomes or metagenomes?
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� And what trends (biological or otherwise) are associated with the sequences that
homology-based methods fail to annotate?

In this thesis, I explore these questions using a combination of focused bioinformatic
studies of original sequencing datasets, as well as large-scale analyses of existing protein
databases. In Chapter 2, I begin by exploring the use of homology-based methods to
analyze newly-generated genomic and metagenomic datasets, with the goal of detecting
speci�c protein families/functions of interest including cellulases (2.1), antibiotic resistance
proteins (2.2) and virulence factors (2.3, Table 1.1). I also perform a data-driven study
(2.3) to detect global functional di�erences that occur in a time course of decomposing �sh,
which provides a rich resource of new genomic and protein sequence information.

These studies indicate that homology-based annotation is only able to capture a fraction
of the total protein diversity in each dataset, which motivates my work in Chapter 3.
In Chapter 3, I apply standard homology-based methods to functionally annotate over
27,000 bacterial genomes in the Genome Taxonomy Database, measure their \annotation
completeness", and identify major factors inuencing annotation completeness.

Then in Chapters 4 and 5, I explore additional methods for inferring the function of
uncharacterized proteins. In Chapter 4, I analyze all� 17,000 protein domain families in
Pfam, including domain families of unknown function (DUFs), and develop strategies for
detecting statistical associations between these families and other biological information. In
Chapter 5, I turn my attention to uncharacterized proteins that are not even accounted for
in current databases. By analyzing human gut, marine, and soil metagenomes, I construct a
dataset of these \ORFan" proteins, that lack any detectable homology to existing reference
databases. I then apply powerful remote homology-based approaches to infer their molecular
functions, pro�ling the \dark" fraction that homology-based annotation leaves behind.
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Table 1.1: Summary of thesis chapters.
Group analyzed Datatype Problem Approach used
Chapter 2
2.1 Novel Streptomyces

strains
genomes �nd pathways of interest

and high-con�dence
cellulase predictions

homology-based
metabolic pathway database
and multi-method comparison

2.2 Research farm
wastewater

metagenome uncover antibiotic-
resistance genes

homology-based
focused antibiotic resistance
database

2.3 Time-series of a
rainbow darter
necrobiome

metagenomes
and
metagenome-
assembled
genomes

pro�le the necrobiome and
explore any potential
pathogens

homology-based
metabolic pathway database
focused virulence factor
database

Chapter 3
Bacterial genomes across
the tree of life

genomes compare annotation
completeness throughout
bacteria

homology-based
protein and domain family
databases

Chapter 4
Uncharacterized Pfam
protein domain
families

domain fami-
lies

provide biological context
to prioritize families for
characterization

alternate
phenotype associations
with environmentally-classi�ed
metagenomes and
with taxa and pathogen-
classi�ed genomes

Chapter 5
ORFan sequences (lacking
detectable homology to
current databases)

metagenomes pro�le protein dark matter alternate
remote homology,
genomic context,
and motif analysis
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Chapter 2

Case studies of homology-based
genome and metagenome analysis

First, I aimed to examine how we can use standard homology-based annotation methods
to �nd novel proteins. There are numerous databases and tools for performing sequence
- sequence or sequence - model annotation methods. Using focused databases for certain
protein families or combining multiple databases and methods to lend more con�dence to
predictions are strategies explored here on newly sequenced genomes, metagenomes, and
metagenome-assembled genomes (MAGs). Each of the following case studies is an example
of either a targeted or exploratory search for novel proteins of interest, with the annotation
strategies tailored for the individual circumstances.

In the �rst case study, collaborators isolated twoStreptomycesstrains from rhizosphere
soil that were able to grow on starch, xylan and cellulose. As cellulases can be used
in the production of environmentally friendly biofuels, a key goal of this study was to
learn more about the isolated organisms and about the cellulases they may be able to
produce. Phylogenetic analysis with otherStreptomycesgenomes and a comparison of
the genomic sequence similarity between closely matched strains allowed placement of
the newly sequenced organisms withinStreptomyces. A thorough look at a metabolic
database annotation of the organisms revealed inferences about their metabolic potential,
and combining the annotations from four di�erent methods/databases allowed a moderate
number of high-con�dence cellulase predictions.

A newly sequenced wastewater metagenome was analyzed in the second case-study
for antibiotic resistance. This sample was of importance to a group of microbiologists
working in association with a research farm in South Africa. Other farms have been
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shown to be a source of antibiotic resistance, in part due to use of antibiotics for livestock.
Of interest were antibiotic resistance genes present in the microbial community, as well
as any potentially pathogenic genera present that could contain these genes. A niche
antibiotic resistance database was used to target the resistome, as its well-curated models
and stringent match threshold cut-o�s result in more accurate analyses than less-focused
databases. Genes associated with tetracycline and streptomycin resistance were the most
frequent, with Thauera, a genera already associated with wastewater and sludge, dominating
the community.

Little is known about the microbial decomposition of aquatic vertebrates from a func-
tional and environmental context. In the �nal case study, a common North American �sh
(rainbow darter) was analyzed for temporal changes in its \necrobiome". By combining
16S rRNA gene and shotgun metagenomic sequence data from four time points, I studied
the progression of decomposers from both taxonomic and functional perspectives. Metage-
nomic analysis of metabolic pathway annotations revealed signi�cant changes throughout
decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other
compounds. Binning of contigs con�rmed a predominance ofAeromonasin the necrobiome,
including novel strains related to the human and �sh pathogenAeromonas veronii. A
virulence factor annotation database revealed that theAeromonasbins encoded known
hemolysin toxins (e.g., aerolysin) which were particularly abundant early in the process,
potentially contributing to host cell lysis during decomposition.

2.1 Draft genome sequences of two novel cellulolytic
Streptomyces strains isolated from South African
rhizosphere soil

Material in this section has been published as part of Adegboye et al. (2018).2 The
published manuscript is available here:

M. F. Adegboye, B. Lobb, O. O. Babalola, A. C. Doxey, and K. Ma. Draft
genome sequences of two novel cellulolyticStreptomycesstrains isolated from
South African rhizosphere soil. Genome Announcements, 6(26):e00632-18.
2018.2 https://doi.org/10.1128/genomeA.00632-18
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2.1.1 Introduction

Streptomycesspecies are known for their diverse metabolic potential, wide range of an-
tibiotic biosynthesis capabilities, and their ability to degrade unique compounds, such
as lignocellulose, keratin, xylan, pectin, cellulose, lignin, chitin, and styrene.136,167,259,272

They also produce various hydrolytic enzymes, such as amylase, lipase, esterase, gelatinase,
xylanase, and cellulases.

The cellulase family is comprised of three di�erent types of enzymes: endoglucanase
or endo-1,4-� -D-glucanase [EC 3.2.1.4] which breaks down the internal� -1,4 glycosidic
bonds, exoglucanase or cellobiohydrolases [EC 3.2.1.91] which release two (cellobiose)86

or four (cellotetraose)365 saccharide units from the ends, and� -glucosidase [EC 3.2.1 .21]
which hydrolyzes the short oligosaccharides produced during cellulose degradation into
glucose.289 Cellulases can be used for the hydrolysis of lignocellulose to fermentable sugars
which can be used as feedstock for the production of biofuels that have been proven to be
environmentally friendly, help reduce dependence on fossil fuel, and serve as an alternative
for declining petroleum reservoirs.12 Novel cellulases with properties that will improve
industrial processes like higher catalytic e�ciency or tolerance to various temperature/pH
levels are sought after.58 As many industrial cellulases have been fromTrichoderma spp.
and Aspergillusspp.,359 the varied Streptomycesgenus represents an opportunity for enzyme
discovery. The isolation of environmentalStreptomycesspecies capable of lignocellulose
degradation is therefore of considerable interest.

2.1.2 Methods

Sample preparation, sequencing and assembly

Initial isolation, experimental characterization, and sample preparation done by Dr. Mobolaji
Adegboye, Dr. Olubukola Babalola, and Dr. Kesen Ma.

Streptomycesstrains NWU339 and NWU49 were isolated from rhizosphere soil as
described in Adegboye et al., 2013215 and subsequently cultured using starch casein agar.
Genomic DNA (50 ng) was extracted using the Wizard genomic DNA puri�cation kit
from the Promega Corporation. Sequencing libraries were prepared using the Nextera
DNA sample preparation kit (Illumina). Sequencing was performed on an Illumina HiSeq
platform, and genome assembly was performed using NGen v14 with Q25 trimming1. The
raw reads were deposited in the Sequence Read Archive (SRA) under the accession number

1Molecular Research LP (USA) provided sequencing and assembly services.
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SRP148117. The assemblies forStreptomycessp. NWU339 andStreptomyces viridosporus
NWU49 were deposited in GenBank under the accession numbers QFRK00000000 and
QFXB00000000, respectively.

Annotation and phylogenetic analysis

Gene �nding and genome annotation were then performed using Prokka v1.12 (databases
downloaded 26 January 2018). Parsing Prokka's output to determine annotation cover-
age was performed as described in Methods 3.2). MetAnnotate242 with its default set
of taxonomic markers on the sequence similarity \fast mode" was used to con�rm phy-
logenetic placement in March 2018. Closely relatedStreptomycesgenomes from NCBI
(based on BLASTN results from the 16S rRNA sequences) were used for the phylogenetic
analysis. The tree was made using RAxML v8.2.12295 with the LG likelihood model
made from concatenated single-copy core protein sequences detected with Anvi'o69 (Camp-
bell et al. set30). Average nucleotide identity (ANI) was calculated with calcANI.pl v1
(available at https://github.com/Computational-conSequences/SequenceTools ) using
the FastANI v1.3120 option. RAST (SEED) annotations were provided by Molecular
Research LP (USA) using default settings. Any function identi�ed only as \hypothet-
ical protein" was removed to determine annotation coverage. For metabolic analysis,
KEGG annotations were identi�ed with GhostKOALA 133 using the \prokaryotes" set-
ting in March 2018. CAZyme annotations were obtained via the dbCAN meta server349

with default settings in March 2018. TIGRFAM annotations were determined with the
TIGRFAM database v15.0105 using a threshold of 1� 10-3 with hmmscan from HMMER
v3.1b1. Pfam annotations were derived from Pfam v27.075 and applied with HMMER
v3.1b1 and Pfamscan (atftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/ ). COG
annotations were performed by Anvi'o v5.2 with the COG 2014 database306 �les sourced
from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/ .

2.1.3 Results

Two novel Streptomycesstrains (NWU339 and NWU49) were isolated from the rhizosphere
of maize in North West Province, South Africa, as described previously in Adegboye et al.,
2013.215 Both strains were capable of growing on polymeric carbohydrate substrates, such
as starch, xylan, and cellulose. Sequencing and assembly of NWU339 produced 169 contigs,
resulting in a draft genome of 9,425,309 bp, with a GC content of 70.8%. Whereas, the
assembly of NWU49 produced 97 contigs, resulting in a draft genome of 8,905,076 bp, with
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a GC content of 72.3%. The genomes of NWU339 and NWU49 encode 8,776 and 8,021
protein-coding sequences, 8 and 7 rRNA genes, and 88 and 100 tRNAs, respectively.

A 16S rRNA phylogenetic tree had been constructed previously by Adegboye et al.,
2013.215 Phylogenetic analysis of taxonomic marker genes using MetAnnotate242 con�rmed
NWU339 to be a novelStreptomycesstrain with 97.0% 16S rRNA identity to Strepto-
myces poonensisNRRL B-2319 (809 bp alignment with NR043852.1). Whereas, NWU49
possessed 98.4% 16S rRNA identity toStreptomyces viridosporusNBRC154142 (1167 bp
alignment with NR 112460.1). A phylogenetic tree using concatenated single-copy genes was
constructed for better resolution of the organisms' placement withinStreptomyces(Figure
2.1). This tree shows NWU49 falling within the well-supportedStreptomyces viridosporus
clade, and the overall topology matches the Genome Taxonomy Database235 tree topol-
ogy for similar organisms (including NWU49 and NWU339; visible with the AnnoTree207

web interfacehttp://annotree.uwaterloo.ca/app/#/?qtype=tax&qstring=67581 ). A
comparison of NWU49 to the genome ofStreptomyces viridosporusATCC 146723 using
an average nucleotide identity (ANI) calculator resulted in an ANI of 99.0% (Table 2.1),
indicating that they are likely the same species (> 95%120).

2Since this article was published,Streptomyces ghanaensisNBRC15414 and ATCC 14672 have been
changed toStreptomyces viridosporusNBRC15414 and ATCC 14672 in NCBI.

3See footnote 2.
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Figure 2.1: RAxML tree with the LG likelihood model made from concatenated single-
copy core protein sequences detected with Anvi'o (Campbell et al. set30). The tree was
outgrouped with Streptomyces malaysiense. Streptomycesgenomes with similar 16S rRNA
sequences were used for this tree and sourced from NCBI Genome. This tree was visualized
with iTOL. 165

In order to investigate the strains' metabolic potential, KEGG (a database with metabolic
pathway information) annotations were analyzed. Matches to enzymes forming a metabolic
pathway for benzoate degradation were detected in both organisms (including [EC 1.14.12.10]
and [EC 1.3.1.25]). NWU339 also had matches to toluene and xylene degradation enzymes.
NWU49 contained pathways for the degradation of sphingosine and trans-cinnamate and
for the biosynthesis of polyamines and trehalose. Complete predicted pathways in NWU49
also included the biosynthesis of a nine-membered core molecule for enediyne, an anticancer
metabolite.

While KEGG predicted cellulases in NWU339 and NWU49, Prokka was also used
to provide more resolution for the cellulase family predictions. According to Prokka
annotations, NWU339 contained 15 putative cellulase-related genes, including 5 predicted
subtypes of endoglucanases, 3 subtypes of exoglucanases, and 4 subtypes of beta-glucosidases.
NWU49 contained 18 putative cellulase-related genes, including 8 predicted subtypes
of endoglucanases, 3 subtypes of exoglucanases, and 4 subtypes of beta-glucosidases.
Comparing the Prokka, KEGG and additional RAST and dbCAN (with Carbohydrate-
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Active enZyme or CAZy families) annotations revealed di�erences in which sequences were
detected as cellulases. Only 11 of the initial Prokka-derived cellulases were consistently
identi�ed as cellulases with the other three methods (Table 1). Some of predicted cellulases
were alternatively identi�ed as other enzymes (such as 3-dehydroshikimate dehydratase,
chitinase, or beta-mannosidase), had annotations for homologs that have not been con�rmed
to be cellulases, had annotations that are below the respective method's standard threshold,
or had no annotation available.

Table 2.1: Average nucleotide identities for two novelStreptomycesstrains. G1 is either
Streptomycessp. NWU339 or Streptomyces viridosporusNWU49 and G2 is the other
comparedStreptomycesgenome. The ANI column is the average of the ANI from the two
bidirectional ANI comparions in the G1-G2 and G2-G1 columns. Every member of the
phylogenetic tree in Figure 2.1 is featured here.

G1-G2 (%) G2-G1 (%) ANI (%)
NWU49
S. viridosporus ATCC 14672 98.91 99.11 99.01
S. viridosporus T7A 99.15 99.24 99.19
S. viridosporus T7A ATCC 39115 99.22 99.22 99.17
S. viridosporus NRRL 2414 96.72 97.04 96.88
NWU339
S. sp. NBRC 110035 88.86 89.15 89.00
S. hirsutus NRRL B-2713 89.44 89.74 89.59
S. hirsutus NRRL B-3040 89.23 89.67 89.45
S. prasinus ATCC 13879 89.13 89.69 89.41
S. prasinus NRRL B-12521 88.82 89.33 89.07
S. prasinus NRRL B-2712 88.89 89.43 89.16
S. prasinopilosusCGMCC 4.3504 89.46 89.46 89.57
S. prasinopilosusNRRL B-24621 88.99 88.99 89.25
S. prasinopilosusNRRL B-2711 89.40 89.40 89.07

To get a sense of how these two genomes fare overall during annotation, I applied
some additional popular annotation methods: COG,306 TIGRFAM, 105 and Pfam.75 The
annotation coverage varied dramatically depending on the method, ranging anywhere from
31 - 84%. Large sequence or domain databases that include uncharacterized proteins like
COG, Pfam, and FIGfams (RAST) \annotated" more of the sequences. Even the method
with the highest coverage, RAST, left an average of 18% of the predicted coding sequences
unannotated across the two strains.

23



Figure 2.2: Annotation coverage of two novelStreptomycesstrains: Streptomycessp.
NWU339 andStreptomyces viridosporusNWU49. The fraction of proteome annotated is
determined by how many of the predicted protein coding sequences have any annotations
using the respective methods.

2.1.4 Discussion

The newly sequencedStreptomycesstrains NWU339 and NWU49 expand our knowledge of
the Streptomycesgenus and provide additional sources of these industrially and medically-
relevant organisms. In order to place these genomes within currently knownStreptomyces
clades, 16S rRNA sequencing and other taxonomic marker genes were considered. Although
the 16S rRNA identity of NWU49 to Streptomyces poonensisNRRL B-2319 is just under what
is conservatively considered to be a species boundary (� 98.7%267,294), based on placement
within the Streptomyces viridosporusclade and> 95% ANI with Streptomyces viridosporus
ATCC 14672, NWU49 should be considered a new strain ofStreptomyces viridosporus.
NWU339, however, appears to not fall within any of the currently described species for
Streptomyces, ending up just outside theS. hirsutus, S. prasinus, and S. prasinopilosus
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clade.

KEGG was used to look at potential metabolic pathways to �nd interesting putative
metabolic activity. A few Steptomyceshave been shown to degrade aromatic compounds13,15

including benzoate234 and the presence of a benzoate degradation pathway in both strains
could be of interest if experimentally corroborated. This could help reveal more about the
metabolism of the environmentally-abundant aromatic compounds outside of the facultative
anaerobes in which the processes have been most frequently studied.84,337 Also of interest
is the core enediyene biosynthesis pathway present in NWU49. Enediyene is used in cancer
treatments281 due to its high cytotoxicity. A Streptomyces-derived enediyene discovered in
2016343 was the only \naturally" discovered one since 2005,46 with actinobacteria singled-out
in bioinformatics analyses268,281 as having great potential as a source of new medically-
relevant enediyene types.

In order to identify cellulases within these organsisms, the results of four di�erent anno-
tation methods were compared. A single, well-curated, trustworthy source of annotations
can lead to high annotation accuracy but such sources do not exist for every organism
and protein family. A comparison across di�erent methods can provide con�dence in the
predictions and better annotation coverage,98 although some manual assessment due to
di�erences in naming is usually required. In this case, 11 coding sequences had congruent
cellulase annotations. These sequences all have well-established cellulase homologs and are
thus, most likely to have cellulose-degrading activity. Other predicted cellulases either had
other enzymes predicted via di�erent methods, less con�dent predictions (i.e. putative),
or no annotations at all. These represent either false predictions, or diverse homologs
of known cellulases that may have some cellulose-degrading ability or may have some
other glycosidase activity. Sequences with CAZY glycoside hydrolase family matches and
carbohydrate binding modules are probably divergent glycoside hydrolyases, while sequences
without are riskier to devote further experimental resources to.

Even more annotation methods were run on these two genomes to get an overview of
annotation coverage. Like other genomes seen in Figure 1.1, there was substantial variation
in the number of predicted coding sequences each method was able to assign sequence or
model matches to. This is in part because of how each database treats uncharacterized
proteins or proteins with only partial information (e.g. a biological process they have
been associated with). Some databases, like COG, include a large number of families with
no or limited information apart from which taxa they are found in. Matches to families
of uncharacterized proteins can inate the annotation coverage. Another factor is that
domain databases (like Pfam), due to domains being protein modules, often allow for more
protein matches than when using databases of full-length proteins. The databases have
di�erent sizes as well as types (e.g. sequence versus model) which can a�ect how many

25



matches are found. Even with the most optimistic case, here at least 16% of the predicted
coding sequences remain unannotated. But in spite of the unannotated sequences, these
newly sequenced genomes are a source of proteins of interest, with putative benzoate and
enediyene metabolic pathways, high con�dence cellulases, and uncharacterized glycoside
hydrolases to test.

2.2 Metagenomic sequencing of wastewater from a
South African research farm

Material in this section has been published as part of Lobb et al. (2018).176 The published
manuscript is available here:

B. Lobb, A. A. Adegoke, K. Ma, A. C. Doxey, and O. A. Aiyegoro. Metagenomic
sequencing of wastewater from a South African research farm.Microbiology
Resource Announcements, 7(16):e01323-18. 2018.176 https://doi.org/10.
1128/MRA.01323-18

2.2.1 Introduction

Antibiotics are used to promote growth and manage disease in livestock at the Agricultural
Research Council{Animal Production in South Africa. However, the spread of antibiotic
resistance is a pervasive concern. Waste from farm animals has been shown to spread
antibiotic-resistant bacteria, sometimes due to selective pressure found in antibiotic-dosed
livestock.83,202,363 One of a farm's e�uents, wastewater, is a documented reservoir of
antibiotic resistance genes that could transfer to human pathogens.229,341,358 Wastewater is
also known to contain animal pathogens, some of which are opportunistic and can spread
zoonoses.10,222 Sequencing of the wastewater microbiome can help identify pathogenic
species that might exist on the institute's farm and detect antibiotic resistance genes that
may be active in these microbial communities. The goal of this study was to pro�le the
antibiotic resistome at the Agricultural Research Council{Animal Production site, enabling
them to make more informed decisions about antibiotic use moving forward.
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2.2.2 Methods

Sample preparation, sequencing and assembly

Sample collection and preparation done by Dr. Anthony Adegoke and Dr. Olayinka Aiyegoro.

The metagenome was created from expended water taken from Agricultural Research
Council{Animal Production (ARC-AP) in Irene, South Africa. A 1-liter composite sample
was created by combining �ve 200-ml samples collected from di�erent wastewater gutters
in the pig facility. The composite sample was centrifuged at 3,500 rpm for 10 min at room
temperature to separate the biomass and water. The water was �ltered to trap microbes,
and DNA was extracted from the pellet on the �lter paper. The DNA extraction was
done using the FastDNA Spin kit for water (MP Biomedicals, Solon, OH, USA) and the
FastPrep apparatus, according to the instructions given by the manufacturer. The DNA
was sequenced with the Illumina HiSeq platform and the Illumina HiSeq reagent v34. The
raw reads were deposited in the Sequence Read Archive (SRA) under the accession number
SRP159184. The reads were trimmed with Sickle v1.33129 and Trim Galore! v0.5.0148 and
then assembled using MEGAHIT v1.1.2,169 resulting in 58,129 contigs longer than 1 kb.
The assembly was then deposited at GenBank under the accession number QXGG00000000.
Prodigal v2.6.3 with the -p meta option116 was used next, facilitating the prediction of
612,922 coding sequences.

Taxonomic pro�ling

MetAnnotate242 was used to create a taxonomic pro�le for the metagenome using the
usearch option with its default set of taxonomic markers. An average coverage (mean per
bp across the coding sequence) for each marker gene hit was calculated using Bowtie 2
v2.3.4.2,157 SAMtools v1.9,170 and BEDtools v2.27.1.252 The relative frequency of each
genus was determined for every marker gene based on the cumulative average coverage.
Average relative frequency across each marker gene was then calculated.

Metagenome annotation

A BLASTP search using the BLAST v2.6.0+ package of the \protein homolog" model
types in the Comprehensive Antibiotic Resistance Database125 (CARD) (databases down-
loaded on 28 June 2018) using CARD's own per-model bit score cut-o� was used to �nd

4Sequencing services provided by Agricultural Research Council{Biotechnology Platform Laboratory.
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putative antibiotic resistance genes. Average coverage of each gene hit was calculated
as described earlier. KEGG annotations were identi�ed with GhostKOALA133 using the
\prokaryotes" setting on 9 January 2020. TIGRFAM annotations were determined with the
TIGRFAM database v15.0105 using a threshold of 1� 10-3 with hmmscan from HMMER
v3.1b1. Pfam annotations were derived from Pfam v27.075 and applied with HMMER
v3.1b1 and Pfamscan (atftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/ ). COG
annotations were performed by Anvi'o v5.269 with the COG 2014 database306 �les sourced
from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/ .

2.2.3 Results

A total of 28,540,348 read pairs with an average read length of 119 bp each were generated.
The total assembly length was 311,492,658 bp, with an N50 value of 861 bp. A pro�le of
the community based on taxonomic marker genes was constructed with MetAnnotate.242

The average coverage of each gene was calculated as the mean coverage per base pair across
the coding sequence. The most common genera present (based on the average coverage
across all taxonomic markers) areThauera (19%), Oscillibacter (7%), Pseudomonas(6%),
and Prevotella (5%) (Figure 2.3a).
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Figure 2.3: Taxonomic pro�le and annotation coverage of a farm wastewater metagenome
from South Africa. (a) Coverage of marker genes at a genus-level for the farm wastewater
metagenome. The average coverage is the mean of the coverage per base pair across the
matched coding sequences. Most common genera are shown. (b) Annotation coverage of
the farm wastewater metagenome.

A BLASTP search of the homolog models in the Comprehensive Antibiotic Resistance
Database (CARD)125 identi�ed 31 di�erent antibiotic resistance genes that passed CARD's
strict score threshold. Ten of these genes are predicted to confer tetracycline resistance, and
�ve genes are predicted to confer streptomycin resistance (Table 2.2). Annotation with the
KEGG database131 revealed complete pathways for tetracycline, streptomycin, aminoglyco-
side, cationic antimicrobial peptide (CAMP), vancomycin, and macrolide resistance, with
near-complete pathways for beta-lactam, erythromycin, uoroquinolone, and lincosamide
resistance.
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Table 2.2: Antibiotic resistance associated with three or more genes in the wastewater
metagenome. The type of predicted antibiotic resistance came from CARD \parent terms"
for each gene in their database.

Predicted antibiotic
resistance

Average coverage
of associated
genes

Count of
associated
genes

tetracycline 33.49 10
minocycline 63.99 4
chlortetracycline 63.99 4
doxycycline 62.00 3
oxytetracycline 62.00 3
demeclocycline 62.00 3
streptomycin 32.77 5

Broader annotation methods were applied to get an overview of this metagenome's
annotation coverage. KEGG, COG, Pfam, and TIGRFAMs contributed to a modest
proportion of protein coding sequences annotated, from as low as 36% up to only 56%
(Figure 2.3b). This leave almost half of all the predicted coding sequences without any
biological information, apart from the environment they were found in.

2.2.4 Discussion

The sequencing of the South African Agricultural Research Council{Animal Production
wastewater provides information on the microbial community that lives on the farm and
whether there exists the potential for any human pathogens to be present. The most
common genera found in the wastewater sample wereThauera, Oscillibacter, Pseudomonas,
and Prevotella. Thauera has been found previously in agricultural wastewater, hot springs,
a leachate treatment plant, and in sludge from ditches, water treatment plants, and
oil-re�neries.204,278,279,304,347 This genus has been characterized as denitri�ers that have
the ability to degrade aromatic compounds,204,278 such as phenol,293 that can end up in
agricultural wastewater.227 A high proportion of Oscillibacter also makes sense in farm
wastewater as this genus has been found in cattle rumen, as well as being closely related
to other bacteria found in sheep, cow, and goat gut samples.161,186 Interestingly, several
cases of bacteremia in Denmark were reported to be caused byOscillibacter ruminantium,
although all cases had risk factors for infection.302 Prevotella, a common commensal in
human gut associated with a plant-based diet,95 is exceptionally abundant in cow rumen.
One study in 2012121 found that Prevotella made up an average of 52% of the rumen
community. It is worth noting that some Prevotellaare opportunistic pathogens in humans
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and have been associated with chronic inammation in periodontal disease, rheumatoid
arthritis, and various gut disorders.159 Potential pathogens aside, this metagenome has
many links to the livestock-a�ected, high-nitrogen, aquatic environment that would compose
the wastewater of an Animal Production research farm.

Antibiotic resistance is a well-studied topic as antibiotics are incredibly important for
human health, as well as for livestock production. Rising levels of antibiotic resistance,
especially in hospital settings, is a global health crisis.45,125 There are whole databases
focused on microbial antibiotic resistance. However, one of the broadest is the Comprehensive
Antibiotic Resistance Database (CARD).125 A global team of collaborators have curated this
resistome database, generating a unifying Antibiotic Resistance Ontology (ARO) to guide
the annotations. Protein models where antibiotic resistance can be accurately predicted
via sequence similarity have strict alignment cut-o�s and are separated from cases where
antibiotic resistance is due to mutations. This database is a great resource for screening
for antibiotic resistance in sequence data. Applying it to the research farm wastewater
sample revealed a resistome geared primarily towards tetracycline resistance with other
genes putatively providing streptomycin, minocycline, and chlortetracycline resistance,
amoungst others. Annotation with KEGG con�rmed matches to genes for tetracycline
and streptomycin resistance. In a previous study by Noyes et al.,229 sequences associated
with tetracycline resistance were the most frequent in their 34 soil, manure and wastewater
samples from various livestock operations across the U.S.A. and Canada. Aminoglycoside
resistance (including streptomycin) was also fairly abundant in their detected resistomes.229

Other resistome studies have found tetracycline to be common276,310 in agricultural soil
and honey bee gut communities, speculated to be due to years of oxytetracycline use in
those environments.

Full-scale annotation was preformed on this metagenome sample to see how its annotation
coverage compares to other annotated metagenomes. To briey reiterate, due to di�erences
in the way that databases create their annotation labels, database size, and database types
(e.g. sequence versus model and full-length protein versus domain), there is a range of
annotation coverage. However, even with di�erences in annotation coverage, only around
half of the CDSs overall have annotated functional information. As seen from Figure 1.1,
metagenomes often have a substantial proportion of their predicted CDSs that end up with
no annotations. This metagenome follows that trend with the highest annotation coverage
only reaching 56%. The problems that lead to low annotation coverage in metagenomes
(fragmented sequences and organisms that are potentially quite distant from well-studied
species) could a�ect the detection of antibiotic resistance, especially if there are understudied
systems present. But this work, to the standards of our current knowledge on antibiotic
resistance annotations, contributes to the growing data on human-inuenced resistomes.
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2.3 Functional pro�ling of a �sh necrobiome reveals
a decomposer succession involving toxigenic bac-
terial pathogens

Material in this section has been published as part of Lobb et al. (2020).178 The published
manuscript is available here:

B. Lobb, R. Hodgson, M. D. Lynch, M. J. Mans�eld, J. Cheng, T. C. Charles,
J. D. Neufeld, P. M. Craig, and A. C. Doxey. Time series resolution of the
�sh necrobiome reveals a decomposer succession involving toxigenic bacterial
pathogens. mSystems, 5(2):e00145-20. 2020.178 https://doi.org/10.1128/
mSystems.00145-20

2.3.1 Introduction

The decomposition of animal tissues is a fundamental ecological process that impacts nutrient
cycling and species composition in terrestrial and aquatic ecosystems. Vertebrate tissue
decomposition creates a unique ecological niche supporting a wide variety of specialized
decomposer species, including insects, predators, and microorganisms. These species form
an interconnected community whose combined activities lead to the decomposition of an
organism from its initial death to the complete degradation of its exterior and internal
contents.

The microbial communities involved in decomposition, including bacteria derived from
the surrounding environment (e.g., water, soil) and the host (e.g., digestive tract and lungs),
are collectively referred to as the \necrobiome" (from nekr�os, the Greek word for dead
body),36 or alternatively, the \thanatomicrobiome" (from Thanatos, the Greek god of
death).124 Studies of necrobiome structure and function in several model systems (e.g.,
human, cow, pig, and mouse) have revealed strong microbial succession with distinct taxo-
nomic and functional shifts linked to the phases of tissue decomposition.28,100,117,208,209,237

After cellular autolysis breaks down tissue following death, anaerobic bacteria such as
Clostridium spp. increase in relative abundance and metabolize available carbohydrates
and proteins from the body, producing organic acids and gas.33 Functional shifts occur;
these shifts include increases in catabolic pathways, carbohydrate and energy metabolism,
nitrogen cycling, and processes related to bacterial invasion. Foul-smelling compounds
associated with the process of putrefaction are also produced as by-products of fermentation
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and amino acid decomposition, including putrescine, cadaverine, and indole. Because puta-
tively pathogenic bacteria proliferate within vertebrate necrobiomes, such asClostridium
botulinum,31 it has been proposed that bacterial toxins secreted by these bacteria may play
roles in decomposition by interfering with host cellular functions.191

Although much knowledge of necrobiome community structure and function has come
from studies of terrestrial mammals, less is known about the structure, function, and dynam-
ics of decomposition in aquatic ecosystems. Previous studies of �sh carcass decomposition
demonstrate that as in terrestrial systems, both macroinvertebrates and microorganisms play
important roles as aquatic decomposers.211,246 But what metabolic activities/functions are
present in aquatic necrobiome communities and how do they change over time? Comparing
necrobiomes between two di�erent locations in the Grand River (southwestern Ontario,
Canada), upstream and downstream of a wastewater treatment plant, allows analysis of com-
munity members and their functional potential both spatially and temporally. In this study,
I used a variety of annotation tools and methods to functional and taxonomically pro�le
the necrobiomes including broad metabolic database KEGG and speci�c database VFDB
(Virulence Factor Database). Here, studying necrobiome-associated functions provides a
unique way to better understand links to aquatic health, �sh physiology, and ecosystem
dynamics.

2.3.2 Methods

Fish collection

Sample collection and preparation done by Rhiannon Hodgson and Dr. Paul Craig.

On 24 October 2016, female rainbow darters (Etheostoma caeruleum) were collected
from the Grand River (Figure 2.4), both upstream (Westmontrose [WMR]; 43� 35'08"N;
80� 28'53"W) and downstream (Economic Insurance Trail [EIT]; 43� 28'24"N; 80� 28'22"W)
of the Waterloo wastewater treatment plant (WWTP) (43� 29'16"N; 80� 30'25"W). Forty-two
�sh (21 from each site) were collected using a backpack electro�sher (Smith Root, LR-20)
and euthanized quickly with a sharp blow to the head. Then each �sh was placed in
an autoclaved 250-ml mason jar microcosm that contained a mixture of water and river
substrate (see Lobb et al., 2020178 for river water quality metadata and Figure 1a for an
example mason jar setup). The lids were closed, but not sealed, in order to ensure oxic
conditions that would accompany natural in-river decay events. The jars were then left
to decay in a fume hood at room temperature. Three samples containing both �sh and
water/sediment from the same site were left to decompose for 1 day (24 h), 4 days, 8 days,
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and 10 days for both the WMR and EIT sites, totaling 24 �sh. For additional treatments
to assess di�erences in water quality and aquatic microorganisms, three samples containing
�sh and water/sediment from di�erent sites (i.e., WMR �sh in EIT conditions and EIT �sh
in WMR conditions) were allowed to decay for 4, 8, and 10 days, totaling 18 �sh. At each
time point, decay was documented (Figure 1b), and �sh were removed from the replicate
jars, then rinsed with sterile water, and ground with liquid nitrogen using a clean mortar
and pestle. The powdered tissue was stored at {80� C prior to genomic DNA extraction.

Experimental procedures and the use of animals in this study were approved by the
University of Waterloo Animal Care Committee and within Canadian Council on Animal
Care (CCAC) guidelines (AUPP 40318).

DNA extraction

DNA extraction done by Metagenom Bio Life Science Inc.

Unless noted, all chemicals and reagents were purchased from Sigma-Aldrich (Mississauga,
Ontario, Canada). For DNA extraction, 100 mg of ground tissue was added to 1.2 ml
of TE bu�er (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]), 100 � l of 10% sodium dodecyl
sulfate (SDS), 20� l of proteinase K, 8� l of RNase A, and 200� l of 5 M NaCl. This
mixture was vortexed quickly and incubated at 55� C for 30 min. Then 160� l of CTAB
extraction solution (2% cetrimonium bromide, 100 mM Tris, 20 mM EDTA, 1.4 M NaCl
[pH 8.0]) was added, and the samples were further incubated at 65� C for 1.5 h. Following
this lysis incubation, 700� l of the lysate was extracted with an equal volume of phenol and
centrifuged at 10,000� g for 5 min. The aqueous phase was retained and twice extracted
with equal volumes of phenol-chloroform-isoamyl alcohol (25:24:1), followed each time with
centrifugation at 10,000� g for 5 min. One volume of isopropanol was used to precipitate
aqueous phase DNA in a new ultracentrifuge tube, followed by centrifugation at 13,000� g
for 10 min at room temperature. The resulting pellet was washed twice with 70% ethanol,
dried, and then dissolved in 50� l of DNase- and RNase-free H2O (Sigma) at 50� C for 15
min. The quantity and quality of DNA were determined with a SpectraDrop (Molecular
Devices) and stored at {20� C prior to sequencing.

16S rRNA gene and metagenomic sequencing

Sequencing services provided by Metagenom Bio Life Science Inc.

Extracted DNA was ampli�ed in triplicate using Pro341F and Pro805R universal
prokaryotic primers.305 Triplicate amplicons were pooled, gel quanti�ed, and sequenced to
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a depth of at least 30,000 paired-end reads per sample using the MiSeq reagent kit v3 (2�
300 cycles; Illumina).

For metagenomic sequencing, genomic DNA (1 ng) was fragmented and individually
barcoded using the Nextera XT DNA Library Prep kit (Illumina) following the supplier's
guidelines. Small fragments of library DNA were removed by adding 0.6 volumes of AMPure
XP beads (Beckman Coulter). After washing twice with 80% ethanol and air drying for 10
min, DNA was eluted from the beads with 10 mM Tris-HCl (pH 8.5). Puri�ed library DNA
was quanti�ed with the Qubit dsDNA (double-stranded DNA) HS (high-sensitivity) assay
kit, diluted to 4 nM with the Tris-HCl bu�er and then pooled in an equal volume. Library
DNA was denatured with equal volumes of 0.2 N NaOH, diluted to 7 pM with hybridization
bu�er HT1, and sequenced with MiSeq reagent kit v2 (2� 250 cycles; Illumina).

All 16S rRNA gene and metagenomic sequencing data for this project were deposited
into the NCBI Short Read Archive (SRA) under BioProject accession no. PRJNA604775.

16S rRNA gene analysis

QIIME processing of 16S rRNA sequence data done by Dr. Michael Lynch.

Demultiplexed sequences were processed using DADA2 v1.4,29 managed through QIIME2
v.2017.10.21 Briey, forward and reverse reads were truncated with decreasing quality metrics
while maintaining sequence overlap (� 250 bases). Primers were removed, and paired reads
were assembled after error modeling and correction, creating amplicon sequence variants
(ASVs). Chimeric ASVs were removed by reconstruction against more abundant parent
ASVs. The resulting ASV table was constructed for downstream analysis (see Lobb et al.,
2020178).

Taxonomy was assigned to representative sequence variants using a naive Bayesian
classi�er implemented in QIIME2 with scikit-learn (v.0.19.0), trained against SILVA release
128,251 clustered at 99% identity, and trimmed to the ampli�ed region. Assignments were
accepted above a 0.7 con�dence threshold.

For ordination, a proportion matrix of ASVs were used across each sample with a
sparsity cuto� (i.e., ASV detected in at least 3 of 42 samples). The metaMDS() and env�t()
scripts from vegan package v2.4-2 in R were used to calculate ordination coordinates and
data vectors. A stress or Shepard diagram was generated with stressplot() from the vegan
package to determine the nonmetric �t.
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Metagenomic data analysis

Raw reads were processed with TrimGalore v0.5.0,148 coassembled with metaSPAdes
(SPAdes v3.12.0),230 and eukaryotic contigs were identi�ed with Centrifuge v1.0.4141 using
their NCBI nr preindexed database (last updated 3 March 2018) and subsequently removed.
Reads were mapped with Bowtie 2 v2.3.4.3157 using default settings and binned using
CONCOCT6 with Anvi'o v5.2 (minimum 1 kb contig cuto�). 69 Mean coverage data for
the metagenomic functional analyses and for the methanogen analysis were extracted from
Anvi'o 69 using all contigs (no contig length cuto�).

For metagenomic and bin functional analysis, KEGG annotations were identi�ed with
GhostKOALA. 133 The average coverage for each gene (per base pair), normalized by dividing
by the average sample coverage (per base pair), was summed to give a total coverage value
for each KEGG pathway. The decostand() function from the vegan package v2.4-2 in R was
used to determine the fractional value of each pathway with respect to the total summed
coverage across all KEGG pathways detected in the sample. A Kruskall-Wallis test was
done in R to identify KEGG pathways with signi�cantly di�erent distributions by day
of decomposition. The decostand() function was also used to proportionally normalize
each pathway value across every sample for plotting. For the bin functional analysis, the
frequency of each KEGG orthology (KO) annotation in each MAG bin was counted. These
counts were summed for each KEGG pathway, and fractional values were calculated across
all KEGG pathways detected in the bins as before.

The VFanalyzer software from the Virulence Factor Database (VFDB)174 identi�ed
virulence factors in the predicted coding sequences of Bin4 usingAeromonas veroniiB565
as a representative genome. The domain architecture from theAeromonas toxin gene
set from the VFDB was also used to identifyAeromonastoxin genes in the coassembly.
Putative toxins longer than 150 amino acids were assessed with BLASTP forAeromonas
taxonomy and gene annotation. TheAeromonasphylogenetic tree was made using RAxML
v8.2.12295 with the LG likelihood model made from concatenated single-copy core protein
sequences detected with Anvi'o69 (Campbell et al. set30).

Additional annotation methods were used as described in Sections 2.1.2 and 2.2.2.

2.3.3 Results and Discussion

Time series community pro�ling of �sh necrobiomes

To examine the structure and temporal succession of aquatic vertebrate necrobiomes, a 16S
rRNA-based study of decomposing �sh was performed at di�erent time points and locations.
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Female rainbow darters (Etheostoma caeruleum) were collected from the Grand River in
Waterloo, Ontario, Canada, both upstream and downstream of the Waterloo wastewater
treatment plant (WWTP) (Figure 2.4). Individual �sh were subjected to decomposition
with river water and sediment at room temperature for 1, 4, 8, and 10 days in sterile
containers that acted as microcosms of a natural decomposition environment. Sample 16S
rRNA gene pro�les for �sh decomposition microbiomes (\necrobiomes") for these four time
points and two water/sediment sources revealed reproducible microbial communities among
independent replicates and also between environments (i.e., �sh and water source; Figures
2.5 and 2). This microbial succession was apparent at the order level of taxonomy (Figure
2.5) and at the level of amplicon sequence variants (ASVs) (Figure 2), although variation
in ASV composition was evident among �sh samples and environments (Figure 2).

Further discussions on the 16S rRNA pro�le and di�erences in taxa throughout the time
course and up and downstream of the WWTP are available in the original article.178

Figure 2.4: Map showing sampling locations of Grand River �sh for metagenomic analysis.
The municipal wastewater treatment plant (WWTP) for the city of Waterloo, Canada, and
the two sampling locations, upstream at West Montrose (WMR) and downstream at the
Economic Insurance Trail (EIT), are displayed.Figure created by Dr. Paul Craig.
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Figure 2.5: Relative frequency of ASVs within each sample colored by taxonomic order.
Samples are sorted by decomposition time (1 day, 4 days, 8 days, and 10 days). The
�sh and water/sediment origin of the samples are displayed at the bottom of the �gure,
with upstream referring to the WMR site and downstream referring to the EIT site.
Low-relative-abundance taxonomic orders are grouped into \other."

Metagenomic binning and analysis of decomposition pathways

To explore the genomes and genome-encoded metabolic/functional potential of the necro-
biomes, metagenomic sequencing was performed on one replicate for each condition (14
total). Subsequent assembly and binning resulted in four MAGs with> 85% completion
and < 5% redundancy. I examined the taxonomic composition of the MAGs using MetAn-
notate.242 These MAGs included two genomes a�liated withAlistipes (Rikenellaceae),
a genome annotated asAeromonas veronii, and a Selenomonadaceae-associated genome
(Table 2.3). The bins are consistent with ASVs identi�ed by the 16S rRNA gene sequencing,
corresponding toAcetobacteroides(Rikenellaceae),Aeromonas, and various members of
Selenomonadales (Figures 2.5 and 2). Other ASVs identi�ed by 16S rRNA gene sequencing
were also recovered in the lower-quality MAGs (Table 2.3). One bin was a�liated with the
genusPseudomonas, and another bin was a�liated with the family Rikenellaceae.
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Table 2.3: Bins obtained from metagenomic sequencing of �sh necrobiomes. Taxonomic
a�liation is predicted by MetAnnotate. 242

Completion
(%)

Redundancy
(%)

GC
(%)

Total
length
(Mb)

Gene
count

Contig
count

Taxonomic a�liation

Bin 4 98.6 0.7 60.7 3.85 3855 784 Bacteria; Proteobacteria;
Gammaproteobacteria;
Aeromonadales;
Aeromonadaceae;Aeromonas;
Aeromonas veronii

Bin 9 97.1 1.4 47.5 2.25 2216 402 Bacteria; Firmicutes;
Negativicutes;
Selenomonadales;
Selenomonadaceae

Bin 3 87.1 2.2 47.0 2.64 2467 801 Bacteria;
Bacteroidetes;
Bacteroidia;
Bacteroidales;
Rikenellaceae;Alistipes

Bin 10 92.8 2.2 44.0 3.26 2882 368 Bacteria; Bacteroidetes;
Bacteroidia;
Bacteroidales;
Rikenellaceae;Alistipes

Bin 7 38.8 7.9 61.4 0.78 1187 628 Bacteria; Proteobacteria;
Gammaproteobacteria;
Pseudomonadales;
Pseudomonadaceae;
Pseudomonas

Bin 2 25.2 1.4 48.2 1.71 1872 960 Bacteria; Bacteroidetes;
Bacteroidia;
Bacteroidales;
Rikenellaceae

The relative abundance of Bin4 (Aeromonas veronii) decreased throughout decomposi-
tion from an average relative abundance of 3.7 (day 1) to an average relative abundance of
0.14 (day 10; Figure 2.6a), consistent with the 16S rRNA data. BecauseAeromonashas
been associated with �sh gut microbiomes,91,127,216,299,319 it is possible that Bin 4 and other
Aeromonastaxa were initially derived from the �sh guts and were important only for early
stage decomposition. In contrast, Bin3 (Rikenellaceae family) may represent a late-stage
decomposer because its relative abundance increased in metagenomes from days 8 to 10 of
decomposition (average relative abundance of 3.9 on day 8 to an average relative abundance
5.1 on day 10; Figure 2.6a). In the downstream �sh-upstream sediment/water set, both
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Rikenellaceae-a�liated bins (Bin 3 and Bin 10) were similar in relative abundance, implying
site-speci�c inuences on the relative abundance of di�erent Rikenellaceae-a�liated taxa,
consistent with 16S rRNA gene data forAcetobacteroidesASVs (Figure 2). Phylogenetic
analysis of the two Rikenellaceae-associated bins revealed that Bin3 was more closely
related to Acetobacteroides hydrogenigenesRL-C and Bin 10 was more closely related to
Alistipes sp. strain ZOR0009 (Figure 2.6b). Bin9 (Propionispira) was present at low (0.0
to 0.54 average on days 1 to 10; Figure 2.6a) relative abundance, close to the sample's mean
coverage across the entire course of decomposition, consistent with the abundance patterns
seen for Selenomonadales based on 16S rRNA gene data (Figure 2.5).

Figure 2.6: Metagenomic bin relative abundance and phylogenetic analysis of Bin3 and
Bin 10. (a) Relative abundance of four high-quality binned genomes across each necrobiome
sample. Relative abundance was computed as mean bin coverage/mean sample coverage.
Mean coverage was calculated per base pair using Anvi'o. (b) RAxML tree using the LG
likelihood model made from concatenated single-copy core protein sequences detected with
Anvi'o 69 (Campbell et al. set30). The tree outgrouped withLentimicrobium saccharophilum.
Acetobacteroides hydrogenigenes, representatives ofAlistipes strains, and all uncharacterized
Alistipes isolates were used for this tree and sourced from NCBI Genome. This tree was
visualized with iTOL.165

Using a KEGG analysis of assembled contigs and binned metagenomes, metabolic
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pathway potentials associated with the decomposition samples were examined. The resulting
functional pro�les had a highly similar grouping in ordination space compared to the 16S
rRNA gene community pro�les (Figure 3), whereby samples grouped primarily based on
decomposition time point (Figure 2.7). Analysis of speci�c KEGG pathways revealed
patterns consistent with a functional succession (Figure 2.8), mirroring the taxonomic
succession described earlier. Pollutant degradation pathways for polyaromatic hydrocarbons
such as naphthalene, styrene, and nitrotoluene showed increased relative abundances on
day 1 (13% on average) compared to subsequent time points (6.2% on average). The initial
�sh bacterial community may have been enriched for microorganisms that could degrade
river water contaminants, which can originate from both anthropogenic and natural sources
and bioaccumulate in �sh.39,107,203 Naphthalene degradation in polluted sediment-water
systems can be accomplished through several bacterial pathways, and bioremediation of
this toxic molecule by native organisms is currently being studied.162,313,321 Various bio�lm
formation pathways were also proportionally abundant (13%) within day 1 metagenomes
(Figure 2.8), possibly reecting skin and gut community functions originating prior to
decomposition. Degrading river water contaminants and skin and gut bio�lm formation
may be functions that are more important for the bacterial communities living with their
�sh host and dealing with possibly contaminated river water than for the necrobiome that
formed in the closed system after the �sh's death.

Figure 2.7: NMDS ordination of metagenomic functional pro�les with Bray-Curtis distances
calculated based on KEGG pathway frequencies. A strong agreement between the ordination
space and the distance matrix was observed (R2 = 0.996), and the stress value is 0.063.
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Figure 2.8: Selected KEGG pathways displaying signi�cant di�erential relative abundance
across the course of decomposition. Pathways were selected that had an unadjustedP
value of < 0.03 after a Kruskall-Wallis test comparing decomposition time (1, 4, 8 , and 10
days). Shown is the log10 value of the fractional coverage of the pathway with respect to
the total coverage across all the pathways in the sample. Total pathway coverage is also
proportionally normalized across every sample. Note that some pathways are based on a
few representative genes. For example, coverage of the photosynthesis pathway is mainly
derived from genes encoding sodium ion pumps.

Glycan metabolism generally increased in coverage from early stages (2.4% on day 1)
to later stages of decomposition (10%). Glycan degradation pathways (e.g., glycosamino-
glycans) increased in coverage by days 8 and 10, which may be involved in decomposition
of �sh skin and intestinal mucins. Late-stage increases in streptomycin, phenylpropanoid,
novobiocin, neomycin, kanamycin, and gentamicin biosynthesis pathways (2.4-fold change
from day 1 to 10) were also detected, implying that the remaining microorganisms by day
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10 possess increased potential for antibiotic synthesis.

These metagenome-wide functional patterns closely matched the functional potentials
of individual Aeromonas(early stage) and Rikenellaceae (late stage) bins, when taking into
consideration their shifts in relative abundance through the time course (Figure 2.9). Genes
belonging to pollutant degradation pathways were present in theAeromonasbin yet mostly
absent from other MAGs with lower relative abundance from days 1 and 4 metagenomes.
Likewise, bio�lm formation pathway genes had a 6.2-fold-higher frequency in theAeromonas
bin compared to theAcetobacteroides/ Alistipes bins. In contrast, antibiotic biosynthesis
pathway genes had a 2.5-fold-higher frequency in the Rikenellaceae-associated bins, in
addition to multiple key glycan degradation genes. Thus, the detected shifts in functional
pro�les were in part due to the hand-o� microbial community dominance fromAeromonas
to Rikenellaceae. It is important to note that these apparent late-stage functional shifts
could also be important for earlier phases when Rikenellaceae initially began to increase in
relative abundance.
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Figure 2.9: Count of KEGG annotations mapping to the corresponding KEGG pathways
in Figure 2.8 across each MAG. Shown is the log10 value of the fractional frequency of the
pathway with respect to the total across all the pathways in the sample. The total pathway
coverage is also proportionally normalized across every sample.

The data suggests strongAcetobacteroidesdominance in late-stage rainbow darter
necrobiomes (Figure 2.5 and 2). Because related species have been implicated in anaerobic
sugar fermentation,298 I investigated the two MAGs a�liated with these bacteria for
glycolytic enzymes. Both Bin3 and Bin 10 possess a complete glycolysis pathway as well as
l-lactate dehydrogenase for anaerobic fermentation (Figure 2.10). Bin3 genes also encode
pyruvate dehydrogenase, aldehyde dehydrogenase, and enzymes for conversion of d-fructose,
d-fructose-1-phosphate (d-fructose-1P), and d-mannose-6P to glycolysis precursors. Based
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on a previous analysis of decomposition pathways (51), Bin3 and Bin 10 genes also encode
components of potential pathways for production of indole [EC 4.1.99.1], putrescine [EC
3.5.3.11], and spermidine [EC 2.5.1.6 and 2.5.1.16], in addition to histidine degradation [EC
4.3.1.3, 4.2.1.49, and 3.5.3.85].

Figure 2.10: End of the KEGG glycolysis/gluconeogenesis pathway for Rikenellaceae (a)
Bin 3 and (b) Bin 10. Green indicates the presence of a match to that enzyme. Images
were generated using KEGG.131

5This enzyme is only detected in Bin10.
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A toxigenic strain of Aeromonas veronii is a dominant member of the necro-
biome

Because Bin4 a�liated with A. veronii , a well-established pathogen of �sh and hu-
mans,52,93,122,128,146,199,256,257and a common inhabitant of the �sh gut microbiome,91,127,216,299

I explored its phylogenetic position, functional pro�le, and virulence repertoire. A maximum
likelihood phylogeny ofA. veronii and other relatedAeromonasgenomes from the NCBI
was constructed based on a concatenated alignment of conserved ribosomal marker genes
(Figure 2.11a). Within this phylogeny, Bin 4 grouped with a clade ofA. veronii genomes
but as a basal lineage outgrouping allA. veronii species except AMC34.

VFanalyzer from the Virulence Factor Database (VFDB)174 was used to detect virulence
factors within Bin 4 and compare it to a referenceAeromonasstrain, A. veronii B565. VFDB
focuses on experimentally-con�rmed virulence factors and is a comprehensive database
of virulence factors from medically-relevant pathogens. The VFanalyzer pipeline uses
a hierarchical series of homology searches of the VFDB in order to �nd close matches
with stringent cut-o�s before moving to more permissive methods for divergent virulence
factors.174 VFanalyzer revealed that Bin4 contained virulence-related genes for adherence,
iron uptake, and secretion systems. Indeed, a total of 54 genes that were associated with
secretion systems were identi�ed, compared to only 15 inA. veronii B565. In addition,
I identi�ed 13 genes associated with endotoxin production. LikeA. veronii B565, Bin 4
genes encoded hemolysin III, hemolysin HlyA, and a thermostable hemolysin gene (Figure
2.11b). I also recovered a relatively small incomplete bin (Bin11, 0.64 Mb, 717 CDSs, 321
contigs) that correlated with Bin 4 in relative abundance. This small bin a�liated with
Aeromonas veroniiand also included a gene encoding aerolysin toxin production. Based on
metagenomic mapped read coverage, the relative abundance of genes encodingAeromonas
toxins increased on day 4 of decomposition (Figure 2.11c), indicating an enrichment in
Aeromonasstrains carrying hemolytic proteins. A possible explanation for this is that lytic
toxins, including those fromAeromonas, may function in host cell lysis during decomposition
and therefore peak in relative abundance during earlier stages of decomposition. Bin4
also possessed genomic potential for decomposition-related pathways, including histidine
degradation (contains [EC 4.3.1.3, 4.2.1.49, 3.5.2.7, and 3.5.3.8]) and the production of
putrescine [EC 4.1.1.19, 3.5.3.12, and 3.5.1.53], indole [EC 4.1.99.1], and cadaverine [EC
4.1.1.18].
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Figure 2.11: A toxigenicAeromonas veronii-like strain is a dominant species in early
decomposition. (a) RAxML tree using the GTR+GAMMA model made from concatenated
single-copy core gene nucleotide sequences detected with Anvi'o (Campbell et al. set30). The
tree was outgrouped onAeromonas hydrophila. Gray circles are scaled to bootstrap support
of � 85, with the largest size representing 100.Aeromonasspecies outsideAeromonas veronii
are highlighted in gray. RepresentativeAeromonas veroniistrains from the NCBI Genome
Tree report were chosen to display here (not highlighted), and only their strain name is
shown. This tree was visualized with iTOL.165 (b) Bin 4's predicted toxin repertoire from
VFDB. (c) Relative abundance (mean gene coverage/mean sample coverage) ofAeromonas
hemolysintoxin genes. Decomposition time is shown in days.
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Overview of annotation coverage in metagenome and metagenome-assembled
genomes

A selection of popular annotation methods were used on both the necrobiome (pooled
and co-assembled) and the bins that were assembled from the necrobiome. All methods
achieved a higher annotation coverage on the bins, as opposed to the metagenome itself.
The necrobiome contains shorter fragments than the bins (as the binning procedure discards
any sequence fragments smaller than 1 kb). These shorter fragments can lead to fragmented
predicted coding sequences that are challenging to annotate. The metagenome could also
contain organisms that have low annotation coverage, due to taxonomic distance from
well-studied species or having a higher proportion of divergent/uncharacterized protein
families. Thus, the metagenome ends up with around half of its predicted coding sequences
annotated (the highest coverage reached being 58%). The MAGs had better annotation
coverage (42 - 88%) than the pooled metagenome, albeit with a larger range between the
methods with the lowest coverage versus the methods with the highest coverage. This is
most obvious for Bin3 and Bin 10. Both of these bins have lower annotation levels for all
methods compared to Bin4 and Bin 9. However, Prokka and KEGG have a larger drop at
16% less annotation coverage, on average, versus 11% for the other methods. This perhaps
indicates that the KEGG database and Prokka pipeline are not as well set up for the more
obscureAcetobacteroidesgenus and divergentAlistipes (Bin 3 and Bin 10). This clade
probably contains protein families not as well covered in KEGG, Uniprot, and HAMAP
(used in Prokka) and divergent from currently characterized proteins, possibly relating to
the reed swamp and zebra�sh gut-like environmentsAcetobacteroides hydrogenigenesRL-C
and Alistipes sp. strain ZOR0009 (GOLD ID: Gp0042493) were found in.298 Although this
does a�ect all the annotation methods, just not to the same extent. As Rikenellaceae are
extremely dominant in the community on days 8 and 10 (increasing to a relative abundance
of as much as 87% in the decomposer community by the �nal day of sampling, Figure 2),
this probably lowers the annotation coverage (but especially with the KEGG database) in
the pooled necrobiome, being some of the harder-to-annotate organisms mentioned above.

48



Figure 2.12: Annotation coverage in �sh necrobiome and the four highest-quality MAGs.
Prokka was not run on the metagenome as it is designed for genomes and the gene �nding
that is a part of its pipeline is not as e�ective on metagenomes.

2.3.4 Conclusion

Both 16S and metagenomic analysis revealed a strong succession in which initial time points
were dominated by Clostridiaceae andAeromonas, with Rikenellaceae species appearing
by day 4 and becoming major community members by day 10. Analysis of functional
pro�les inferred from the metagenomic data revealed common decomposition pathways, as
well as temporal shifts in function that mirrored taxonomic succession. Notably, pollutant
degradation pathways and bio�lm formation pathways were enriched in the early stages of
decomposition and associated with Clostridiaceae andAeromonas, and glycan metabolism
and antibiotic synthesis increased in later stages and associated with Rikenellaceae. I also
identi�ed a toxigenic Aeromonasstrain that was a dominant member of the necrobiome
community. The presence of numerous hemolytic toxin genes in this organism suggests
a potential role for toxins in the decomposition of host tissues as proposed previously.191
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Lastly, investigating the overall annotation coverage of the metagenome-assembled genomes
revealed that the two Rikenellaceae bins had a lower proportion of CDSs annotated compared
to the other bins. Their annotation coverage possibly reects their understudied place
within the Rikenellaceae family. Further work investigating the prevalence and function of
toxigenic and non-toxigenic bacterial species in decomposer communities will be important
to explore their broader ecological roles and niches within natural ecosystems.

2.4 Summary

Homology-based annotation is the foundation of current genome and metagenome functional
analyses. Through sequence-sequence and sequence-model methods, I annotated two newly
sequencedStreptomycesstrains, revealed the antibiotic resistome of a farm wastewater
sample, and explored the functional pro�le of a rainbow darter necrobiome. There are many
ways to annotate a dataset depending on the intended target and how high con�dence
the annotations should be. Targeted annotation databases are excellent resources if the
genome/bin is part of a well-studied sub-group likeAeromonas or if the proteins you
are targeting have their own focused, heavily-curated databases like CARD or VFDB.
Multi-database comparisons can increase the number of coding sequences with functional
information and can provide validation for function transfer, as done here in the search
for cellulases. The case studies lead to the discovery of proteins of interest, from cellulase
predictions in novelStreptomyces, to toxin genes found in decomposing �sh. These case
studies reinforce the concept that novelty can come from new contexts even if the protein
family is already at least partially characterized.

The other take-away from these studies is that a signi�cant proportion (12 - 44%) of
newly sequenced genomes/metagenomes are not annotated with many current methods
and databases. Intrinsic di�erences between annotation methods cause variability in the
annotation coverage but all methods tested left a substantial number of predicted coding
sequences unannotated. Even worse, some taxa were more in the \dark" than others. This
raises important questions: what is the range of annotation completeness in other microbial
taxa and what are the factors that can a�ect annotation coverage?
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Chapter 3

Annotation completeness of bacterial
genomes

Material in this chapter has been published as part of Lobb et al. (2020).180 The published
manuscript is available here:

B. Lobb, B. J.-M. Tremblay, G. Moreno-Hagelsieb, and A. C. Doxey. An
assessment of genome annotation coverage across the bacterial tree of life.
Microbial Genomics, 6(3):e000341, 2020.180 https://doi.org/10.1099/mgen.
0.000341

Although gene-�nding in bacterial genomes is relatively straightforward, the automated
assignment of gene function is still challenging, resulting in a vast quantity of hypothetical
sequences of unknown function. As seen in Figure 1.1 and the Chapter 2 case studies, a
signi�cant proportion of newly sequenced genomes/metagenomes are unannotatable with
current methods and databases. But how prevalent are hypothetical sequences across
bacteria, what proportion of genes in di�erent bacterial genomes remain unannotated,
and what factors a�ect annotation completeness? To address these questions, the genome
annotation completeness of over 27,000 bacterial genomes from the Genome Taxonomy
Database was surveyed, with a focus on annotation method, taxonomy, genome size,
'research bias' and publication date. Annotation coverage using protein homology-based
searches varied signi�cantly. However, taxonomy was a major factor inuencing annotation
completeness, with distinct trends observed across the microbial tree (e.g. the lowest level of
completeness was found in the Patescibacteria lineage). Most lineages showed a signi�cant
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association between genome size and annotation incompleteness, likely reecting a greater
degree of uncharacterized sequences in 'accessory' proteomes than in 'core' proteomes.
Finally, research bias, as measured by publication volume, was also an important factor
inuencing genome annotation completeness, with early model organisms showing high
completeness levels relative to other genomes in their own taxonomic lineages. This work
highlights the disparity in annotation coverage across the bacterial tree of life and emphasizes
a need for more experimental characterization of accessory proteomes as well as understudied
lineages.

3.1 Introduction

Genome annotation relies primarily on the detection of homology between newly identi�ed
genes/proteins and previously annotated sequences. Although complicated by varying
de�nitions of \function" and \annotation", homology-based annotation transfer has been
systematically explored, revealing success rates of upwards of 60{70% accuracy based
on assessment of GO term prediction.181,253 Studies of early model organisms, such
as Escherichia coli, Bacillus subtilis and Caulobacter crescentus, are a major source of
experimentally derived functional annotations. Therefore, it is important to note that such
limited sources can be expected to result in biases in genome annotation, with a greater
success rate in species that are phylogenetically closer to these and other commonly studies
species.98

Both sequence-to-sequence and pro�le-based methods are implemented in common
annotation pipelines such as Prokka,280 the Joint Genome Institute Microbial Annotation
Pipeline201 and NCBI's Prokaryotic Genome Annotation Pipeline.104 Annotation pipelines
may also integrate a variety of methods and databases, and/or allow users to customize
options towards speci�c reference databases or taxonomic lineages. Commonly used reference
databases include UniProt/SwissProt, as well as the NCBI's reference sequence (RefSeq)
database, and its non-redundant protein database. Other reference databases of protein
and/or domain families include TIGRFAMs,105 FIGfams,210 COG306 and Pfam.75

Even with sequence databases growing at an exponential rate and with ongoing expansion
of annotation information in reference databases, well-studied organisms still have signi�cant
proportions of their CDSs functionally unannotated.118,179,240,340 When predicted protein
sequences cannot be functionally annotated, they are typically classi�ed as \hypothetical"
proteins, or sometimes as \conserved hypothetical" proteins if they are commonly detected in
the genomes of numerous organisms.80,82 These hypothetical sequences consist of proteins of
unknown function as well as potential pseudogenes and even spurious gene predictions.48,179
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An important question in genome-wide functional annotation is to what degree a genome
(or more speci�cally, a proteome) can be assigned function.273,284 Interestingly, across
di�erent bacterial species/genomes there is considerable variation in the completeness of
genome annotations reported in the literature and in databases.11,98 For example, according
to the Joint Genome Institute database, well-studied model organisms such asE. coli K12-
W3110 andBacillus subtilis strain 168 have� 86 and 81% of their proteome functionally
annotated, respectively.201 However, the proteome ofVerrucomicrobium spinosumDSM
4136 is only 48% annotated. Ever more extreme than this is the feline parasiteMycoplasma
haemofelis, which has functional annotations for only 19% of its proteome.17,201 With such
a wide range of annotation coverage found among bacteria, this study aimed to investigate
the extent of annotation coverage across the bacterial tree of life, as well as to identify
factors related to this important property of genomes.

3.2 Methods

Genome data sources

Bacterial genomes from AnnoTree207 and their Pfam75 and KEGG132 annotations
(gtdb r86 bac genomic�les.tar.gz, gtdb r86 bac pfam tophits.tar.gz, and
gtdb r86 bac ko tophits.tar.gz, respectively) were accessed fromhttps://data.ace.uq.
edu.au/public/misc_downloads/annotree/r86/ . Metadata for the downloaded genomes
were retrieved from the Genome Taxonomy Database (GTDB)235 at https://data.ace.uq.
edu.au/public/gtdb/data/releases/release86/86.1/bac120_metadata_r86.1.tsv .

Gene annotation

As described elsewhere, Pfam75 annotations were derived from Pfam v27.075 and applied
with HMMER v3.1b1 and Pfamscan (at ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/).
KEGG132 annotations were computed based on DIAMOND v0.9.2227 matches against the
UniRef100 dataset, members of which were pre-annotated with KEGG orthology (KO)
annotations. The percentage of unannotated CDSs from the Pfam and KEGG approaches
for each genome was calculated by comparing the number of CDSs in the metadata �le
with the number of CDSs with Pfam or KEGG matches in the Pfam and KO \tophits" �les
from AnnoTree.207

Genome annotation was also performed using Prokka v1.13.7280 with its default databases
and with the rRNA and tRNA search options turned o�. Mycoplasmatales (GTDB
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taxonomic nomenclature that includes Entomoplasmatales and Mycoplasmatales from the
NCBI taxonomic nomenclature) was analysed with translation table 4, while GTDB orders
Absconditabacterales and BD1-5 (which include candidate division SR1 and 'Candidatus
Gracilibacteria' from NCBI taxonomic nomenclature) were analysed with translation table
25. The unannotated class of CDSs were identi�ed as those containing \hypothetical protein"
product names that also lacked Prokka database annotations. To analyse NCBI-derived
protein annotations, protein .gp� �les associated with 113,424 genome IDs in the GTDB
metadata �le were downloaded from NCBI's ftp server (ftp://ftp.ncbi.nlm.nih.gov/
genomes/all/ ). Any protein annotation in the \product" line of the �le containing the
words \hypothetical", \uncharacteri(s/z)ed protein" or \unknown" were counted towards
the \unannotated" fraction for that genome. The number of protein CDSs were also
counted from the .gp� �les for determining the percentage of unannotated CDSs. A data
table containing the genome accession numbers and associated frequencies of annotated,
unannotated and total gene counts produced by all three annotation pipelines is available
online (https://github.com/doxeylab/genomeAnnotationCoverage ).

Statistical analyses

Statistical analyses were performed using R v3.2.3. For all statistical tests, the logarithm
of genome size was used, which resulted in distributions closer to normality. The aov()
function within the R base library was used to perform analysis of variance (ANOVA) tests
and ANOVA [aov(),type=`III')] from the car v3.0{3 library was used to calculate analysis of
covariance (ANCOVA) tests. Each ANCOVA identi�ed a signi�cant e�ect of the covariate
GTDB taxonomic order on the annotation coverage, as well as a signi�cant interference of
the covariate with the e�ect of the independent variable. Linear regression was performed
using the ggplot2 module statsmooth(method=`lm').

The PubMed June 6 2019 database was downloaded using Entrez Direct. 'Research bias'
represented by PubMed mentions was determined using Entrez Direct to search PubMed
for all abstracts or titles that contained a genus name (NCBI taxonomic nomenclature).

Protein lengths were derived from the predicted proteins generated by Prokka.280
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3.3 Results

Annotation analysis

In order to explore patterns of genome annotation across bacteria, 27,372 bacterial genomes
included as part of the AnnoTree database207 were analysed. AnnoTree uses a phylogenetic
tree originally derived from the GTDB235 and allows users to visualize pre-computed
functional annotations across the bacterial tree of life. Three popular approaches for
functional annotation that utilize di�erent tools and databases were used, in addition to
externally computed NCBI annotations, which are describe later. (i) Prokka280 (v1.13.7):
predicted proteins were annotated by BLAST+ searches against databases of curated
proteins, and by hmmscan74 searches against the HAMAP HMMs library.238 (ii) KEGG: 132

predicted proteins were annotated with KO numbers based on DIAMOND27 searches against
the KEGG database. (iii) Pfam:75 predicted proteins were annotated by hmmscan searches
against the Pfam-A HMM library.

Following annotation with these pipelines, for every genome, predicted CDSs were
then subdivided into two categories: (i)annotated proteins{ sequences matched to either
functionally characterized or unnamed families; and (ii)unannotated proteins{ sequences
without any matches. CDSs matching protein families without an annotated molecular
function were still included in the �rst group, since these domains may still possess limited
information that can be transferred to a new sequence.

Based on Prokka results, the mean proteome annotation coverage was 52� 9% (48%
unannotated) (Figure 3.1a). This is expectedly lower than that reported for model organisms
and higher than that reported for the low-end cases described earlier. It is worth noting that
the default Prokka parameters for functional annotation are fairly strict, as only reference
proteins with experimental evidence are considered for functional assignments,280 and that
annotation coverage can potentially be increased by adding custom databases of curated
annotations. The KEGG-based annotation method produced similar results with 55� 10%
mean annotation coverage (Figure 3.1a). The third approach based on Pfam domain-based
annotation produced a mean of 79� 7.1% annotation coverage (Figure 3.1a), which is higher
than that of the other methods. To compare the results against externally derived functional
annotations, 113,424 previously annotated proteomes within the NCBI database were also
examined. These proteomes had a mean annotation coverage of 79.8� 10% (see section 3.2,
Methods).
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Figure 3.1: Distributions of genome annotation incompleteness across GTDB bacteria and
length of annotated versus unannotated CDSs. (a) Relative frequency distribution of anno-
tation coverage based on annotation with Prokka, KEGG and Pfam. (b) Relative frequency
distribution of the length (bp) of CDSs in genomes present in AnnoTree. Annotation status
was determined with this study's binary Prokka classi�cation. The lowest length for both
annotated and unannotated sequences is 90 bp, due to the length threshold in Prodigal.116

Another trend that was observed was that unannotated protein sequences tended to
be shorter in length than annotated protein sequences (Figure 3.1b). Shorter proteins
can be more di�cult to annotate due to poor database coverage, lower match scores
and an increased chance of being pseudogenes (one signature of pseudogenization is the
accumulation of premature stop codons, which leads to shorter CDSs).175 While it is
challenging to uncover pseudogenes at such a large scale,116,164 there was an observable
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di�erence in the length distribution of the unannotated sequences, consistent with an
increased proportion of pseudogenes. Despite this, a large proportion of the distribution
was indistinguishable from that of annotated sequences (Figure 3.1b).

With all annotation pipelines analysed, extreme variation in annotation incompleteness
across bacterial genomes was observed (Figure 3.1a). For example, based on protein
homology searching using Prokka, annotation incompleteness ranged from 2.3% ('Candidatus
Baumannia cicadellinicola') to 85.5% (Mycoplasma haemofelisOhio2). Similar values
were obtained using KEGG-based annotation, with incompleteness ranging from 3.1%
('Candidatus Evansia muelleri') to 87.9% (Algoriphagus boritolerans). Next, to further
explore factors inuencing this variation, the relationship between annotation coverage and
various features, such as taxonomy, genome size and research bias, were examined.

Taxonomy

To study the potential taxonomic bias in genome annotations, annotation completeness
was mapped onto the bacterial phylogeny, and was partitioned according to the taxonomic
scheme de�ned by the GTDB (Figure 3.2). Di�erences in annotation coverage were visually
apparent across the tree, and a strong degree of clade-speci�c patterns could be observed.
This taxonomic annotation bias was supported by quantitative measurements at di�erent
taxonomic levels (Figure 3.3). Even at the phylum level, there were observable di�erences
in genome annotation coverage between taxa (Figure 3.3a; ANOVAP value < 2� 10-16),
with greater resolution revealed at every subsequent taxonomic level (Figure 3.3b). This
taxonomic e�ect was consistent between Prokka (Figure 3.3a, b), KEGG (Figure 4a; ANOVA
P value < 2� 10-16) and Pfam (Figure 4b; ANOVA P value < 2� 10-16) proteome annotations.
Patescibacteria, a phylum recently formed from the highly underrepresented candidate phyla
radiation associated with smaller genomes,109,264 had the highest mean of unannotated CDSs
across all three annotation systems. Spirochaetota, a smaller phylum, and Bacteroidota,
found across many environments, also had higher unannotated proportions (54.8% mean
and 55.7% mean, respectively). Proteobacteria and Firmicutes, the phyla of the majority of
bacterial model organisms, had better annotation completeness across all three annotation
systems with mean unannotated proportions of 42.6 and 42.3%, respectively. Thus, the
taxonomic bias on genome annotation completeness may be in part due to what can be
described as research bias or model organism bias (a larger scienti�c community e�ort
towards functional characterization), which is explored further in a later section.
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Figure 3.2: Genome annotation incompleteness across the bacterial tree of life. Annotation
incompleteness has been mapped to the outer edges of the tree of life obtained from
AnnoTree,207 which was originally derived from the GTDB.235 The height of each bar
(and colour) depicts traits (annotation incompleteness and genome size), which have been
normalized separately for each metric. For annotation incompleteness, the gradient goes
from 0% (minimum) to 100% (maximum). Four metrics are shown, including annotation
incompleteness as determined using Pfam (outer ring), followed by that determined using
KEGG, that determined using Prokka and genome size (inner ring).This �gure was designed
in collaboration with Benjamin Tremblay.
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Figure 3.3: Distributions of genome annotation coverage subdivided by taxonomic group.
Genomes were annotated using Prokka with default parameters (see section 3.2, Methods).
Only the most common phyla from the GTDB235 are shown. (a) Taxonomic separation by
phyla. (b) Taxonomic separation by order. Labelled orders are using GTDB taxonomic
nomenclature.

Genome size

Genome size, a trait related to taxonomy (as evident in Figure 3.2), also appeared to a�ect
the annotation coverage of genomes. Even without accounting for the confounding impact
of taxonomy, a relationship between genome size and genome annotation completeness was
visible (Figure 3.4a). A closer look at this phenomenon within individual phyla revealed
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