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Abstract

In this thesis we investigate the holographic dual description of correlation functions of
heavy operators in conformal �eld theory. These heavy operators have scaling dimension
that scales with the CFT central charge in the large central charge limit, and they are
dual to objects propagating through the bulk whose gravitational backreaction cannot be
neglected. We reproduce the expected CFT correlation functions through a gravitational
path integral calculation{one that requires the introduction of special terms associated to
the horizons of black holes appearing in the gravitational con�gurations. The results for
two point functions apply in arbitrary dimensions. We also discuss heavy-heavy-light-light
correlation functions in various dimensions. We �nd results for the three point functions
in two-dimensional CFT that are consistent with the expected universal behavior of heavy
operator structure constants. This is consistent with the interpretation of three-dimensional
Einstein gravity as the holographic dual to an ensemble of CFT2's.
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Chapter 1

Introduction

1.1 The AdS/CFT Correspondence

Perhaps the largest gap in our understanding of fundamental physics pertains to the reconcil-
iation of quantum mechanics with the gravitational dynamics of general relativity. Attempt-
ing to treat gravity as just another quantum �eld theory may seem natural. However, due
to the non-renormalizability of the observed gravitational interactions, this most straight-
forward approach to quantizing gravity fails beyond the low-energy regime. Many proposals
have been made for how this problem might be resolved. The most promising candidate at
the moment was discovered through careful study of the dynamics of relativistic strings.

Once quantized, the spectrum of relativistic strings was universally found to contain
massless spin-2 particles. The behavior of these particles is guaranteed on general grounds
to match that of a graviton. Beyond this, the consistency conditions for the propagation of
quantum strings were found to imply that the spacetime on which they propagate satisfy
the equations of motion of general relativity (or extensions thereof). Crucially, the behavior
of quantum strings at high energy is much better than that of particles. It is believed that
string theory is well-de�ned in the UV. Thus, it was found that string theory was really a
theory of quantum gravity.

With these insights in hand, the non-perturbative aspects of string theory became a sub-
ject of great interest. Many interesting discoveries were made, including the existence of
branes and the conjectured uni�cation of all known consistent theories of strings. For the
purposes of this thesis, the most important discovery was that of the AdS/CFT correspon-
dence. The correspondence is a conjectured equivalence between the physics of quantum
gravity in Anti-de Sitter (AdS) space with that of a conformal �eld theory (CFT) de�ned
on the conformal boundary of AdS. The correspondence was originally discovered through
explicit constructions in string theory [3]. It has since grown into a general proposal based
on fundamental principles of gravity in AdS.

The AdS/CFT correspondence o�ers a window into both quantum gravityand the dy-
namics of strongly coupled conformal �eld theory. This is because it is a \weak/strong"
duality. The weakly coupled regime of gravity in AdS is equivalent to the strongly coupled
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regime of conformal �eld theory, and vice versa. So, when one theory is intractable due to it
being strongly coupled, it is nevertheless possible to make statements about its behavior by
leveraging the dual, weakly-coupled description. Thus, a better understanding of AdS/CFT
promises to reveal insights into the structure of both strongly-coupled quantum �eld theory
and quantum gravity.

1.1.1 CFT Correlation Functions and Holography

The basic observables in any quantum �eld theory are the correlation functions. By de�ni-
tion, every quantum �eld theory contains an algebra of local observables, and the correlation
functions capture the expectation value of elements of this algebra in the vacuum state.
These correlation functions can be packaged into generating function, the partition function
with sources.

The AdS/CFT correspondence implies a large dictionary of equivalences between grav-
itational and conformal �eld theoretic observables. One family of such equivalences is the
relationship between conformal �eld theory correlation functions and quantum gravitational
scattering amplitudes in AdS. This relationship can be summarized as

ZAdS(J ) = ZCFT (J ) (1.1.0)

whereZAdS is the partition function of quantum gravity on AdS, with boundary conditions
speci�ed as J , and ZCFT is the partition function of the dual conformal �eld theory in
the presence of sourcesJ . These act as generating functions for AdS scattering amplitudes
and CFT correlation functions respectively. The exact relationship between the boundary
conditions, J , of the quantum gravitational theory and the sources,J , of the conformal �eld
theory is not known in general. In fact, the left hand side of equation (1.1.1) isn't even
de�ned in general. However, it is understood for some special cases. For example, the large
central charge limit of the CFT corresponds to the semiclassical regime of the gravitational
theory. In this regime, each �eld in the bulk e�ective �eld theory should correspond to an
operator in the boundary CFT, seee.g. [4].

In this thesis, we will be concerned with a version of equation (1.1.1) that is less well
understood. Namely, when the CFT operators involved have very large scaling dimension.
These are what we call \heavy" operators, and by \very large" scaling dimension, we mean
dimensions that scale with the central charge of the theory, in the large central charge limit.
In this limit, heavy operator insertions correspond to heavy objects propagating through the
bulk. Depending on how heavy the operators are, they could correspond to di�erent types
of objects. They could be heavy particles, strings, branes, or even black holes. The key
results of this thesis will be how to properly treat the gravitational path integral involving
such objects in order to reproduce the corresponding CFT correlation functions.

2



1.2 Wormholes and Ensemble Averages in Holography

The role of wormholes in the gravitational path integral has long been a topic of interest.
In the 1980's it was understood by that the inclusion of small wormholes had the e�ect of
introducing random couplings to the low energy e�ective �eld theory. It was di�cult to make
any assertions about whether such wormholes should be included, since a guiding principle
for quantum gravity wasn't known which could resolve this question. The question was
signi�cantly sharpened once AdS/CFT came onto the scene. With the duality in hand, we
can make non-perturbative predictions about how quantum gravity should behave in AdS,
and compare this with predictions with and without wormholes.

1.2.1 Wormholes and Factorization

The inclusion of wormholes in the gravitational path integral seems to con
ict with the basic
structure of holography. To see this, consider the e�ect of including a wormhole contribution
in the calculation of ZAdS(M 1 tM 2){that is, the partition function of quantum gravity with
two asymptotically AdS boundaries, with topologies and conformal metrics speci�ed byM 1

and M 2. According to the holographic principle, we should have

ZAdS(M 1 t M 2) = ZAdS(M 1) � Z AdS(M 2) (1.2.0)

sinceZAdS(M 1tM 2) should be equal to the partition function of the dual CFT onM 1tM 2,
which is equal to the product of the CFT partition function on M 1 and the CFT partition
function on M 2. This property is known as \factorization" of the partition function. The
inclusion of wormhole contributions in the gravitational path integral can cause this property
to fail. This is due to the presence of wormholes that connect the two asymptotic regions.
These contributions are completely absent in the calculation of the single-sided partition
functions, Z (M 1) and Z (M 2), so they cause equation (1.2.1) to fail.

There are many conceivable solutions to this apparent paradox. The most immediate is
to simply declare the non-inclusion of wormholes in the gravitational path integral. To be
consistent one would likely need to forbid most topologies from contributing to the gravita-
tional path integral, not only the problematic wormholes that connect di�erent asymptotic
regions. Even with that in mind, it seems di�cult to reconcile a condition of this sort with
locality.

Another resolution, advocated in [5], is that wormhole solutions simply do not exist in
the relevant theories of gravity with boundary conditions relevant to holography. There
are, however, examples of theories that seem otherwise well-de�ned, thatdo feature such
solutions. Two key examples are dilaton gravity in 2d and pure Einstein gravity in 3d, the
latter of which is the focus of chapter 3.

Finally, one could imagine that wormhole contributions are present, but that in fully-

edged, UV complete theories of quantum gravity, the resulting non-factorization is cancelled
out by additional contributions to the partition function. In that case, the non-factorization
would be an artifact of the semi-classical nature of the gravitational path integral. Such a
scenario has been explored in, e.g. [6].

3



1.2.2 Ensembles in Holography

Having given several avenues to escape the problem of wormholes, we now turn to the
alternative option. What if wormholes and non-factorization really are features of some
theories? Can this be reconciled in some way with the principle of holography, albeit in a
modi�ed form? Amazingly, the answer is yes.

In the seminal work of [7], a new type of holographic duality was proposed. This is a
duality between quantum gravity{speci�cally two-dimensional JT gravity{and, rather than
a speci�c boundary theory, an ensemble of quantum mechanical systems. JT gravity is a
speci�c theory of dilaton gravity in two dimensions. In Euclidean signature, it has action

SJT = �
S0

2�

�
1
2

Z

M

p
gR +

Z

@M

p
hK

�
�

�
1
2

Z

M

p
g� (R + 2) +

Z

@M

p
h� (K � 1)

�
(1.2.0)

The partition function of JT gravity with n asymptotic boundaries, including wormhole
contributions, was found to be equal to the ensemble average of the product ofn quantum-
mechanical partition functions.

Z JT (� 1; : : : ; � n ) =
Z

d� Tr
�
e� � 1H

�
� � � Tr

�
e� � n H

�
(1.2.0)

where� i =� is the regularized length of thei th boundary, and d� is a speci�c measure on the
space of Hermitian operators (\Hamiltonians")H . The wormhole contributions now have a
clear meaning as moments of the quantum mechanical observables over the ensemble. For
example, the two boundary wormhole contribution is

Z JT (� 1; � 2) � Z JT (� 1)Z JT (� 2) = Cov �
�
Tr

�
e� � 1H

�
; Tr

�
e� � 2H

��
; (1.2.0)

the covariance of the quantum mechanical partition function at inverse temperatures� 1 and
� 2 over the ensemble.

This duality is wonderful because it means that while dilaton gravity is not able to
reproduce the behavior of a particular unitary quantum mechanical model, it can reproduce
the universal{or more precisely, the self-averaging{properties of such models.

A similar duality exists also in higher dimensions. Namely, the duality between \Narain
CFT's"{ i.e. two-dimensional CFT's with U(1)c � U(1)c symmetry{and a somewhat exotic
Chern-Simons theory [8, 9]. The partition function of a Narain CFT on a particular two-
manifold, B, averaged over the moduli space of Narain CFT's, is equal to the Chern-Simons
partition function, summed over handlebodies that \�ll in" B,

Z
d� ZCFT 2 (B; � ) =

X

M j @M = B

ZCS(M ): (1.2.0)

This duality also includes \wormholes" in the bulk, in that one needs to sum the Chern-
Simons theory calculations over background manifolds in order to match with the correspond-
ing ensemble calculations. If the boundary is disconnected, one will need to include bulk
manifolds that connect di�erent boundary components in the sum. However, the bulk theory
is very exotic. Is there a similar duality involving boundary theories with less symmetry?
One that involves a much simpler gravitational theory?
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1.3 Quantum Gravity in AdS 3

Chapter 3 will focus on gravity in three spacetime dimensions. This is a setting in which
quantum gravity is a bit more tame, due to the lack of propagating gravitons. A question
which has been the center of a lot of research is: what are the limits of the space of quantum
gravitational theories in AdS3? In view of the AdS/CFT correspondence, this can be seen as
a question about the space of two-dimensional conformal �eld theories. For example, what is
the largest possible gap between the scaling dimension of the vacuum and the next smallest
scaling dimension?

An extreme version of this question is: does pure three-dimensional Einstein gravity exist
as a quantum theory? This would be a theory whose lightest state above the vacuum is a
black hole. This question was addressed in [10]. Therein, it was found that when computed
as an expansion around classical saddlepoints, the partition function of pure gravity in AdS3

is given by

ZMWK (�; �� ) =
X


 2 � 0

� vac(
 � � ) �� vac(
 � �� ) (1.3.0)

where

� vac(� ) =
e� 2�i� c� 1

24

� (� )
(1 � e2�i� ) (1.3.0)

is the vacuum Virasoro character,� (� ) is the Dedekind � function, and 
 2 SL2Z is an
element of the modular group. The group �0 is the subgroup of SL2Z that acts non-trivially
on the vacuum character.

This result turns out to be inconsistent with the idea that pure gravity might have a dual
CFT description. This is because if one extracts the density of states,� (h; �h), using

ZMWK (�; �� ) =
Z

dhd�h � (h; �h)e2�i� (h� c
24 )� 2�i �� ( �h� �c

24 ); (1.3.0)

one �nds that the density of states is neither discrete nor positive. On the other hand,
any compact, unitary CFT has a discrete, positive density of states, with a positive integer
number of states at eachh, �h.

There have since been many proposals for how to solve this problem. These generally
involve adding new contributions to the calculation of [10], which cure some of the prob-
lems with the density of states. While some progress has been made curing the negativity
problems presented by (1.3), the non-discreteness of the density of states remains a problem.
However, with the development of the ensemble-averaged holographic dualities discussed in
the previous section, the continuous density of states no longer seems as big of a concern.
Perhaps the lack of a discrete spectrum is arising because the dual theory is actually an
ensemble of CFT2's, rather than a speci�c one!

This idea has been explored in [11]. In particular, in [11] it was found that the Einstein-
Hilbert action of certain wormhole solutions in pure gravity with conical defects reproduced
the universal formula for OPE coe�cients of heavy operators in holographic CFT2's. In
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chapter 3, we will see how this result can be extended to the regime where black holes,
rather than conical defects, propagate across a wormhole. This is an important step towards
a more complete understanding of how pure gravity in three dimensions relates to universal
properties of two-dimensional conformal �eld theories.
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Chapter 2

Geometries for Correlation Functions in
General Dimensions

2.1 Introduction

The holographic dual of a CFT correlation function depends qualitatively on the dimen-
sions of the operators involved. Holographic correlators might feature the insertion of light
operators dual to particles,e.g. Kaluza-Klein modes on AdS, and/or heavier operators. In
principle, all light correlators are computed by Witten diagrams. For heavier operators, the
correct picture depends on some of the details of the operator. Strings, branes or bricks of
branes can all be considered emerging from the insertion points, and each category might
come with decorations thereof. Holographic correlators for strings and branes receive the
leading order contribution from the action associated to an extended surface in the bulk an-
chored at the insertion points, as is well established. But when it comes to huge operators,
such as large bricks of branes, the bulk geometry itself is deformed. This is a scenario in
which much less has been explored. Hence the question we would like to investigate here is:
\How do we compute correlators of huge operators from the bulk?"

As a �rst step, in this chapter we discuss the simplest case of two-point functions for scalar
operators, and the construction of the corresponding two-point function geometries. In order
to explain what these are we will use the AdS-Schwarzschild black hole inD dimensions as
a guiding example.1 Of course, our main motivation here is to establish a general formalism,
which can be applied to more general solutions such as those that are dual to higher point
correlation functions [12].

CFT two-point functions are very simple, i.e.

hO� i (~x1) O� j (~x2)i '
� ij

j~x1 � ~x2j2� i
: (2.1.0)

Our goal, however, is to recover this result from a bulk calculation that involves huge opera-
tors. The information that we need to �nd is the dimension � i of the scalar operators, and

1The generalisation to include electric charge and matter will be presented elsewhere [12].
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Figure 2.1: Thebananafoliation. (See also �gure 2.3.)

the spacetime dependence with respect to their separation~x12. Recall that the spectrum
of dimensions of operators in a holographic CFT coincides (up to a shift by the Casimir
energy) with the spectrum of energies with respect to global time� in AdS. Therefore a way
to read o� � is to compute the energy E of the dual operator in a frame where the geometry
is asymptotically R � Sd� 1. This is true for any operator: light, heavy or huge. Thus in
global coordinates, a two-point function geometry is an asymptotically AdS geometry with
a backreacted interior which depends on the operator. Using the natural cuto� in these
coordinates corresponds to placing the operators at� = �1 , and one might be satis�ed
with this.

However, the global AdS perspective is not the end of the story. In this chapter, we will
present another computation that is intrinsically Euclidean and such that the operators are
inserted at the boundary of AdS in Poincar�e coordinates. A similar idea was explored already
in the context of classical spinning strings in global AdS in [13]. The strategy there was to
embed the surface of the string into Euclidean AdS with Poincar�e slices. In these coordinates,
the string looks like a fattened geodesic that connects the points at the boundary, where the
dual operators are inserted, and its onshell action was shown to compute the corresponding
two-point function.

For two-point function geometries, the relationship between global and Poincar�e coordi-
nates is a bit more subtle. The reason is that, unlike the case of embedded objects, the metric
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itself transforms in a nontrivial way. Nevertheless, we will construct a change of coordinates
that maps a geometry with global asymptotics to a geometry with Poincar�e asymptotics.
We will call this the Global-to-Poincar�e (GtP) map. The spacetime we end up with has
novel features which we will describe in detail. To start with, we can picture how it looks
by visualising the foliation de�ned by mapping surfaces of constantr in global coordinates
into the Poincar�e picture. This foliation is composed of \spacetime bananas" that originate
from the marked points,e.g. see �gure 2.1.

The induced metric on the spacetime bananas is what characterises the backreaction
of the operators inserted. For gravitational solutions which have a smooth interior, we
can follow the foliation to the point where it shrinks to the geodesic connecting the two
boundary points. In a neighbourhood of that geodesic, the metric depends on the speci�cs
of the operators inserted, and it will deviate strongly from empty AdS.

When the operator insertions have created a black hole connecting the two insertion
points, we can follow the foliation in �gure 2.1 only up to the innermost banana which is the
GtP image of the black hole horizon atr = rh. As is characteristic of a black hole horizon,
the induced geometry on this innermost banana maintains a �nite size in the transverse
directions (i.e. the horizon area) but has zero length in the longitudinal direction (i.e. the
analog of the� direction). The latter results in a conical singularity on this surface.2 This
zero-length direction goes between the insertion points, passing through the bulk. Therefore,
we have to be careful when picturing the horizon as a banana (as in �gure 2.1), since the
proper length along this banana actually vanishes. For the purpose of visualization, it is
useful to think instead of a \stretched horizon", a banana that is some small distance outside
of the horizon. This perspective is also closely related to the membrane paradigm [16], which
constructs a simpli�ed model to describe the black hole by replacing it with a physical surface
(or membrane) at a vanishingly close distance from the event horizon.3

At this point, it may bene�cial for our reader if we step back to compare our approach
to more traditional calculations with Euclidean black holes. First, a comment on nomencla-
ture is that we continue to use \horizon", an intrinsically Lorentzian concept, to refer to the
innermost surface in our Euclidean geometry. This is a codimension-two surface since the
length along the (Euclidean) \time" direction vanishes, as noted above. Traditionally, one
makes the Euclidean time direction periodic and �xes the periodicity to maintain a smooth
geometry across this surface. Of course this is the starting point in using Euclidean black
hole geometries to study black hole thermodynamics,e.g. [17]. In our approach, we are not
enforcing any periodicity for the time coordinate. In this regard, our geometries are analo-
gous to \�xed area" states [18,19], which have recently appeared in discussions of quantum
information aspects of holography.4 In either of these contexts, one is considering an en-

2Singularities appearing on a purported horizon while not common are known to arise in a variety of
contexts in string theory, e.g. see [14,15]. We adopt the pragmatic point of view of regarding the singularity
in our solutions as harmless since they still yield a �nite result for the on-shell action, as we will show below.

3While this approach is traditionally employed to model the dynamical behaviour of black holes in the
context of Lorentzian signature, we may also employ the membrane paradigm in our Euclidean calculations
here { see footnote 7.

4We note, however, that generally one expects �xed-area states to have a �nite conical de�cit at the
horizon, while in our geometries, the horizon develops an in�nite angular excess. That is, in keeping with
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semble of high energy states in the boundary CFT while we wish to consider a single state,
i.e. the state created by the insertion of our huge operator. The latter requires that our
Euclidean action includes a boundary contribution,i.e. the Gibbons-Hawking-York (GHY)
term [17,20], at a stretched horizon to �x the boundary conditions there { again, in contrast
to the ensemble calculations.

The importance of the latter is also emphasized by the following holographic considera-
tions: What we want for our geometry is that the onshell action computes a CFT two-point
function, rather than say the Gibbs free energy at �xed temperature� � 1. Thus, our compu-
tation is closely related to a transition amplitude for two states separated by a Euclidean time
translation, rather than a trace over an ensemble of states with a thermal circle. Schemati-
cally,

hBHje� H�� jBHi = e� E�� rather than Z = tr( e� � Ĥ ) = e� �E + S : (2.1.0)

In both cases, the right-hand side is computed by the onshell action of a gravitational back-
ground, and in the transition amplitude, we have roughly�� � logjx12j2. But for a two-point
function, there should be no entropy contribution! We will �nd that the GHY boundary term
on the stretched horizon is crucial to remove the entropy appearing in the calculation of the
thermal ensemble. This observation was made previously in [21], which discussed a Eu-
clidean path integral derivation of the transition amplitude in eq. (2.1). Finally, let us also
note that one can interpret this new boundary term as the \membrane action" [22] within
the framework of the membrane paradigm.

Let us note that semiclassical gravity will not distinguish states that are very close in
the spectrum of the boundary theory [23]. Therefore, we should think that our gravitational
calculations yield the behaviour for generic scalar states with no charges (i.e. vanishing an-
gular momenta and internal charges). However, we contrast this perspective with the recent
discussions of averaging in holographic theories,e.g. see [11, 24]. For the present purposes,
the only relevant \erratic" behaviour in the boundary theory would be in the spectrum of
conformal dimensions �. But the form of the two-point function (2.1) is completely �xed by
conformal invariance for a given �. Hence averaging does not play a role here { see further
discussion in [12] which examines gravitational calculations of higher point functions for huge
operators.

The remainder of this chapter is organised as follows: In section 2.2, we describe the
salient aspects of our construction. Speci�cally, we introduce the GtP change of coordinates
and the bananas, then we discuss a version of the onshell action computation, whose imme-
diate aim is to highlight the emergence of nontrivial spacetime dependence, and the crucial
role played by the GHY boundary term at the stretched horizon. In section 2.3, we describe
further aspects of the two-point function geometry. In particular, we verify the conformal
Ward identity from the holographic stress tensor, and we revisit the onshell action computa-
tion by discussing the implications of the fact that the Fe�erman-Graham coordinates only
extend to a �nite surface in the bulk, which we call \the wall". In section 2.4, we build on the
idea of the horizon as a membrane by showing that { absent �ne tuning { geodesics anchored

our discussion of the conformal dimensions and global coordinates, we allow the black holes to \propagate"
for an in�nite amount to Euclidean time.
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at the boundary always remain outside the horizon banana. Then, we compute the action
of such geodesics and show in examples that at leading order in the black hole mass, the
result is simply the stress tensor conformal block. Finally, we conclude with a discussion of
our results and future directions in section 2.5. There, we sketch an outline of our plan to
extend our calculations to three- and higher-point geometries, which we will investigate in
the future [12].

2.2 The Banana Geometry

In 1916, Schwarzschild discovered the �rst black hole solution of Einstein gravity. Here we
will give it a new out�t, and show how it looks when we think of it as a two-point function
geometry. As described in the introduction, from this new point of view, the black hole will
look like a spacetime banana.

2.2.1 AdS-Schwarzschild

In global coordinates, the Euclidean metric of theD = ( d+1)-dimensional AdS-Schwarzschild
black hole reads

ds2
global = f (r )d� 2 +

dr2

f (r )
+ r 2d
 2

d� 1 (2.2.0)

where the blackening factor is

f (r ) = 1 + r 2 �
�M
r d� 2

: (2.2.0)

Here M is the black holemass(= energy) if the parameter � takes the canonical value,

� =
16�G N

(d � 1)
 d� 1
; where 
 d� 1 = Vol(unit (d-1)-sphere) =

2� d=2

�( d=2)
(2.2.0)

and GN is Newton's constant in the (d + 1)-dimensional bulk. In practice, we will set� = 1
to avoid cluttering our computations, and spell it out only in the �nal formulae. Further, we
have implicitly set the AdS curvature scale toLAdS = 1.

The signature of the black hole can be changed from Euclidean to Lorentzian by tak-
ing � = � it . In either signature, the vector along the time direction is Killing and has norm
square proportional tof (r ). This norm vanishes at the real value ofr = rh wheref (rh) = 0,
i.e. the Killing vector becomes null in Lorentzian signature and vanishes in Euclidean signa-
ture. This value, r = rh, sets the location of the horizon, and it depends onM . Very light
black holes with M � 1 have a very small horizon radiusrh, i.e. they are e�ectively small
excitations in the middle of AdS. Very heavy black holes withM � 1 have a horizon radius
scaling with M 1=d and thus occupy most of the AdS spacetime.

Of course, in Lorentzian signature, the horizonr = rh is the locus where light accumulates
from the point of view of an observer at in�nity. Free falling observers nevertheless cross
the horizon in a �nite proper time. On the other hand, as discussed in the introduction,
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Figure 2.2: Global (Left) and Poincar�e (Right ) are related by the map in eq. (2.2.1). The
trajectory of a particle at rest in the middle of global AdS is mapped to a geodesic shooting
from the origin to in�nity in Poincar�e AdS, and the R � Sd� 1 boundary at r = 1 is mapped
to the Poincar�e boundary at ~z = 0. Cylinders of varying r that interpolate between the
center and the boundary of global AdS correspond to cones in Poincar�e coordinates. For
black holes, there is an horizon atr = rh which corresponds to a minimal cone atR=~z = rh.

in Euclidean signature, the spacetime ends at the horizonr = rh. There will be a conical
singularity at the horizon unless Euclidean time is compacti�ed to a circle,� � � + � , where
the periodicity is given by the inverse Hawking temperature

TH � � � 1 =
f 0(rh)

4�
: (2.2.0)

Then, the (�; r ) geometry is that of a \cigar" ending at r = rh (see [25] for a nice review).
The horizon area isA = r d� 1

h 
 d� 1, and it determines the black hole entropyS = A=4GN in
the thermodynamic interpretation of the black hole [17].

What we want for a Euclidean two-point function geometry is a black hole connecting
the insertion points at the boundary of AdS in Poincar�e coordinates. This picture would
match with what we expect for very light black holes behaving as structureless point particles
travelling through the AdS vacuum. In that case, the two-point function would be computed
by a geodesics anchored at the insertion points.

To match with our expectation, we look for a change of coordinates such that the center

12



of global AdS, namelyr = 0 and �1 � � � 1 , is mapped precisely to that geodesic in
Poincar�e AdS anchored at the insertion points of the two-point function. Further, we require
that the R � Sd� 1 boundary of global AdS is conformally mapped to theRd boundary of
Poincar�e AdS. With the insertion points at 0 and 1 , we can useSO(d � 1) invariance to
restrict ourselves to� = � (z; R) and r = r (z; R) where R is the radial coordinate in the
Poincar�e boundary. Then, the two conditions above are enough to suggest the change of
variables5

� =
1
2

log(~z2 + R2) ; r =
R
~z

: (2.2.0)

Under this map, cylinders of constant radius in global coordinates are mapped to cones in
Poincar�e coordinates, and translations in global time are mapped to dilations preserving
these cones { see Figure 2.2. We call this map the Global to Poincar�e (GtP) map.

After the GtP mapping (2.2.1), the black hole metric takes the form

ds2
cone =

1
~z2

"
d~z2

h( R
~z )

+ h( R
~z )

�
dR + R

~z v( R
~z )d~z

� 2
+ R2d
 2

d� 1

#

; (2.2.0)

where

h(r ) =
1

f (r )
+

r 2f (r )
(1 + r 2)2

and v(r ) =
1

f (r )h(r )

�
f (r )2

(1 + r 2)2
� 1

�
: (2.2.0)

With M = 0, we have f = 1 + r 2. As a result, one �nds h = 1 and v = 0, and the above
metric (2.2.1) reduces to exactly Poincar�e AdS.

Finally, we can bring the insertion point at 1 to a �nite distance by a change of co-
ordinates that acts as a special conformal transformation (SCT) on the boundary. Upon
introducing Cartesian coordinates ~x i to replace the polar coordinatesR; 
 i on the boundary,
desired change of coordinates in the bulk is

~x i ! x i =
~x i � bi (~x2 + ~z2)

e� 2

~z ! z =
~z
e� 2

with e� 2 = 1 � 2b� ~x + b2(~x2 + ~z2) : (2.2.0)

We call the above transformation the SCT mapping. It is useful to recall that the inverse of
the SCT mapping with shift parameterbi is simply another SCT map with shift � bi .

We denote the points at which the operators are inserted as~x� 1 = 0 and ~x� 2 = � bi

b2 .
Without loss of generality, we can choose~x� 1 � ~x� 2 to lie along the x1-axis, i.e. bi = b � i 1.
Then the geometry maintains a rotationalSO(d � 2) symmetry in the remaining Cartesian
directions. If we denote the radius in these transverse directions as� = (

P d
i =2 (x i )2)1=2, then

the metric takes the form

ds2
banana = N 2

z dz2 +
X

a;b= x1 ; �

hab(dya + N a
z dz)(dyb + N b

z dz) +
� 2 d
 2

d� 2

z2
(2.2.0)

5It is also possible to deduce this transformation by generalising the argument of [13], in particular, by
passing from (�; r ) coordinates to embedding coordinates, and from embedding coordinates to (~z; R) in the
Poincar�e patch. We give the details in appendix A.1.
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Figure 2.3: Black hole in global AdS (left), as a cone (middle) and a banana (right). The
red corresponds to the horizon atr = rh, while the semi-transparent surface corresponds to
some constantr surface with r > r h. There is a conical singularity at the horizon, since we
did not make � periodic.

The explicit form of the components is not very illuminating, and hence we omit them here.
Of course, the symmetry is enhanced toSO(d � 1) with b ! 0, since the cone metric (2.2.1)
is recovered in this limit.

In �gure 2.3, we illustrate the various coordinate transformations. Upon performing the
SCT map, the foliation by cones (withb = 0) becomes a foliation by bananas (withb 6= 0).
More precisely, each constantr cylinder in global coordinates is mapped to the banana

r 2 = � 2

�
x2

z2
+ 1

�
� 1 with � 2 = 1 + 2 b� x + b2(x2 + z2) (2.2.0)

Solving this equation forz gives two positive componentsz� (r ) � 0, distinguished by the
sign of a square root { see �gure 2.4 and also eq. (2.2.2). Thez� component has the shape of
a pair of pants, while thez+ component is a cap. In the limitb ! 0, the former transitions
to the cone surfaces andz+ goes o� to in�nity.

Of course, the induced metric on each banana is the same as that of a surface of constant
r in global coordinates, even if the metric looks initially more complicated. For example,
restricting to a cone ~z = R

r with a �xed value r 2 R in eq. (2.2.1), a direct computation
yields

ds2
cone

�
�

~z= R
r

= f (r )
dR2

R2
+ r 2d
 2

d� 1 : (2.2.0)

Further, eq. (2.2.1) yields dR
R = d� with �xed r , and hence eq. (2.2.1) reduces to precisely

the same induced metric as in global coordinates (2.2.1) with �xedr .

Although the induced metric on the bananas is the same as in global coordinates, the
main purpose of the GtP map is to give us a Poincar�e boundary, which allows us to study
the backreaction of the operators along slices of constantz, i.e. the bulk evolution picture.
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The surfacez = � is also a simple cut-o� surface6 for computing the onshell action, which is
ultimately what we want to compute to match with a CFT two-point function. The main
novelty here is that the z = � surface contains points which are both far and close to the
operator insertions,i.e. far and close to the black hole horizon. Thus the pre-image ofz = � in
global coordinates is a surface that explores the space from near the asymptotic boundary to
deep into the bulk, and therefore the corresponding boundary conditions probes properties of
the geometry that are usually viewed as distinct,i.e. near in�nity and in the interior. While
this distinction will be formalised in section 2.3 where we discuss the Fe�erman-Graham
patch, we �rst need to understand how to deal with the horizon.

As mentioned in the introduction, traditionally Euclidean black holes appear as the bulk
saddle point describing an ensemble of high energy states in the boundary CFT. In contrast,
we wish to consider a single unique state,i.e. the state created by the insertion of our huge
operator. For this purpose, we introduce a stretched horizon atr = rh(1 + � 0). away from
the horizon. Then to �x the boundary conditions at the horizon, we introduce Gibbons-
Hawking-York (GHY) term [17,20] on the stretched horizon and then take the limit� 0 ! 0.7

In sum, the total onshell action for our two-point function black hole is

I = I bulk + I boundary + I ct (2.2.0)

where the �rst term is the Einstein-Hilbert bulk action (with a negative cosmological con-
stant). The boundary action is comprised of two GHY terms, one on the asymptotic bound-
ary and the other on the stretched horizon,i.e.

I boundary = I GHY (@AdS ) + I GHY (stretch) : (2.2.0)

Finally, there are the boundary countertermsI ct which are evaluated on the asymptotic
boundary, e.g. see [26{31]. In the next section, we discuss the precise de�nition of all of
these termsI bulk ; I boundary and I ct , and further we will compute their values.

2.2.2 CFT two-point function from gravity: the onshell action

The goal of this section is to evaluate the gravitational actionI for the banana geometry
and show that it reproduces a scalar two-point CFT correlator. Of course, given eq. (2.1),
we know what to expect:

I = � log j~x� 1 � ~x� 2j2 + distance-independent constant (2.2.0)

so that
hO(~x� 1)O(~x� 2)i = e

� I
'

1
j~x� 1 � ~x� 2j2�

: (2.2.0)

6This is a slightly unconventional choice here since the metric (2.2.1) is not in the standard Fe�erman-
Graham gauge { see eq. (2.3) below.

7As noted above, we might alternatively consider our calculation within the framework of the membrane
paradigm [16], where the stretched horizon corresponds to a physical membrane. In order to describe this
membrane, one needs introduce an action as described in [22]. The interested reader is referred there for its
derivation but here, we simply note that onshell, this membrane action reduces to a GHY term.
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Figure 2.4: The two solutionsz� of the banana equation (2.2.1). We denote the (boundary)
distance between the insertion points asj~x� 1 � ~x� 2j = y = 1

b. The z� component has the
shape of a pair of pants, whilez+ is a cap. Forr = rh, we denote the inside and outside of
the ellipse below the stretched horizon asA and B, respectively.

We will focus �rst on reproducing the spacetime dependence as function of �. We will also
comment on the overall normalisation, which was omitted in eq. (2.2.2).

As pointed out already in (2.2.1), there are three contributions to the total action, which
come from: bulk, boundariesand counterterms,

I = I bulk + I GHY (@AdS ) + I GHY (stretch) + I ct (2.2.0)

We will analyse each of them in turn.

The bulk action

The Einstein-Hilbert action is

I bulk = �
1

16�G N

Z
ddx dz

p
g

�
R +

d(d � 1)
L2

AdS

�
: (2.2.0)

Here and below, we are implicitly working with the metric (2.2.1) using the coordinates
introduced by the SCT mapping (2.2.1). Then upon using the Einstein equations8 and

8We use R�� = � d g�� after setting L AdS = 1. Further, with the coordinates introduced by the SCT
map (2.2.1), we have

p
g dz ddx = 1

zd +1 dz ddx, just as in empty AdS.
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Figure 2.5: To regulate the onshell action, we introduce a cut-o� surface atz = � near
the asymptotic boundary and a stretched horizon atr = rh(1 + � 0). These two surfaces
intersect and e�ectively excise a disk of radiusrh � to leading order in� , close to the insertion
points. To compute the boundary integrals, we will excise a larger disk of radiusa, much
smaller than the separation between the insertionsy = 1

b, but much larger than �r h. We will
show that this scheme reproduces the expected spacetime dependencey� 2� of a two-point
function, up to a distance-independent constant. .

carrying out the dz integration for z � � , we �nd

I bulk =
1

8�G N

Z

A
ddx

�
1

z+ (rh)d
�

1
z� (rh)d

�
+

1
8�G N

Z

A[ B
ddx

1
� d

(2.2.0)

where the domain of integrationA is the ellipse given by projecting the banana describing
the horizon into the boundary coordinates { see �gure 2.4 and eq. (2.2.2).B is the domain
outside this ellipse and hence, the second term, which is the usual divergence of theAdS
volume, is integrated over the entire AdS boundary.

The �rst term consists of the boundary contributions coming from where thez integration
reaches the banana at the (stretched) horizon,9 and z� (rh) are the two components of this

9Here and for some quantities below, the distinction between horizon and stretched horizon does not
matter. That is, we do not encounter any divergences if we evaluate these quantities on the stretched
horizon and take then the limit � 0 ! 0. Hence we can evaluate them directly atr = r h .
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banana described below eq. (2.2.1). Substitutingr = rh into eq. (2.2.1), we �nd

z� (rh) =

"
r 2

h
2b2 � x1

�
x1 + 1

b

�
� � 2 �

rh

b

r
r 2

h
4b2 � x1

�
x1 + 1

b

�
� � 2

�
1 + 1

r 2
h

�
# 1

2

; (2.2.0)

as depicted in �gure 2.4. The ellipse dividing the domainsA and B corresponds to the van-
ishing locus of the square root in the above expression. Hence A is given by the inequality,10

x1
�
x1 + 1

b

�
+ � 2

�
1 + 1

r 2
h

�
� r 2

h
4b2 (2.2.0)

where as discussed below eq. (2.2.1), we have placed the two insertion points on thex1-axis
at x1 = 0 and � 1=b.

The bulk construction with the stretched horizon implies that we should also excise a
small disk around each insertion point from the inner domainA for the term involving z� (rh)
{ see �gure 2.5. As we shall see, this feature of the computation is precisely the reason why
the �rst contribution in eq. (2.2.2) is nonstandard and interesting to evaluate.

Let us examine how thez� component reaches the insertion points, by zooming there
with a small � expansion, (x1; � ) ! � (x1; � ) and (x1; � ) ! (� 1

b; 0) + � (x1; � ). We �nd

1
z� (rh)d

= r d
h

1
((x1)2 + � 2)d=2 ((1 + bx1)2 + b2� 2)d=2
| {z }

f 2pt

+ D(x1; x2; rh; b) (2.2.0)

where the di�erence functionD vanishes whenb= 0. The �rst term in its most general form
is given by

f 2pt =
j~x� 1 � ~x� 2jd

j~x � ~x� 1jd j~x � ~x� 2jd
: (2.2.0)

i.e. a simple function of distances. The integral off 2pt in A diverges logarithmically,11 while
instead the reminderD is integrable in A. On the other hand, f 2pt is integrable at in�nity,
and thus in B . Therefore, by adding and subtractingf 2pt in B , we can write the bulk action
as

I bulk =
1

8�G N

Z

A[ B
ddx

�
1
� d

� r d
h f 2pt(x)

�
+ Nbulk

where we de�ned the constant

Nbulk =
1

8�G N

Z

B
ddx r d

h f 2pt +
1

8�G N

Z

A
ddx

�
1

z+ (rh)d
� D

�
: (2.2.0)

We emphasize thatNbulk is a constant independent of the seperationj~x� 1 � ~x� 2j = 1=b.
Indeed, if we rescale the coordinates, say (x1; � ) ! (x1=b; �=b), the dependence on the

10Recall that � 2 =
P d

i =2 (x i )2.
11For example, in the cone coordinates (withb = 0), we have

R
ddx f 2pt =

R
dR
R d
 d� 1 and the radial

integral over R would yield a logarithmic divergence.
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separation factors out completely fromz� in eq. (2.2.2) and fromf 2pt and D in eq. (2.2.2).
Further, this overall factor cancels precisely that coming from the measureddx in the two
integrals comprisingNbulk in eq. (2.2.2). Similarly, the b dependence also scales out of the
ellipse separatingA and B, e.g. see eq. (2.2.2). Finally, since there is no divergence inD
near the insertion points, we can close the disks opened inA. Hence we conclude thatNbulk

is completely independent of the separation between insertion points, and in fact eq. (2.2.2)
yields a �nite constant depending only onrh in the � ! 0 limit.

The contribution coming from the �rst term in eq. (2.2.2) is di�erent becausef 2pt yields
a logarithmic divergence, and so it is really crucial to excise a disk of radiusa around each
of the insertion points. Thus, although the dependence onj~x� 1 � ~x� 2j can be scaled away
between the integrand and the measure, as above, this rescaling changes the domain of
integration. Hence the integraldoesdepend on the distance.

The asymptotic boundary action

The action has two contributions on the asymptotic AdS boundary. The �rst is the GHY
term12

I GHY (@AdS ) =
1

8�G N

Z

@
ddx

p
h K @AdS with K @AdS = �r �

N �
z

jNzj
(2.2.0)

and the second, the counterterm action13

I ct =
1

8�G N

Z

@
ddx

p
h

 

(d � 1) +
1

2(d � 2)
R[h] + � � �

!

: (2.2.0)

Here we are using the boundary metrichij at z = � and the outward-pointing unit normal
vector N �

z = ( � 1; N i
z) in the banana metric. The quantitiesN i

z here andNz in eq. (2.2.2)
correspond to those appearing in the metric (2.2.1).

As already mentioned, we �nd points that are both far and close to the horizon on the
z = � cut-o�. For example, in the cone coordinates (2.2.1), on the cut-o� surfacez = � ,
we can approachR = rh � where the blackening factor vanishes, or we can consider large
R where the metric is Poincar�e AdS at leading order in� . The behavior of the metrichij

as � ! 0, as well as that ofN i
z, depends on this distinction. To properly disentangle these

two regions, we introduce Fe�erman-Graham coordinates in section 2.3, and here we adopt
a simpler strategy instead. Our approach is to choose the radiusa of the disks that we
excise fromA so that the expansion ofhij and N i

z, in z = � with ~x �xed, is valid. 14 This is
illustrated in �gure 2.5.

12Recall that for any vector V � , the divergencer � V � = 1p
g @� (

p
g V � ). Further,

p
g coincides with that

in empty AdS space, as noted in footnote 8.
13The \ � � � " contain terms whose number and form depend on the number of bulk dimensions. Note that

we are following the approach of [26] where the counterterms are expressed in terms of the induced metric
on the asymptotic boundary.

14Our strategy will work here because we are studying a solution of the vacuum Einstein equations, and
the powers of thez expansion have the same gap as the FG expansion.
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Given the approximation j~x� 1 � ~x� 2j � a � �r h, the various quantities enteringI GHY and
I ct automatically have an expansion inz

�
j~x � ~x� 1jj~x � ~x� 2j because this is the expansion of

the SCT map, when we go from the expansion inz=R of the cone to the banana coordinates.
For example, we �nd

ddx
p

h =
1
zd

�
1 �

�M
2

zd

((x1)2 + � 2)
d
2 ((1 + bx1)2 + b2� 2)

d
2

+ : : :
�
dx1� d� 2d� d 
 d� 2 (2.2.0)

Then, at leading orderK @AdS = � d + O(zd+1 ) and the counterterms involving the boundary
curvature are suppressed because of the 
at metric on the asymptotic boundary. Combining
the asymptotic boundary contributions with the bulk action (2.2.2), we �nd15

I bulk + I GHY (@AdS ) + I ct '
(�M � 2r d

h)
16�G N

Z
ddx f 2pt ; (2.2.0)

up to the constant term Nbulk . The domain of integration is the entire boundary minus the
small disks around the insertion points, which we denote = A [ B � disks.

The integral of f 2pt can be performed by introducing bipolar coordinates.16 Let us simply
quote the �nal result, Z

ddx f 2pt = 
 d� 1 log
j~x� 1 � ~x� 2j2

a2
(2.2.0)

The overall coe�cient in eq. (2.2.2) then becomes


 d� 1

16�G N

�
�M � 2r d

h

�
= M � S TH = FGibbs (2.2.0)

where

E =

 d� 1(d � 1)�M

16�G N

= M ; S =

 d� 1r d� 1

h

4GN

; TH =
f 0(rh)

4�
(2.2.0)

with the blackening factor f (r ) and the coe�cient � given in eqs. (2.2.1) and (2.2.1), respec-
tively.17 Therefore,

I bulk + I GHY (@AdS ) + I ct = ( M � S TH ) log
j~x� 1 � ~x� 2j2

a2
+ Nbulk : (2.2.0)

15At an intermediate step, we have

I bulk + I GHY (@AdS )+ I ct '
1

8�G N

Z
ddx

�
1
� d � r d

h f 2pt (x)
| {z }

I bulk

+
�

�
d
� d +

dM
2

f 2pt

�

| {z }
I GHY

+
�

(d � 1)
� d �

(d � 1)M
2

f 2pt

�

| {z }
I ct

�

16Use

x1 =
T(1 + T cos� )

b(1 + T2 + 2T cos� )
and � =

T sin �
b(1 + T2 + 2T cos� )

where � 2 [0; � ] for d > 2. For T ! 0, we encircle~x� 1 = 0, while for T ! 1 , we encircle~x� 2 = � 1
b x̂1.

17We will also �nd E = M by evaluating the holographic stress tensor in section 2.3.1.
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We have nearly reproduced the desired CFT spacetime dependence, since we have a
logarithm coming from f 2pt . However, the prefactor for this logarithm is the Gibbs free
energy, similarly to what we would have expected had we done the computation in global
AdS { but for a possible Casimir energy. However, as discussed in eq. (2.2.2), we expect the
prefactor to the CFT dimension � = M . That is, we would like to subtract the entropy
contribution in eq. (2.2.2). In the following subsection, we will see that the GHY contribution
on the stretched horizon does precisely this. This con�rms that this surface term is precisely
what is needed to �x the calculation to that of a single operator inserted at the asymptotic
AdS boundary.

The stretched horizon action

Recall that we introduced a �nal boundary at the stretched horizonr = rh(1 + � 0) and
supplemented the action with a GHY term there, namely

I GHY (stretch) =
1

8�G N

Z

@
ddx lim

� 0! 0

p
� K stretch with K stretch = �r �

V �

jV j
(2.2.0)

where the extrinsic curvatureK is now determined by the divergence of a vectorV � orthogo-
nal to the stretched horizon, and� is the determinant of the induced metric on the stretched
horizon.

We can �nd V � by considering the image of@r through the GtP and SCT transformations.
This gives

V�

jV j
= �

1
p

f (r )
@� r (~x; z) (2.2.0)

where r (~x; z) in eq. (2.2.1). Simplifying the divergence as in footnote 12, and further us-
ing f (rh) = 0 with f 0(rh) = 4 �T H , we arrive at

K stretch =
2�T Hp

f (r )
: (2.2.0)

On the other hand, if we only had the banana metric (2.2.1) (i.e. we did not know the
transformations from the global coordinates and the relationrh = r (z; ~x)), we could obtain
the same result by looking at the vector orthogonal to the Killing 
ow in (~x; z) coordinates
to construct V � .18

To complete I GHY (stretch), we need to compute the determinant of the induced metric,
which we �nd takes the form

ddx
p

� =
� d� 2 d
 d� 1

zd� 2

p
f (r )dx1 d�

z2rh
�

�
1 + ~D(x1; x2; rh; b)

� �
�
�
�
�
z= z�

(2.2.0)

18In the cone coordinates, this is again very straightforward sinceSO(d� 1) symmetry reduces the problem
to the (z; R) plane with Killing vector r f � K � g = 0 given by K = z@z + R@R . In this case, we can also
appreciate a nontrivial features of the cut-o� surface z = � , by noting from our expressions in eqs. (2.2.1)-
(2.2.1) that as we approach the horizon the other vectorN �

z = ( � 1; N i
z ) becomes aligned with the Killing

vector.
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where the di�erence function ~D vanishes exactly forb = 0, and for b 6= 0 vanishes linearly
when we expand around the insertion points. As we did before, we now specialize to thez =
z� component of the stretched horizon, and extract the logarithmic form. This is again
singled out by zd

� in the denominator of eq. (2.2.2), which similarly to eq. (2.2.2) leads
to r d

h f 2pt in the domain A. The overall power ofrh is then r d� 1
h = 4GN S=
 d� 1. Finally, by

adding and subtractingf 2pt , we conclude that

I GHY (stretch) = S TH log
j~x� 1 � ~x� 2j2

a2
+ N stretch : (2.2.0)

With the same argument as forNbulk . we can show thatN stretch is a constant that does not
dependent on the separation between insertion points.

CFT from gravity

Combining eqs. (2.2.2) and (2.2.2) for the total onshell action, our �nal result reads

I = M log
j~x� 1 � ~x� 2j2

a2
+ N (2.2.0)

whereM = � and N = Nbulk + N stretch . It follows that

hO(~x� 1)O(~x� 2)i = e
� I

'
1

j~x� 1 � ~x� 2j2�
; (2.2.0)

as promised. In sum, taking into account the backreaction from the insertion of two huge
operators, the gravitational action, including a GHY term at the horizon, yields to the desired
CFT two-point function (2.2.2).

A posteriori, we �nd that the onshell action in the two-point function geometry gives a
result which is consistent with the following sequence of operations,

Z = tr( e� � Ĥ ) = e� �F Gibbs ! e� FGibbs �� ! e� E�� ! e� � �� : (2.2.0)

Starting from the thermal partition function, which computes FGibbs = E � S TH , we open
up the thermal circle � to an interval of length �� . This gives e� FGibbs �� where now the
endpoints play the role of the operator insertions, and induce a conical singularity in the
bulk. To account for the latter, we include the GHY term at the stretched horizon, and this
changesFGibbs into E. Up to this point, the CFT has Sd� 1 as its spacial slice andE includes
also Casimir energies in evend. By performing a Weyl transformation, we put the CFT on
Rd. This changes the AdS cut-o� and yields the �nal \dilatation amplitude", e� � �� .19 The
actual computation which we performed shows how the logj~x� 1 � ~x� 2j dependence comes
about and in particular the importance of excising small disks around the operators.

We also have the normalizationN . It can be written down by following carefully the
various steps above. Still, on its own it can always be absorbed in the de�nition of the

19Time-like amplitudes of CFT states in holography can also be investigate using the formalism of [32]. It
would be interesting to relate this with our approach.
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operator. Physical quantities involve ratios, such as three-point couplings divided by two-
point function normalizations. Then it is crucial to make sure that once we attack higher-
point correlation functions, we compute them with the same scheme we are using for the
two-point function. This is one of the motivations for the explorations that follow.

2.3 Fe�erman-Graham Coordinates

In this section, we explore further aspects of the banana geometry. In particular, we will
introduce Fe�erman-Graham coordinates, verify that the holographic stress tensor satis�es
the conformal Ward Identity, and discuss a nonperturbative feature of the Fe�erman-Graham
patch, which we callthe wall. With these insights, we will then revisit the notion of the cut-
o� surface at the boundary of AdS with marked points, and the computation of the onshell
action as a proper surface integral.

Let us begin by recalling that Fe�erman-Graham (FG) coordinates are de�ned by [33,34]

ds2
F G =

dz2

z2
+ h ij (z;~x) dx i dx j : (2.3.0)

The banana metric (2.2.1) isnot in this gauge, but can be brought to this form by a change
of variables z = z(z;~x); x i = x i (z;~x), which is uniquely speci�ed by requiring absence of
mixed terms dz d~x and that gzz = 1=z2 is �xed. In this gauge, h ij (z;~x) provides neatly the
holographic evolution of the boundary metric, where the latter is de�ned as the leading non-
normalisable mode in the smallz expansion. In our case, since we are studying a vacuum
solution with a 
at Poincar�e boundary, we will have

h ij =
1
z2

�
� ij +

2
d

t ij zd + � � �
�

(2.3.0)

with t ij traceless. Higher order terms are �xed oncet ij is given. Standard holographic
renormalization methods,e.g. [27, 28] show thatt ij is the (expectation value of the) stress
tensor in the boundary CFT.

In order to generate FG coordinates, we can start from the smallz expansion. For the
banana on the line (2.2.1), the FG gauge takes the form

ds2
F G =

dz2

z2
+

X

a;b= x 1 ; ���

habdyadyb + h 

 d
 2
d� 2 (2.3.0)

with metric components depending on the three variablesz; x1 and ��� = (
P d

i =2 (x i )2)1=2,
in addition to M and b. Resumming in three-variables is a hard problem, in general. An
exception isAdS3 where the series truncates, and we rediscover a result from Ba~nados [35]

ds2 = dAdS3
2 +

�
t (dy1 + idy2)2 + c:c:

�
+ z2 jt j2((dy1)2 + ( dy2)2) (2.3.1)

where t = �
M

4(y1 + iy2)(1 + b(y1 + iy2))
:
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In the special case of the cone,b = 0, the coordinates x1 and ��� combine together to re-
store SO(d � 1) symmetry, and this allows us to �nd

ds2
F G =

1
z2

"

dz2 +
(1 � M zd

4R d )2

(1 + M zd

4R d )
2( d� 2)

d

dR 2 + (1 + M zd

4R d )
4
d R 2d
 2

d� 1

#

(2.3.0)

with the change of variables from GtP cone to FG cone given by

R
z

=
R
z

�
1 +

M
4

zd

R d

� 2
d

; R2 + z2 = R 2 exp

" Z z
R

0

2xdx
k(x)

#

(2.3.0)

wherek(x) = x2 + (1 � M
4 xd)2

�
(1 + M

4 xd)
2( d� 2)

d .20

For the FG cone,SO(d � 1) symmetry implies that the image of a cylinder of radiusr =
R=z in global, is again a cone. However, the FG banana looks di�erent. For example, in
AdS3 and AdS5, we have21

r 2
AdS3

=
~R 2

z2
+

M
2

+
M
4

�
2b(x1(1 + bx1) � b��� 2)z2

R 2R 2
b

+
M z2

4R 2R 2
b

�

r 2
AdS5

=
~R 2

z2
+

M z2

4R 2R 2
b

�
M
2

�
1 �

bz2(~x1 � bz2)
R 2R 2

b

�
( ~R 2 � 2b~x1 z2)

b ��� z2
tan� 1

�
b ��� z2

~R 2 � b~x1 z2

��
+ O(M 2)

where ~R 2 = ( ~x1)2+ ��� 2 with ~x1 = x1+ b(R 2+ z2), R 2 = ( x1)2+ ��� 2 and R 2
b = (1+ bx1)2+ b2 ��� 2.

The functional di�erences between a FG banana and a GtP banana (2.2.1) have a simple
explanation: The GtP transformation is designed to foliate empty AdS, and knows nothing
about the actual black hole metric. For example, it isM independent. On the other hand,
FG coordinates by construction are sensitive to the black hole geometry, thus foliate the
space accordingly. There is however a limitation: the FG patch is not expected to cover
the entire black hole geometry. This statement is simple to understand: since the smallz
expansion is fully determined by the knowledge of the boundary metric and boundary stress
tensor t ij , there is no freedom left to impose other boundary conditions, such as regularity
conditions at the horizon. This means that the FG patch must breakdown at some surface
where the Jacobian of the coordinate transformation from global to FG vanishes. We will
refer to this surface asthe wall. In practise, the wall encloses the horizon at a �nite distance,
and there is no way to access the horizon from the FG patch (on a real slice).22

In x; z coordinates, the wall coincides with the surface where dethab = 0. This can be
seen by examining the measure for the FG metric (2.3),

p
h
z

=
q

g(~x; z) Jac2(~x; z) (2.3.-1)

20See also [36,37] where similar metrics appear.
21Note that when M = 0, we recover the SCT map in the �rst term. On the other hand, with the limit

b ! 0, we recover our previous formula (2.3).
22See [38] for a discussion about the radius of convergence in asymptotically AdS black holes in global

coordinates.
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and further we haveg(~x; z) =
p

g(r ) = r d� 1 > 0 for the black hole metric (2.2.1). In the FG
cone coordinates, the wall is itself a cone given by

R =
�

M
4

� 1
d

z (2.3.-1)

corresponding torwall = M
1
d . As expected,rwall > r h. Note however that in general, the

wall does not have to be a FG banana, nor the minimum inz of r (~x; z) for �xed ~x. For
example in AdS3, the wall is given by

�
(x1)2 + ��� 2

� �
(1 + bx1)2 + ��� 2

�
=

M
4

z2 ; (2.3.-1)

which is not comparable with eq. (2.3).

Even so, the wall and GtP bananas both originate from the insertion points at the AdS
boundary, wherez = z = 0 and ~x = ~x. The novelty is what happens with respect to
the cut-o�, z = ��� versusz = � . In fact, when we look atz = ��� in the two-point function
geometry with coordinatesz; ~x, this surface cannot get arbitrarily close to the horizon, but
intersects and stops at the preimage of the wall. This intersection is well de�ned and brings
us to an important consideration: Imagine we want to construct a black hole numerically, in
global coordinates. We are used to specify a boundary condition at in�nity and a boundary
condition in the interior. However, in the two-point function geometry, all of the boundary
conditions are speci�ed onz = � , and of course, they are distinct depending on whether
we stay far or close to the operators. This distinction is quanti�ed by the wall between the
FG patch and the rest of the geometry. In this sense, the usual notion of bulk evolution is
modi�ed in an interesting way.

2.3.1 Holographic stress tensor

To compute expectation values in the holographic CFT, the smallz expansion of the FG
metric is all we need, and this is straightforward to obtain even in the banana geometry. The
computation of the holographic stress tensors that follows is an example. Nicely enough, for
the cone coordinates, we can check all the various steps directly with pencil and paper.

Using the de�nition of the holographic stress tensor given in [27,28], we have

hTij (~x)i =
1

8�G N

lim
��� ! 0

1
��� d� 2

�
K ij � K h ij +

2
p

h

�I ct

� h ij

�

z= ���

with K ij = 1
2z @zh ij (2.3.-1)

and where, as in (2.2.2), the counterterm action is

I ct =
Z

z= ���
ddx

p
h

 

(d � 1) +
1

2(d � 2)
R[h] + � � �

!

: (2.3.-1)

Individual contributions in hTij i are divergent, but the combined sum in eq. (2.3.1) is �nite.
For a 
at boundary, only the �rst term in eq. (2.2.2) is needed to resolve the divergence. Note
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that had we done the computation in global coordinates, using FG coordinates withR� Sd� 1

asymptotics, all counterterms would have contributed to the �nal result,e.g. see [26,30]. So
even though we started from the very same AdS-Schwarzschild black hole, the details of the
hTij i computation are quite di�erent. For example, we will not be sensitive to Casimir
energies of theSd� 1, and moreover, the spacetime dependence ofhTij i is quite more
interesting.

With the insertion points ~x � 1 and ~x � 2, the �nal result is

hTij (~x)i = t ij (~x) =
d M

(d � 1)
 d� 1

j~x � 1 � ~x � 2jd

j~x � ~x � 1jdj~x � ~x � 2jd
� ij (~x;~x � 1; ~x � 2) (2.3.-1)

where again 
d� 1 = 2�
d
2 =�[ d

2 ], and the traceless tensor� ij is given by

� ij (~x;~x � 1; ~x � 2) = � ui uj +
� ij

d
with ui =

j~x � ~x � 1j j~x � ~x � 2j
j~x � 1 � ~x � 2j

"
(~x � ~x � 1) i

j~x � ~x � 1j2
�

(~x � ~x � 2) i

j~x � ~x � 2j2

#

:

Now interpreting eq. (2.3.1) as

hTij (~x)i =
hTij (~x) O(~x� 1) O(~x� 2)i

hO(~x� 1) O(~x� 2)i
; (2.3.-1)

we see that this expression precisely reproduces the conformally invariant three-point func-
tion of the energy momentum tensor and two scalar operators [39{42] with

� = M : (2.3.-1)

This is a simple yet very important consistency check for our two-point function geome-
tries! Moreover, it gives us an independent derivation of the relation between the conformal
dimension and the mass of the black hole, which we used in the onshell action computation.

2.3.2 The bulk, the total derivative and the cut-o�

We now want to comment on the onshell action. The idea is to divide the geometry into
a FG patch where the cut-o� surface lives, and a global patch close to the horizon where
the stretched horizon lives. This organization is conceptually helpful because, as we saw in
section 2.2.2, both contributions are crucial in order to obtain the expected CFT dependence
on the dimension � = M . The approach described in the following sections is not restricted
to the Schwarzschild black hole but also generalizes to charged black holes in AdS [12].

Our starting point is the observation that when the bulk action in global coordinates can
be written onshell as a total derivative, we can apply the GtP transformation directly on the
integrand. So let us assume that the onshell action in global reads

I =
Z

d
 d� 1

Z
d�

Z
dr �

d
dr

A (r ) (2.3.-1)
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for some functionA(r ). For the AdS-Schwarzschild geometry, this is [30]23

A(r ) = � 2r d� 2 + 2r d� 2f (r ) = 2 r d � 2M (2.3.-1)

Going through the GtP map (2.2.1) and the SCT map (2.2.1) to reach the banana geometry
(2.2.1) with the insertion points on a line, we �nd:

I =
Z

d
 d� 1

Z
dR d~z �

�
�

R
R2 + ~z2

@~z +
~z

R2 + ~z2
@R

�
A

�
r = R

~z

�

=
Z

d
 d� 2

Z
d� dx 1 dz �

X

i = z;x1 ;�

ui @i A
�
r (z; ~x)

�
with ui = �

1
d � 2

� d� 2

zd+1

@i r 2� d

( x2

z2 + 1) � 2

z2

wherer (z; ~x) =
q

� 2
�

x2

z2 + 1
�

� 1 and � 2 = 1 + 2 b� x + b2(x2 + z2) with x2 = ( x1)2 + � 2, as
given in eq. (2.2.1). Note that the dot product here is taken using� ij . Of course, the second
expression reduces to the �rst one whenb = 0. Then, it is simple to check, and perhaps
expected, that the vectorui is divergence free.24 Thus we can evaluate the onshell action by
using the divergence theorem, reducing it to a surface integral, namely

I =
Z

d�
~u � ~n
j~nj

A
�
r (z; ~x)

�
(2.3.-2)

where ~n is an outward-pointing normal to the integration surface� . For the cone, this is
just a line integral in the (~z; R) plane.

The choice of integration surface is crucial. For example, in the cone we could pick the
union of the two cones corresponding toRz = r1 with a large r1 ! 1 for the asymptotic
AdS cut-o�, and R

z = rh(1 + � 0), for the stretched horizon. By computing the onshell action
between these surfaces, we would actually be repeating the same computation as in global
coordinates.25 This is not the computation which we want for the two-point function. Rather,
we want to compute the onshell action with a cut-o� atz = ��� in the FG patch.

In the following, we describe the computation ofI with the appropriate boundary
surface� . We will distinguish the three boundary components as: the asymptotic cut-o�
surface described by coordinates~c = ( x1(z = ���; ~x); � (z = ���; ~x); z(z = ���; ~x)); the banana
corresponding to the stretched horizon; and two pieces of connecting tissue between the
previous components, one for each of the insertion points.

The asymptotic cut-o�

The asymptotic cut-o� surfacez = ��� is described by~c= ( x1(���; ~x); � (���; ~x); z(���; ~x)), in terms of
FG coordinates. From our discussion about the FG patch in the previous section, we know

23In fact, for all SO(d � 1) symmetric and static backgrounds, which solve for Einstein gravity coupled to
a general (two-derivative) action of scalar and vector �elds, one can castA (r ) as a particular functional of
the (time and radius) components of the metric [30].

24Note also that
P

i @i r@i r = ( R 2

z2 + 1) � 2

z2 .
25The way terms combine together is slightly di�erent, but we checked that we do get the same result as

in global coordinates. In particular, we �nd a Casimir energy contribution for even d.

27



Figure 2.6: A section of the banana geometry to illustrate the integration surface� . The cut-
o� surface z = ( z; x); x = ( z; x) can be extended up to the preimage of the wall, the choice
of connecting tissues from there to the stretched horizon results in a choice of normalisation.

that the integration over ~x can be extended at most up to the intersection ofz = ��� and
the wall { see �gure 2.6. This observation explains more precisely what happened in section
2.2.2 when we introduced a large enough radiusa for the disks encircling the insertion points
in �gure 2.5. We understand now that the minimum value thata can take is the preimage
of ~x on the wall at z = ��� .

In the cone, the surface integral on~c= ( R(���; R); z(���; R)) is very explicit, since we know
the change of variables (2.3). We �nd

A cone(���; R) =
2R d

��� d
� M +

M 2

42

��� d

R d
(2.3.-2)

Then, the normal vector~n is a rotation of @R~c, and the very de�nition of the surface integral
cancelsj~nj, so the measure of the integral becomes

Z

z= ���
d�

~u � ~n
j~nj

=
Z

dR
R

�
1 �

��� 2

R 2

1
k( ���

R )

�
=

Z
dR
R

 
1

(1 + ��� 2

R 2 )
�

d � 1
d

M
��� d+2

R d+2
+ : : :

!

:

(2.3.-2)
The whole k(x) is given in eq. (2.3). When taking the��� ! 0 limit, we have to be careful
in isolating the AdS contribution in ~u � ~n from the rest becauseA cone itself comes with a
Laurent series in��� . What we want to ensure is that the corrections to AdS proportional to
M do not interfere with the structure of A cone as a series in��� . This implies that we have
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to resum the AdS contribution in ��� before taking the limit to zero. This is what we made
explicit on the right-hand side of eq. (2.3.2).

The GHY and counterterm contributions at the asymptotic boundary can by de�nition
be evaluated in the FG patch directly. Putting all of these together cancels the usual UV
divergence from AdS and a �nite result remains,

lim
��� ! 0

1
16�G N

Z

z= ���
d�

~u � ~n
j~nj

A (r ) + I GHY (@AdS ) + I ct = �
M

16�G N

Z 1=R ?

R ?

dR
R

: (2.3.-2)

We can take anyR ? �
�

M
4

� 1
d ��� , where the limit is the value �xed by the wall. It is worth

mentioning that in the cone coordinates, we can compute the onshell action directly by
evaluating

p
detgF G , from z = ��� to the z = wall. Since we know the preimage,i.e. rwall =

M
1
d , we can then check this result against the surface integral done withA . We �nd perfect

agreement, as it should. In passing, we also notice thatA (rwall ) = 0.

We now repeat the cut-o� surface integration for the banana. This time we do not have
the full change of variables, however, we can proceed by using the series expansion inz. The
measure factor can be found to generalize the right-hand side of eq. (2.3.2) into26

~u � ~n
�
�
z= ���

=
��� d� 2

~R
d
2

��� 2 + ~x1(~x1 � 2b��� 2)
(R 2 + ��� 2) � 2(x1; ���; ��� )

+ MO(��� d+1 ) (2.3.-2)

where R 2 = ��� 2 + ( x1)2, ~R 2 = ��� 2 + ( ~x1)2, and ~x1 = x1 + b(R 2 + z2). Then A banana =
2 ~R d

��� d � M + O(Mb��� d; M 2��� d). It follows again that

lim
��� ! 0

1
16�G N

Z

z= ���
d�

~u � ~n
j~nj

A (r ) + I GHY (@AdS ) + I ct (2.3.-1)

= �
M

16�G N

Z
��� d� 2 d��� d x1d
 d� 2

((x1)2 + ��� 2)d=2 ((1 + bx1)2 + ��� 2)d=2
;

where in the remaining integral, we recognise the expression forf 2pt familiar from section
2.2.2,e.g. compare with eq. (2.2.2).

From cut-o� to stretched horizon

At this point, we must consider the two components of the integration surface� comprising
connecting tissue extending between the asymptotic cut-o� surface and the stretched horizon
{ see �gure 2.6. The simplest choice is to go straight into the bulk. Other choices are
possible, for example, we can use them to match thez = � surfaceclose to the insertion
points. Compared to computations usually done for probe objects, the freedom in cutting the
geometry passed the FG wall is something new. To see why consider a geodesic connecting
the insertion points. The length of such a geodesic,i.e. (z(s); x(s)) = ` (sins;coss) with
s 2 (0; � ), computes the two-point function. The ambient space is just empty AdS and

26To compute ~u � ~n, we observe that~n = � @z + MO (zd+1 ), thus we replace the coordinate dependence of
uz with bold font variables, and check that the actual FG expansion only modi�es this by terms MO (zd+1 ).
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the cut-o� is z = ��� , to be understood physically as a UV cut-o� or lattice spacing. The
range of integration is read o� from the equationz(s) = ��� . Equally, we can parametrise the
integration with respect to the x coordinate. Note at this point, the obvious fact that empty
AdS is already in the FG gauge. In particular, there is no extra space which corresponds to
integrating over the two connecting tissues between the cut-o� and the horizon. It is also
clear now that the role of the connecting tissues is simply to change the normalization of the
operators, since di�erent tissues yield di�erent normalization constants to the �nal action.

Stretched horizon

Finally, the stretched horizon contribution is the surface integral on~c= ( x1; �; z = z(x1; � )),
wherez = z(x1; � ) solves the equationr (z; ~x) = rh(1 + � 0) as we did in (2.2.2). The normal
vector ~n is the cross product@x1~c� @� ~c, and of course, it becomes proportional to@i r (z; ~x).
Then, similarly to what we did in section 2.2.2, we look atz = z� (x1; � ), and we extract the
logarithmic form close to the insertion points. The relevant integral is

I hor = �
1

16�G N

Z

A

� d� 2d� dx 1 d
 d� 2

~Rd� 1
�

b2(1 + r 2
h)A (rh)

(z2
+ � z2

� )(R2 + z2
� )((1 + bx1)2 + b2� 2 + b2z2

� )
(2.3.-2)

where ~R� = ~R(x1; �; z = z� (x1; � )). Close to the insertion points, the logarithmic form in
eq. (2.3.2) is

I hor = �
A (rh)
16�G N

Z

A

� d� 2d� dx 1 d
 d� 2

((x1)2 + � 2)d=2((1 + bx1)2 + b2� 2)d=2
+ � � � ; (2.3.-2)

where again we recognize appearance off 2pt . The rest of the terms denoted by the ellipsis
are again free of divergences and will only contribute to the normalization.

The onshell action revisited

At this point, we can assemble again the total onshell action,

I = I bulk + I GHY (@AdS ) + I GHY (stretch) + I ct (2.3.-2)

where the contribution in I bulk coming from the asymptotic boundary (i.e. z = ��� ) is given
in eq. (2.3.-1), and the contribution from the stretched horizon is given in eqs. (2.3.2) and
(2.3.2). Moreover, we have argued that the boundary components connecting the cut-o�
surface at the asymptotic boundary and at the stretched horizon only contribute to the
overall normalization of the two-point function. To �nalize, we need to include the GHY
term at the stretched horizon, but this is the same as (2.2.2). Therefore, by mechanically
substituting in all of the contributions, we establish the same result which we found in section
2.2.2 for the CFT two-point function,

I = �
Z

ddx f 2pt + N : (2.3.-2)
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where � = M for the operators, and as we understood the normalization depends on the
choice of connecting tissues.

A bonus of our discussion here, compared to that of section 2.2.2, is that by rewriting
the bulk contribution to the onshell action as a manifest surface integral (i.e. the integrand
became a total derivative), we could make precise the FG renormalization scheme for the
cut-o�. Another great advantage of working with a total derivative will be the following
observation, or \how to compute the total action without really trying".

Given an ansatz for a gravitational background in global coordinates, we can recast
Einstein's equation as the equation of motion from an e�ective Lagrangian. With the latter,
we look for a conserved (and �nite) Noether chargeQ(r ) corresponding to a scaling symmetry
[43, 44] in this e�ective Lagrangian. Since this Noether charge is conserved, it must be a
constant satisfying@r Q(r ) = 0. For the AdS-Schwarzschild in (2.2.1), this procedure yields

Q(r ) = � 1
2r d� 1f 0(r ) + r d� 2f (r ) � r d� 2 = � d

2M : (2.3.-2)

We note that the middle expression above applies for a general ansatz of the form given in
eq. (2.2.1) (i.e. without specifying the speci�c solution for f (r )), while the �nal constant
proportional to M comes from substituting in eq. (2.2.1).

The utility of the Noether charge is to relate the boundary contributions to the onshell
action and the stretched horizon contribution. To see this, we �rst replacer d� 1f 0(r ) term
(i.e. the �rst contribution in the middle expression above) with the GHY term on a surface
of constant r in global coordinates, namely

G � 2
p

f (r )r d� 2K = r d� 1f 0(r ) + 2( d � 1)r d� 2f (r ) : (2.3.-2)

where the extrinsic curvature isK = r � d+2 @r (r d� 2
p

f (r )). Similarly, we replace ther d� 2 term
(i.e. the third contribution in the middle expression in eq. (2.3.2)) usingA(r ) in eq. (2.3.2).
Thus we arrive at the following expression for the Noether charge

Q(r ) = � 1
2G(r ) + 1

2A(r ) + ( d � 1)r d� 2f (r ) : (2.3.-2)

As our notation indicates, we may evaluate the Noether charge at any radius and so it is
interesting to evaluate the above at the horizonr = rh. There the last term vanishes since
f (rh) = 0, and we are left with the �rst two. In this form, we don't have to know the exact
gravity solution, but only read o� how the constant Noether charge is related to quantities
which we need to evaluate at the horizon. In particular, we have the surface term coming
from the radial integral in bulk action and the GHY term on the stretched horizon. That
is, we may use eq. (2.3.2) to re-express the surface term in eq. (2.3.2) along with the GHY
term on the stretched horizon in terms of the Noether charge, as desired. Hence combining
these contributions with the expression in eq. (2.3.-1), the onshell action becomes

I = I bulk + I GHY (@AdS ) + I GHY (stretch) + I ct

=
1

16�G N

�
� M � 2 lim

r !1
Q(r )

� Z
ddx f 2pt + N :
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Then the integral can be evaluated as in eq. (2.2.2), and after restoring the mass normaliza-
tion � given by eq. (2.2.1), we recover

I = � log
j~x� 1 � ~x� 2j2

a2
+ N (2.3.-2)

using � = M . Hence we have again demonstrated our claim of deriving the two-point
function correlator for huge operators from gravity.

2.4 Geodesics in the black hole two-point function geometry

As we have been discussing, the insertion of huge operators results in backreaction on the
AdS geometry, and we found that our two-point function geometry simply corresponds to
a Euclidean black hole presented in a somewhat unusual way. In this section, we study
both qualitatively and quantitatively how the motion of geodesics that shoot in from the
asymptotic boundary of AdS is a�ected by the presence on the Euclidean black hole. These
geodesics would correspond to the insertion of additional light operators and so this is a �rst
step towards investigating higher point functions with our geometric approach. We note that
heavy-light four-point correlators were studied previously with geodesics propagating in a
global black hole background by [45]- [46].

Figure 2.7 illustrates a variety of geodesics originating from points on the asymptotic
boundary, with a given velocity. A prominent feature of the plot is that the geodesics shown
there do not reach the horizon. In fact, the only geodesics that collide with the horizon
are �nely tuned. The latter is clearly understood by considering the metric (2.2.1) in global
coordinates. In this setting, it is straightforward to show that the only geodesics reaching
r = rh must have a vanishing velocity in the� direction. Further, the angular momentum
can not be very large (i.e. jJ j � rh).

We can also use geodesics to provide probes for a four-point function of two light particles
of dimensionm in the presence of two maximally heavy operators of dimensionM , i.e. the
black hole banana. This correlator is obtained by evaluating

S(M ) = m
Z

ds
q

g�� [M ] _x � (s) _x � (s) (2.4.0)

where now the geodesicx � (s), di�erently from what we did above, has boundary conditions
such that it approaches the two insertions points at the regulated boundary, namelyz = �
for ~x� 1 and ~x� 2. By conformal invariance we can arrange the external points as in �gure 2.8.
Thus, the correlator is more precisely given by

h� H (0)� L (1)� L (x)� H (1 )i = e� (S(M )� S(0)) (2.4.0)

where the right-hand side is �nite in � after subtracting the AdS value.

The computation ofx � (s) and the action S are described in appendix A.2. In theM ! 0
limit, the result simpli�es signi�cantly. For example, in AdS 5/CFT 4, we �nd

S(M ) � S(0) = 1
4mM � (x � 1)(�x � 1) �

h(x) � h(�x)
x � �x

+ O(M 2) ; (2.4.0)

32



Figure 2.7: Geodesics moving in the black hole background when the stretched horizon is
a cone (left ) and when it is a banana (right ). Unless �nely tuned, geodesics do not collide
with the horizon.

where

h(x) =
6

x � 1
�

(x2 + 4x + 1) log (x)

(x � 1)2 (2.4.0)

Quite nicely, the right hand side of (2.4) coincidesprecisely with the t-channel conformal
block for dimension � = 4 and spin J = 2 in four spacetime dimensions,27

log
h� H (0)� L (1)� L (x)� H (1 )i

h� H (1 )� H (0)ih� L (x)� L (1)i
=

mM
120

F (4; 2; 1 � x; 1 � �x) + O(M 2) (2.4.1)

This is the expected result for a graviton exchange dual to the stress-tensor! In the AdS3,
the action can be computed without expanding at smallM and the result reads

S(M ) � S(0) = � m log

 

(1 � M )
z(1 � w)

1
2 � 1

2
p

1� M �z(1 � �w)
1
2 � 1

2
p

1� M

w �w

!

(2.4.1)

where 1� w = (1 � z)
p

1� M . This is nothing but the (logarithm of) the semiclassical heavy-
light limit of the Virasoro block, as discussed in [47].

Similar conclusions can be obtained in other dimensions. In appendix A.2 we also discuss
aspects of the conformal block decomposition, and how it depends onM . Our computation

27The four-dimensional blocks read

F (� ; J; x; �x) =
x �x

x � �x
(h �+ l

2
(x)h � � l � 2

2
(�x) � (x $ �x)) ; h� (x) = x �

2F1(�; �; 2�; x ) : (2.4.1)
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