
Measuring Trapped Ion Qudits

by

Brendan Bramman

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics - Quantum Information

Waterloo, Ontario, Canada, 2019

c© Brendan Bramman 2019



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Quantum information has typically focused on using 2-level qubits to perform simula-
tion and computation. We propose to expand the number of levels for computation using
qudits, where d > 2. Doing so could be a viable option for making trapped ion systems
scalable for quantum computation. Our group in particular will use Barium ions because
of some energy features and convenient laser wavelengths. This thesis presents much of the
necessary background needed to work with Barium as a qudit for quantum computation.
Energy structure, branching ratios, and saturation intensities are derived and presented.
In addition, a method for selecting different isotopes of Barium for trapping is discussed.
A method for measuring out the state of a Barium qudit is presented, with error rates
estimated to be under 1% for up to 5-level qudits. Finally, various optics projects which
were necessary for building up our first ion trap are outlined.
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CHAPTER1

Introduction

For the past 30 years, we've seen quantum information 
ourish and become one of the
most active areas of modern physics. Quantum computers and simulators of today are
just starting to get to a point where they can solve some interesting problems. It's re-
cently been shown that an amount of just 50 qubits is enough to exceed the capabilities of
classical computing for emulating physical systems [1], reaching the so-called \Quantum
Supremacy" threshold. We're beginning to see trapped ion systems with control over 50-
100 ions [2, 3]. This amount of qubits can allow us to simulate interesting chemistry, or
to investigate the behavior of solid-state systems better than classical computers. While
they are already immediately useful for some problems, scaling up remains an immensely
important issue to solve. The ultimate quantum information system will incorporate quan-
tum error correction to allow us to do fully fault tolerant quantum computing. These error
correction schemes tend to require much overhead; theoretically, arbitrary errors on a sin-
gle logical qubit can be faithfully corrected using at least 5 extra physical qubits [4]. There
is much emphasis on the \at least", because in practice many more qubits than this are
needed. There are many di�erent approaches to take in attempting to scale up to qubit
numbers more reasonable for error correction, such as shuttling ions to di�erent positions
in one dimension [5,6] or two dimensions [7], or by connecting multiple ion traps together
through photon buses [8]. In our group, the solution we explore is to utilize the higher
Hilbert space a�orded by ion energy structure; i.e. using qudits with d > 2 levels rather
than qubits with just 2 levels.

As shown in Figure 1.1, the commonly usedI = 3=2 hyper�ne qubit has many more
energy levels than the two used to de�ne a qubit. Typically, steps are taken to essentially
exclude these other states, so that only the energy levels of the qubit are occupied. We
propose to take advantage of these energy levels, so that we can do more with fewer ions.
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(a) (b)

Figure 1.1: Qubit vs qudit encoding: (a) qubit encoding using only two levels and (b)
5-level qudit encoding.

By extending to more levels, we gain several scaling advantages. Lanyon et. al. [9]
showed that the number of gates needed to implement a Tofolli gate reduced by more
than half by using qutrits rather than qubits. Recently it was shown that qutrits can
dramatically improve the circuit depth scaling compared to both qubits and qubits with
an additional ancilla [10]. Furthermore, there are indications that the error threshold
necessary for fault-tolerant quantum computation is higher for qudits than for qubits
[11{13]; i.e. the requirement is more friendly and we can correct all errors more easily.

For exploring qudits, our lab plans to use trapped barium ions. We chose this ion for its
long-lived metastable 5D5=2 state (useful for the shelving scheme presented in chapter 3),
and because most of the lasers we need are in the visible range (see Figure 2.3), simplifying
some of the optics involved.

This thesis is structured as follows. In chapter 2, I discuss my work on characterizing
our ion of choice -137Ba+ - in preparation for using it to explore qudits. The properties
I explore include energy structure, transitions strengths, saturation intensity, and isotope
selectivity. In chapter 3, I introduce and explore a shelving technique we propose to use for
state readout of qudits. Estimated error rates for this proposed scheme are presented. In
the �nal chapter, I discuss some of the various infrastructural optics projects I completed
in order to bring up our lab's �rst ion trap, a four-rod Paul trap. The optics for each beam
path is laid out, a method for frequency locking the lasers is presented, and a cost-saving
rf sources solution for providing rf to various optics components is outlined.
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CHAPTER2

Barium Ions

In this chapter, I describe how to calculate the complicated energy structure of137Ba+ , and
how to add a magnetic �eld perturbation. I then discuss calculations of the branching ratios
between these energy levels. The energy structure and branching ratios are important for
later chapters, especially chapter 3. Next, I present the derivation for saturation intensity
of dipole transitions. Finally, I introduce our method for loading speci�c isotopes of Ba+ ,
and how we can proactively choose which one we would like to trap.

2.1 Energy Structure

As our ability to measure atomic spectra has improved and the theory of these spectra
has become more re�ned, we have discovered more interactions which shift the spectra
from what was previous expected. One of the �rst instances of this was Bohr's important
discovery that the energy levels of hydrogen are given by

En = �
E0

n2
; (2.1)

where n is the principal quantum number, andE0 = 13:6 eV is the energy of the lowest
level. Bohr's model predicted the energy levels of hydrogen better than any previous
theories. However, this model was only telling a fraction of the story. Solving Schr•odinger's
equation agrees with Bohr's model in energy, but it tells us that there are actually multiple
degenerate statesl within these levels, each with di�erent angular momenta.

The theory was modi�ed when the Stern-Gerlach experiment revealed a discrepancy in
energy level splittings under an applied magnetic �eld. A new quantum number, spin, was
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Figure 2.1: Hydrogen energy structure: smaller interactions are considered as we move
to the right. Bohr's model predicted only the di�erent principal energy levelsn. Solving
Schr•odinger's equation results in many degenerate angular momentum levels within each
principal level. When the interaction between the electron spin and the angular momentum
is considered, we see �ne structure, where eachl 6= 0 level splits into two levels; we also see
a Lamb Shift indicated by the arrows. Finally, we include the interaction of the nuclear
spin to get hyper�ne structure splitting.

introduced, which gave gave rise to the �ne structure of atoms. This �ne structure comes
from the electron spins = 1=2 interacting with the electron's angular momentuml. For
l 6= 0, each level is split into two �ne levelsJ and J 0. Eventually, Schr•odinger's equation
was �xed to include this spin and interaction, along with relativity, in the Dirac equation.
Fine structure is on the order of 10� 4 � 10� 1eV.

It was soon discovered that nuclei too have an intrinsic angular momentum, called
nuclear spin. The interaction of nuclear spin with the composite angular momentumJ
leads to an additional hyper�ne splitting of eachJ level into F levels. For hyper�ne
structure, this splitting can have a higher multiplicity, since the nuclear spin can be any
integer or half-integer. Hyper�ne structure is on the order of 10� 7 � 10� 4eV. Figure 2.1
illustrates this progression of insight in the hydrogen atom, from Bohr's energy levels to
hyper�ne structure.
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The inclusion of electromagnetic �elds brings even more richness to the energy structure
of atoms. An external magnetic �eld splits eachF level into multitudes of magnetic sub-
levels. Applying external electric �elds leads to the a shifting of energy levels called the
Stark e�ect. Internal �elds complicate the situation immensely, with electron screening and
isotope shifts shifting the energy levels by large amounts in some cases. For example, the
4S energy level has a lower energy than the 3D level in multi-electron atoms, completely
contradicting the Bohr model.

Needless to say, theoretically calculating the energy levels of electron orbitals is a tricky
business. For anything higher than the helium atom, we have to resort to using various
approximations and simpli�cations. One of the most common methods of simpli�cation
is to use perturbation theory; this method allows one to calculate the energies without
additional interactions, then introduce further e�ects afterwards as a perturbation. Using
perturbation theory, we are able to look at �ne structure and hyper�ne structure as small
perturbations on the Schr•odinger's equation solution and thus calculate their approximate
e�ects.

For �ne structure, we must reconsider the motion of the electrons. Relativity says that
their kinetic energy is given by

KE =
�
p2c2 + m2

0c4
� 2

= m0c2 +
p2

2m0
�

p4

8m3
0c2

+ : : : ; (2.2)

wherep is momentum,c is the speed of light, andm0 is the electron rest mass. The �rst
two terms of the series are the mass energy and non-relativistic kinetic energies, which are
included in the Schr•odinger formulation; the other terms are relativistic terms, which we
can treat as perturbations. Using perturbation theory on the �rst relativistic term, we end
up with an energy shift of

� Er = �
� 2Z 2

n2
En

�
3
4

�
n

l + 1=2

�
; (2.3)

where � = c
4�� 0~ is the �ne structure constant, � 0 is the permeability of free space,~ is

Planck's constant,Z is the proton number, andEn is given by the Bohr energy(Equation
2.1).

The next �ne structure e�ect to consider is the motion of the negatively charged elec-
tron around a positively charged nucleus. The electron e�ectively sees a moving positive
charge which imposes an e�ective magnetic �eld~Bef f in the same direction as the angular
momentum ~L(see Figure 2.2). This e�ect is called Thomas precession, and the net result
is an energy change of

� Es = �
� 2Z 2

2n2
En

�
n(J (J + 1) � l(l + 1) � s(s + 1)

l(l + 1=2)(l + 1)

�
(l 6= 0) ; (2.4)

whereJ , l , s are the projections of~J = ~L + ~S, ~L, and ~S onto the z axis(~S is the electron
spin vector). Note that this term only applies forl 6= 0, since the electron needs an angular
momentum to couple to the e�ective magnetic �eld created by the nucleus.
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Figure 2.2: Thomas precession: the electron sees a positive charge spinning around it,
which induces a magnetic �eld in the same direction as the electron angular momentum.

In the Dirac equation, there is an extra term which we haven't yet considered called
the Darwin Term. This term is nonzero only for electrons with a nonzero wavefunction at
the origin: l = 0. This term gives an energy shift of

� ED =
2nE 2

n

m2
0

(l = 0) : (2.5)

If we add all of these shifts together, we end up with a surprisingly simple energy shift of

� E = �
� 2Z 2

n2
En

�
3
4

�
n

J + 1=2

�
: (2.6)

Note that this equation works for any angular momentuml.

A �nal e�ect typically classi�ed as �ne structure is the Lamb Shift. The Lamb Shift
comes from quantum electrodynamics; it essentially results from the electron interacting
with the vacuum of free space. Electron wavefunctions at the origin are e�ectively smeared
out, shifting the energies up. This has the following e�ect on energy [14]:

� ELS =
8

6�
Z 4� 5m

n3

�
ln

1
Z�

�
(l = 0) : (2.7)

Again, since the Lamb Shift needs a nonzero wavefunction at the origin, this e�ect is only
relevant for l = 0 orbitals.

Next, we discuss hyper�ne structure [15]. There is only one e�ect considered for hyper-
�ne structure: the electromagnetic interaction between a nonzero nuclear spin~I and the
electron angular momentum~J . We use multipole expansion to get many di�erent inter-
action terms. By symmetry, we only have magnetic dipole, electric quadrupole, magnetic
octupole: : : For l = 0 electrons, the quadrupole contribution is negligible compared to the
dipole contribution. However, forl 6= 0 electrons, these are comparable. The octupole and
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higher order terms are very small for all electrons, and are rarely considered. The magnetic
dipole term results in an energy splitting of

� Emd1 = A (F (F + 1) � I (I + 1) � J (J + 1)) = AK (l 6= 0) (2.8)

� Emd2 =
A
2

(F (F + 1) � I (I + 1) � J (J + 1)) =
AK

2
(l = 0) ; (2.9)

whereA = 2� I � 0 � B gs
3I h1

r 3 i is the dipole hyper�ne constant, � I is the nuclear spin magnetic
moment, � 0 is the permeability of free space,� B is the Bohr magneton,gs is the electron
spin g-factor, F is the projection of ~F = ~I + ~J onto the z axis, r is the position of the
electron, andK = ( F (F + 1) � I (I + 1) � J (J + 1)).

For the electric quadrupole interaction, we get an energy splitting of

� Eeq = eQ
�

� 2Ve

�r 2

� 3
4K (K + 1) � I (I + 1) j (j � 1)

2I (2I � 1)J (2J � 1)
=

B
4

3
2K (K + 1) � 2I (I + 1) J (J + 1)

2I (2I � 1)J (2J � 1)
;

(2.10)
whereQ is the nuclear electric quadrupole andVe is the electric potential experienced by
the electron from the nucleus.

Finally, we must consider what happens when we apply an external magnetic �eld~Be

to our atom, inducing something called Zeeman splitting. This applied �eld splits our
hyper�ne levels into magnetic sub-levels of shifted energies given by

� Ez = gJ
(F (F + 1) + J (J + 1) � I (I + 1))

2F (F + 1)
� B mF Be = gF � B mF Be; (2.11)

where gJ = gl + J (J +1)+ s(s+1) � l ( l+1)
2J (J +1) is the �ne g-factor (gl = 1 is the angular momentum

g-factor), mF is the magnetic hyper�ne quantum number,Be is the magnitude of the
magnetic �eld, and gF = gJ

(F (F +1)+ J (J +1) � I (I +1))
2F (F +1) is the hyper�ne g-factor. Overall, our

hyper�ne energy splitting is given by

� EHF =
AK

2
+

B
4

3
2K (K + 1) � 2I (I + 1) J (J + 1)

2I (2I � 1)J (2J � 1)
+ gF � B BmF : (2.12)

In practice, rather than going through this lengthy calculation, it's much easier and
more accurate to simply measure the energies using spectroscopy techniques. Spectroscopy
was precise enough to measure hyper�ne structure as early as the 1920's, and there is an
abundance of data on the energy levels of atoms and molecules. Experimentalists use
spectroscopy measurements as a starting point, then use perturbation theory to �nd the
e�ects of applied electromagnetic �elds. The motivation for discussing how to calculate
the exact solutions was to understand where these overall splittings and shifts come from.

In the literature, �ne levels nlJ are cited as wavenumbers in the literature, while hy-
per�ne structure is described by measured hyper�ne constantsA and B for each �ne level

7



Figure 2.3: 137Ba+ energy structure: [16] the 6S1=2 $ 6P1=2 optical transition is used for
optical pumping, Doppler cooling, and 
uorescence measurement. The 6S1=2 $ 5D5=2

transition is used to shelve qudit states. The 5D3=2 $ 6P1=2 transition is used to re-pump
dark states back into the cooling/
uorescence cycle. The 5D5=2 $ 6P3=2 transition is used
to empty the 5D5=2 state. Because of its nuclear spin 3=2, each level is split into hyper�ne
levels: the frequencies of these levels are shown [17{19].
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Level F gF A [18{20] B [18,19]
Lifetime
[21{23]

Branching Ratios
[24{26]

6S1=2 1 -0.5 4018.871 0
2 0.5

6P1=2 1 -0:166 743.7 0 7 92ns 6S1=2 0.756
2 0:166 5D3=2 0.244

6P3=2 0 0 127.2 59 6 4ns 6S1=2 0.756
1 0:66 5D3=2 0.029
2 0:66 5D5=2 0.215
3 0:66

5D3=2 0 0 189.7296 44.5408 82s 6S1=2 1
1 0.4
2 0.4
3 0.4

5D5=2 1 2.1 -12.028 59.533 35s 6S1=2 0.846
2 1:099 5D3=2 0.154
3 0.85
4 0.75

Table 2.1: Characteristics of137Ba+ : gF is the hyper�ne g-factor, A is the hyper�ne
constant, B is the quadrupole hyper�ne constant.

nlJ . Figure 2.3 shows the energy structure of one of the ions our lab is most interested in:
137Ba+ . Other various characteristics of137Ba+ are given in Table 2.1.

To trap ions and utilize the magnetic sublevels, we apply an external magnetic �eld
~Be. Equation 2.12 is exact when there are no external �elds, however when we apply a
magnetic �eld, it couples to both the angular momentum and the nuclear spin -~F ceases
to be a good quantum number for the system. For an exact solution, we must go back to
using just ~I and ~J . The overall hyper�ne Hamiltonian with an applied magnetic �eld is

~H = A~I � ~J + B
3(~I � ~J )2 + 3

2
~I � ~J � I (I + 1) J (J + 1)

2I (2I � 1)J (2J � 1)
+

� B

~
(gJ mJ Be + gI mI Be): (2.13)

Expanding the dot products in terms of ladder operators~K � gives us the following
matrix elements of the Hamiltonian

h~H i = Am I mJ +
� B

~
(gJ mJ Be + gI mI Be) +

B
2I (2I � 1)J (2J � 1)

�
�

3
2

mI mJ + 3m2
I m2

J +
�

I � I + J+ J�

4

�
+

�
I + I � J� J+

4

�
� I (I + 1) J (J + 1)

� (2.14)
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mJ
- 3

2 - 1
2

1
2

3
2 - 1

2
1
2

3
2

1
2

3
2

3
2 - 3

2 - 1
2

1
2 - 3

2 - 1
2 - 3

2

mJ
mI

3
2

1
2 - 1

2 - 3
2

3
2

1
2 - 1

2
3
2

1
2

3
2 - 1

2 - 1
2 - 3

2 - 1
2 - 3

2 - 3
2

- 3
2

3
2 D A B 0 0 0 0 0 0 0 0 0 0 0 0 0

- 1
2

1
2 A D A B 0 0 0 0 0 0 0 0 0 0 0 0

1
2 - 1

2 B A D A 0 0 0 0 0 0 0 0 0 0 0 0
3
2 - 3

2 0 B A D 0 0 0 0 0 0 0 0 0 0 0 0

- 1
2

3
2 0 0 0 0 D A B 0 0 0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 A D A 0 0 0 0 0 0 0 0 0

3
2 - 1

2 0 0 0 0 B A D 0 0 0 0 0 0 0 0 0
1
2

3
2 0 0 0 0 0 0 0 D A 0 0 0 0 0 0 0

3
2

1
2 0 0 0 0 0 0 0 A D 0 0 0 0 0 0 0

3
2

3
2 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0

- 3
2 - 1

2 0 0 0 0 0 0 0 0 0 0 D A B 0 0 0

- 1
2 - 1

2 0 0 0 0 0 0 0 0 0 0 A D A 0 0 0
1
2 - 3

2 0 0 0 0 0 0 0 0 0 0 B A D 0 0 0

- 3
2 - 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 D A 0

- 1
2 - 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 A D 0

- 3
2 - 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D

Table 2.2: Block form atomic hamiltonian: an example of a Hamiltonian put into block
diagonal form by rearranging the statesjmI ; mJ i . ElementsA(A) and B(B) are given by
Equations 2.15 and 2.16 in the text, respectively;D is given by Equation 2.14 in the text.

2hmJ � 1; mI � 1j ~H i =
�
A +

B
2I (2I � 1)(J (2J � 1)

�
3
2

+ 3( mI � 1)(mj � 1) + mI mJ

��
hmJ � 1; mI � 1jI � J� i

(2.15)

hmJ � 2; mI � 2j ~H i =
3B

8I (2I � 1)(J (2J � 1)
hmJ � 2; mI � 2jI � I � J� J� i ; (2.16)

where
hI � I � J� J� i = [ I (I + 1) � mI (mI � 1)] [J (J + 1) � mJ (mJ � 1)]

hmJ � 1; mI � 1jI � J� i =
p

[J (J + 1) � mJ (mJ � 1)] [I (I + 1) � mI (mI � 1)]

hmJ � 2; mI � 2jI � I � J� J� i =
p

[I (I + 1) � mI (mI � 1)] [I (I + 1) � (mI � 1)(mI � 2)]

�
p

[J (J + 1) � mJ (mJ � 1)] [J (J + 1) � (mJ � 1)(mJ � 2]:
(2.17)

To calculate the energy levels, we just have to build this Hamiltonian for our energy
level nlJ and magnetic �eld Be, then diagonalize it. Diagonalization of this matrix can be
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computationally di�cult unless we arrange the energy levels cleverly. If we arrange the
energy levelsjmJ ; mI i so that mF = mI + mJ levels are grouped, as follows:

jmJ;min ; mI;max i ; jmJ;min + 1; mI;max � 1i ; : : : jmJ;max ; mI;min i ;

jmJ;min + 1; mI;max i ; jmJ;min + 2; mI;max � 1i : : : jmJ;max ; mI;min + 1i ;
...

jmJ;max ; mI;max i ;

jmJ;min ; mI;max � 1i ; jmJ;min + 1; mI;max � 2i : : : jmJ;max � 1; mI;min i ;

jmJ;min ; mI;max � 2i ; jmJ;min + 1; mI;max � 3i : : : jmJ;max � 2; mI;min i ;
...

jmJ;min ; mI;min i ;

(2.18)

then the result is a block diagonal matrix as shown in Table 2.2. With this matrix, we can
diagonalize each block individually to get all of the energy levels.

11



Figure 2.4: 137Ba+ 6S1=2 state hyper�ne splitting with magnetic �eld: applying a magnetic
�eld lifts the degeneracy, allowingmF levels to be resolved. Obtained by solving Equation
2.13 for each magnetic �eldBe.
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Figure 2.5: 137Ba+ 5D5=2 state hyper�ne splitting with magnetic �eld: the F = 3; 4 levels
are very close to one another, so we choose to use onlyF = 1; 2.
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2.2 Transition Branching Ratios/Strengths

The next useful data we need are the branching ratios/transition strengths of the various
dipole and quadrupole transitions we plan to use in137Ba+ . To build up to this, we must
�rst discuss Clebsch Gordan coe�cients.

Say we have two angular momenta~J1 and ~J2. We add them to get the new basis
~J = ~J1 + ~J2. Our new basis isjJ1; J2; J; mi , which we can simplify tojJ1; J2; J; mi = jJ; mi
if we specifyJ1 and J2. The eigenvalues in our new basis can easily be shown to be

~J1
2
jJ; mi = J1(J1 + 1) ~2jJ; mi

~J2
2
jJ; mi = J2(J2 + 1) ~2jJ; mi

~J 2jJ; mi = J (J + 1) ~2jJ; mi
~JzjJ; mi = m~jJ; mi :

(2.19)

We can multiply this state by the identity to get a transformation between the two bases:

jJ; mi =
X

J 0
1 ;J 0

2 ;m1;m2

jJ 0
1; m1; J 0

2; m2ihJ 0
1; m1; J 0

2; m2jJ; mi

jJ1; m1; J2; m2i =
X

J 0
1 ;J 0

2 ;J;m

jJ 0
1; J 0

2; J; mihJ 0
1; J 0

2; J; mjJ1; m1; J2; m2i ;
(2.20)

where the underlined brakets are called Clebsch Gordan Coe�cients. These coe�cients
essentially tell us how much each sub-state makes up the overall composite state.

If we apply the operators ~J1
2
, ~J2

2
and ~Jz, it can be easily shown thatJ 0

i = Ji and
m = m1 + m2, leaving us with

jJ; mi =
X

J1 ;J2 ;m1;m2

jJ1; m1; J2; m2ihJ1; m1; J2; m2jJ; mi

jJ1; m1; J2; m2i =
X

J;m

jJ; mihJ; mjJ1; m1; J2; m2i : (2.21)

Using the constraintm = m1 + m2, and setting the total number of states we have in each
basis equal, we �nd the following limit for composite statesJ :

jJ1 � J2j � J � J1 + J2: (2.22)

Multiplying the kets in Equation 2.21 by the brahJ 0; m0j, we get the orthogonality relations
X

J;m

hJ1; m0
1; J2; m0

2jJ; mihJ; mjJ1; m1; J2; m2i = � m1 ;m 0
1
� m;m 0

X

m1 ;m 2

hJ; mjJ1; m1; J2; m2ihJ1; m1; J2; m2jJ 0; m0i = � J;J 0� m;m 0:
(2.23)
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There is only one state for whichJ is the highest possible valueJ1 + J2, so the Clebsch
Gordan coe�cient is unity. From there, we use the ladder operator~J� = ~J1� + ~J2� to �nd
the others, making use of the relation

J� jJ; mi = ~
p

J (J + 1) � m(m � 1)jJ; m � 1i : (2.24)

Example : l = 2, s = 1
The maximal angular momentum state isJ = l + s = 2 + 1 = 3 with m = ml + ms = 2 + 1 = 3.
Next, we apply the ~J� operator to thejJ; mi state, the ~L � + ~S� operator to thejl; m l ; s; msi
state, and set these expressions equal to each other.

~J� j3; 3i = ~
p

3(3 + 1) � 3(3 � 1)j3; 2i =
p

6j3; 2i

~L � + ~S� j2; 2; 1; 1i =
p

2(2 + 1) � 2(2 � 1)j2; 1; 1; 1i +
p

1(1 + 1) � 1(1 � 1)j2; 2; 1; 0i

= 2 j2; 1; 1; 1i +
p

2j2; 2; 1; 0i :

Equating these, we can solve for the Clebsch Gordan coe�cients (underlined)

j3; 2i =
2

p
6

j2; 1; 1; 1i +

r
2
6

j2; 2; 1; 0i :

To get the coe�cients for di�erent J values, we use orthogonality(Equation 2.23):
h3; 2j2; 2i = 0

h3; 2j2; 2i =

 
2

p
6

h2; 1; 1; 1j +

r
2
6

h2; 2; 1; 0j

!

(aj2; 1; 1; 1i + bj2; 2; 1; 0i )

=
2

p
6

a +
1

p
3

b= 0;

along with the completeness relationa2 + b2 = 1, where a and b are the Clebsch Gordan
coe�cients. We �nd that a = 1p

3
and b= 2p

6
, so that

j2; 2i =
1

p
3

j2; 1; 1; 1i +
2

p
6

j2; 2; 1; 0i :

From here we continue to apply ladder operators and orthogonality with the completeness
relation to �nd the remaining Clebsch Gordan coe�ents.

Here are several useful symmetry relations for the Clebsch Gordan coe�cients:

hJ1; m1; J2; m2jJ3; m3i = ( � 1)J1+ J2 � J3 hJ2; m2; J1; m1jJ3; m3i (2.25)

hJ1; m1; J2; m2jJ3; m3i = ( � 1)J1 � m1

r
2J3 + 1
2J2 + 1

hJ3; m3; J1; � m1jJ2; m2i (2.26)
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hJ1; m1; J2; m2jJ3; m3i = ( � 1)J2+ m2

r
2J3 + 1
2J1 + 1

hJ2; � m2; J3; m3jJ1; m1i (2.27)

hJ1; m1; J2; m2jJ3; m3i = ( � 1)J1+ J2 � J3 hJ1; � m1; J2; � m2jJ3; � m3i : (2.28)

Finally, it's useful to de�ne the Wigner 3j symbol:
�

J1 J2 J3

m1 m2 m3

�
=

(� 1)J1+ J2 � J3

p
2J3 + 1

hJ1; m1; J2; m2jJ3; � m3i (2.29)

and the Wigner 6j symbol:
�

J1 J2 J12

J3 � J J23

�
=

(� 1)J1+ J2+ J3+ J

p
(2J12 + 1)(2 J23 + 1)

hJ1; J23; J; mjJ12; J3; J; mi : (2.30)

Next, we de�ne a spherical tensor operator as a set of 2k + 1 operators which transform
among themselves under rotation just like angular momentum statesjJ; mi do (J = k).
Rotation on an angular momentum state looks like

R(� )jJ; mi =
JX

m0= � J

jJ; m0ihJ; m0jR(� )jJ; mi =
JX

m0= � J

jJ; m0i d(j )
m0;m (� ) (2.31)

d(j )
m0;m (� ) = hJ; m0jR(� )jJ; mi : (2.32)

So for a spherical tensor operator, this rotation looks like

R(� )T (k)
q Ry(� ) =

kX

q= � k

T0(k)
q d(k)

q0;q(� ): (2.33)

Now, we apply a tensor operator to an angular momentum state

T (k)
q j� 0; J 0; m0i ;

where � 0 contains all non-angular momentum quantum numbers (radial). If we rotate by
R(� ) and multiply by the identity, we see that they rotate separately,

R(� )T (k)
q j� 0; J 0; m0i = R(� )T (k)

q Ry(� )R(� )j� 0; J 0; m0i :

The ket rotates as jJ 0; m0i and the operator rotates asjk; qi . So overall, it rotates as
jk; q; J 0; m0i . Without the tensor operator, this would look like

jk; q; J 0; m0i =
X

k0;q0

jk0; q0ihk0; q0jJ 0; m0; k; qi :

Similarly, with the tensor operator,

T (k)
q j� 0; J 0; m0i =

X

k0;q0

j ~�; k 0; q0ihk0; q0jJ 0; m0; k; qi :
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Finally, multiplying by a bra on the left and only keeping the non-zero terms, we have

h�; J; m jT (k)
q j� 0; J 0; m0i =

X

k0;q0

h�; J; m j ~�; k 0; q0ihk0; q0jJ 0; m0; k; qi

= ( � 1)2kh�; J jjT (k) jj � 0; J 0ihJ; mjJ 0; m0; k; qi ; (2.34)

where we introduced the Reduced Matrix Element, anm-independent scalar:

h�; J jjT (k) jj � 0; J 0i = ( � 1)2kh�; J; m j ~�; J; m i : (2.35)

This statement is called the Wigner-Eckart Theorem. We can also use the orthogonality
relation(Equation 2.23) to get the inverse of the Wigner-Eckart Theorem for a di�erent
expression for the Reduced Matrix Element:

h�; J jjT (k) jj � 0; J 0i = ( � 1)2k
X

m0;q

h�; J; m jT (k)
q j� 0; J 0; m0ihJ; mjJ 0; m0; k; qi : (2.36)

In the case where a tensor operator only acts on a subspace of the angular momentum,
sayJ1, we can decompose the Reduced Matrix Element. We start with the Inverse Wigner
Eckart Theorem we just derived, multiplying by the identity twice with basesJ1, m1, J2,
m2 and J 0

1, m0
1, J 0

2, m0
2:

hJ jjT (k) jj J 0i = ( � 1)2k
X

m0;q

hJ; mjT (k)
q jJ 0; m0ihJ; mjJ 0; m0; k; qi

= ( � 1)2k
X

m0;q;m1 ;m 2 ;m 0
1 ;m 0

2

hJ; mjJ1; m1; J2; m2ihJ1; m1; J2; m2jT (k)
q jJ 0

1; m0
1; J 0

2m0
2i

�h J 0
1; m0

1; J 0
2; m0

2jJ 0; m0ihJ; mjJ 0; m0; k; qi :

The operator only acts on theJ1; m1 subspace, so we can pull the brakethJ2; m2jJ 0
2; m0

2i
out of the operator term. Now the only nonzero terms occur whenJ2 = J 0

2 and m2 = m0
2:

hJ jjT (k) jj J 0i = ( � 1)2k
X

m0;q;m1 ;m 2 ;m 0
1 ;m 0

2

hJ; mjJ1; m1; J2; m2ihJ 0
1; m0

1; J 0
2; m0

2jJ 0; m0ihJ; mjJ 0; m0; k; qi

� h J1; m1jT (k)
q jJ 0

1; m0
1i � J2 ;J 0

2
� m2 ;m 0

2

= ( � 1)2k
X

m0;q;m1 ;m 2 ;m 0
1

hJ; mjJ1; m1; J2; m2ihJ 0
1; m0

1; J2; m2jJ 0; m0ihJ; mjJ 0; m0; k; qi

� h J1; m1jT (k)
q jJ 0

1; m0
1i :

(2.37)

Next, we use the Wigner-Eckart Theorem:

hJ jjT (k) jj J 0i = ( � 1)2k
X

m0;q;m1 ;m 2 ;m 0
1

hJ; mjJ1; m1; J2; m2ihJ 0
1; m0

1; J2; m2jJ 0; m0ihJ; mjJ 0; m0; k; qi
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� (� 1)2khJ1jjTk jj J1ihJ1; m1jJ 0
1; m0

1; k; qi

=
X

m0;q;m1 ;m 2 ;m 0
1

hJ1; m1; J2; m2jJ; mihJ 0
1; m0

1; J2; m2jJ 0; m0ihJ; mjJ 0; m0; k; qi

�h J1; m1jJ 0
1; m0

1; k; qihJ1jjTk jj J1i ;

where we conjugated the �rst Clebsch Gordan coe�cient, canceled the (� 1)2ks and rear-
ranged the equation. Now, we apply the symmetry relation 2.25 to the two Clebsch Gordan
coe�cients in line 2, giving us

hJ jjT (k) jj J 0i =
X

m0;q;m1 ;m 2 ;m 0
1

hJ1; m1; J2; m2jJ; mihJ 0
1; m0

1; J2; m2jJ 0; m0i

� (� 1)J 0+ k� J (� 1)J 0
1+ k� J1 hk; q; J 0; m0jJ; mihk; q; J 0

1; m0
1jJ1; m1ihJ1jjTk jj J1i :

The explicit form for the Wigner 6j symbol, which we did not explore here, is [27]
�

J1 J2 J12

J3 � J J23

�
=

(� 1)J1+ J2+ J3+ J

p
(2J12 + 1)(2 J23 + 1)

X

m1 ;m 2 ;m 3 ;m 12 ;m 23

hJ12; m12; J3; m3jJ; mi

� h J1; m1; J2; m2jJ12; m12ihJ1; m1; J23; m23jJ; mihJ2; m2; J3; m3jJ23; m23i : (2.38)

Our current four Clebsch Gordan coe�cients have this form, withJ1 ! k; J2 ! J 0
1; J3 ! J3; J ! J; J12 ! J1; Jj 23 ! J 0.

So we can write this as a 6j symbol as follows:
X

m0;q;m1 ;m 2 ;m 0
1

hJ1; m1; J2; m2jJ; mihJ 0
1; m0

1; J2; m2jJ 0; m0ihk; q; J 0; m0jJ; mihk; q; J 0
1; m0

1jJ1; m1i

= ( � 1)� k� J 0
1 � J2 � J

p
(2J1 + 1)(2 J 0+ 1)

�
k J 0

1 J1

J2 J J 0

�
:

Now we can �nalize our decomposed equation:

hJ jjT (k) jj J 0i = ( � 1)J 0+ k� J (� 1)J 0
1+ k� J1 (� 1)� k� J 0

1 � J2 � J

�
p

(2J1 + 1)(2 J 0+ 1)
�

k J 0
1 J1

J2 J J 0

�
hJ1jjTk jj J1i

= ( � 1)J 0+ k� J1 � J2 � 2J
p

(2J1 + 1)(2 J 0+ 1)
�

k J 0
1 J1

J2 J J 0

�
hJ1jjTk jj J1i

= ( � 1)J 0+ k+ J1+ J2
p

(2J1 + 1)(2 J 0+ 1)
�

k J 0
1 J1

J2 J J 0

�
hJ1jjTk jj J1i ; (2.39)

where in the last step, we used the fact thatJ1 + J2 + J is an integer, so that (� 1)2(J1+ J2+ J ) = 1.
Then we multiplied by the identity to arrive at the form shown in Equation 2.39.
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2.2.1 Dipole Transitions

We'll start out by looking at dipole �ne structure and hyper�ne structure matrix elements.
The dipole is a vector operator of rank 1, sok = 1. For �ne structure ( ~J = ~L + ~S), we �rst
apply the Wigner-Eckart Theorem to the dipole operator:

hJ; mJ jdqjJ 0; m0
J i = hJ jjdjjJ 0ihJ; mJ jJ 0; m0

J ; k = 1; qi : (2.40)

Next, we use the symmetry relation from Equation 2.27:

hJ1; m1; J2; m2jJ3; m3i = ( � 1)J2+ m2

r
2J3 + 1
2J1 + 1

hJ2; � m2; J3; m3jJ1; m1i ;

with the correspondencesJ1 ! k = 1; J2 ! J; J3 ! J 0, resulting in

hJ; mJ jdqjJ 0; m0
J i = hJ jjdjjJ 0i (� 1)1+ q+1+ J � J 0

r
2J + 1
2J 0+ 1

hJ 0; m0
J jJ; mJ ; k = 1; � qi

= hJ jjdjjJ 0i (� 1)J � J 0+ q

r
2J + 1
2J 0+ 1

hJ 0; m0
J jJ; mJ ; k = 1; � qi :

Also, remember that in addition of angular momenta, we havem = m1 + m2. In this case,
mJ = m0

J + q:
hJ; mJ jdqjJ 0; m0

J i = hJ jjdjjJ 0ihJ; mJ jJ 0; m0
J ; k = 1; qi

= hJ jjdjjJ 0i (� 1)J � J 0+ mJ � m0
J

r
2J + 1
2J 0+ 1

hJ 0; m0
J jJ; mJ ; k = 1; � qi : (2.41)

Now, let's express the dipole matrix element in terms of the Wigner 3j symbol. In terms of
Equation 2.29, we have the following correspondences with Equation 2.40:J1 ! J 0; J2 ! k = 1; J3 ! J .
So we can rewrite this as

hJ; mJ jdqjJ 0; m0
J i = hJ jjdjjJ 0ihJ; mJ jJ 0; m0

J ; k = 1; qi

= hJ jjdjjJ 0i (� 1)1� mJ � J 0p
2J + 1

�
J 0 1 J
m0

J q � mJ

�
: (2.42)

Since the dipole operator doesn't e�ect spin, we can decompose this Reduced Matrix
via Equation 2.39:

hJ jjdjjJ 0i = ( � 1)J 0+ l+ s+1
p

(2J 0+ 1)(2 l + 1)
�

l l 0 1
J 0 J s

�
hl jjdjj l0i ; (2.43)

where we swapped the columns of the 6-j symbol from the symmetry relations for 6-j
symbols [27].

Similarly, for hyper�ne structure we have

hF; mF jdqjF 0; m0
F i = hF jjdjjF 0i (� 1)1� mF � F 0p

2F + 1
�

F 0 1 F
m0

F q � mF

�
(2.44)
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hF jjdjjF 0i = ( � 1)F 0+ J + I +1
p

(2F 0+ 1)(2 J + 1)
�

J J 0 1
F 0 F I

�
hJ jjdjjJ 0i : (2.45)

We're interested in looking at a singleJ ! J 0 transition at a time, so that hJ jjdjjJ 0i is the
same for all of them. So overall we need to look at the coe�cient

(� 1)1� mF � F 0
(� 1)F 0+ J + I +1

p
(2J + 1)(2 F 0+ 1)(2 F + 1)

�
J J 0 1
F 0 F I

� �
F 0 1 F
m0

F q � mF

�
:

(2.46)
Now, for eachJ ! J 0; F ! F 0 transition, we have the following part of the coe�cient as
a constant:

SF F 0(J; J 0) =
p

(2F 0+ 1)(2 F + 1)(2 J + 1)
�

J J 0 1
F 0 F I

�
: (2.47)

Our coe�cient turns into

SF F 0(J; J 0)( � 1)J + I � mF

�
F 0 1 F
m0

F q � mF

�
: (2.48)

The square of this value is the relative probability of that particular transition happen-
ing. So for eachJ ! J 0, F ! F 0 transition, we calculate the overall strengthSF F 0(J; J 0).
We then look at the strength of the di�erent mF ! m0

F transitions given di�erent light
polarizations q. The most important transition for us is the cooling/pumping transition
S1=2 ! P1=2. The branching ratios for this transition are given in Tables 2.3 through 2.5.
For 133Ba+ and 135Ba+ / 137Ba+ , all of the branching ratios are given in Tables A.1 through
A.12.

Dipole Selection Rules

There are several situations where the Clebsch Gordan coe�cients are zero, making
these particular transitions impossible. These situations de�ne the Selection Rules: con-
straints which give us the possible dipole transitions.

For �ne structure dipole transitions, we are adding angular momentajJ; mJ i and
jk = 1; qi . From Equation 2.22, we get the selection ruleJ 0 = J or J 0 = J � 1.

Recalling that m = m1 + m2 for addition of angular momenta, we infer the selection
rule: m0

J = mJ or m0
J = � mJ .

Next, the Clebsch Gordan coe�cient hJ; 0jJ; 0; 1; qi = 0, leading to another selection
rule: if m0

J = mJ = 0, then J 0 6= J .

An obvious selection rule iss0 = s, and m0
s = ms, since dipole interactions don't change

spin.

The �nal selection rule applies only whens = 1=2. Then we have from Equation 2.22

jc � 1=2j � J � l + 1=2:

And similar for J 0; l0, since spin obviously doesn't change from dipole radiation. Now
suppose thatl0 = l � 1 and J 0 = J � 1. Then for the J 0 condition we get

jc � 1=2 � 1j � J � 1 � l + 1=2 � 1
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jc � 1=2 � 1j � 1 � J � l + 1=2 � 2

For the positive and negative versions respectively, we get

l + 3=2 � J � l + 5=2

jc � 3=2j � 1 � J � l � 3=2:

Both of these contradict the �rst J; J 0 conditions, so we have the selection rule: Ifs = 1=2
then (If l0 = l � 1 then J 0 6= J � 1).

So overall we have the following �ne structure selection rules

J 0 = J or J 0 = J � 1 (2.49)

m0
J = mJ or m0

J = � mJ (2.50)

If m0
J = mJ = 0; then J 0 6= J (2.51)

s0 = s and m0
s = ms (2.52)

If l0 = l � 1; then J 0 6= J � 1 (s = 1=2): (2.53)

For hyper�ne structure, we have similar selection rules to Equations 2.49, 2.50, 2.51.
Again the nuclear spinI doesn't change, so we have an additional selection rule similar to
2.52 but regardingI and mI . Depending on the amount of electrons contributing to the
angular momentum, we may or may not have a selection rule similar to Equation 2.53 for
hyper�ne structure.

6S1=2 $ 6P1=2, q = +1

F = 1 $ F 0 = 1

mF 0 1
mF 0 -1 0

0.2887 0.2887

F = 1 $ F 0 = 2

-1 0 1
-2 -1 0

-0.7071 -0.5000 -0.2887

F = 2 $ F 0 = 1

0 1 2
-1 0 1

0.2887 0.5000 0.7071

F = 2 $ F 0 = 2

-1 0 1 2
-2 -1 0 1

-0.4082 -0.5000 -0.5000 -0.4082

Table 2.3: 135Ba+ / 137Ba+ dipole branching
ratios: 6S1=2 $ 6P1=2, q = +1

6S1=2 $ 6P1=2, q = � 1

F = 1 $ F 0 = 1

mF -1 0
mF 0 0 1

-0.2887 -0.2887

F = 1 $ F 0 = 2

-1 0 1
0 1 2

-0.2887 -0.5000 -0.7071

F = 2 $ F 0 = 1

-2 -1 0
-1 0 1

0.7071 0.5000 0.2887

F = 2 $ F 0 = 2

-2 -1 0 1
-1 0 1 2

0.4082 0.5000 0.5000 0.4082

Table 2.4: 135Ba+ / 137Ba+ dipole branching
ratios: 6S1=2 $ 6P1=2, q = � 1
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6S1=2 $ 6P1=2, q = 0

F = 1 $ F 0 = 1

mF -1 0 1
mF 0 -1 0 1

0.2887 0 -0.2887

F = 1 $ F 0 = 2

-1 0 1
-1 0 1

0.5000 0.5774 0.5000

F = 2 $ F 0 = 1

-1 0 1
-1 0 1

0.5000 0.5774 0.5000

F = 2 $ F 0 = 2

-2 -1 0 1 2
-2 -1 0 1 2

-0.5774 -0.2887 0 0.2887 0.5774

Table 2.5: 135Ba+ / 137Ba+ dipole branching ratios: 6S1=2 $ 6P1=2, q = 0

2.2.2 Quadrupole Transitions

Transitions betweenS and D states can only be driven by quadrupole interaction. To
get their transition probabilities, we must look at thehF; mF jr̂ i r̂ j jF 0; m0

F i matrix element
[28, 29] multiplied by the i th polarization component � i and the j th index of refraction
componentnj . Let's start out by writing it in terms of Racah Tensor operatorsc(q)

ij :

hF; mF jr̂ i r̂ j jF 0; m0
F i � i nj =

2X

q= � 2

hF; mF jr 2C(2)
q jF 0; m0

F i c(q)
ij � i nj : (2.54)

Next, we use the Wigner Eckart Theorem 2.34, and the Wigner 3-j symbol notation to
write

hF; mF jr̂ i r̂ j jF 0; m0
F i � i nj = hF jj r 2C2jjF 0i

2X

q= � 2

�
F 2 F 0

� mF q m0
F

�
c(q)

ij � i nj : (2.55)

Finally, we decompose the reduced matrix element

hF jj r 2C2jjF 0i = ( � 1)F 0+2+ J + I
p

(2J + 1)(2 F 0+ 1)
�

2 J 0 J
I F F 0

�
hJ jj r 2C2jj J 0i : (2.56)
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(a) (b)

Figure 2.6: Quadrupole transition laser orientation: describing the magnetic �eld, wave
vector, and polarization with � and 
 (a) magnetic �eld ~B, wavevector~k, polarization
~�, plane of incidence, and the negative projection of the magnetic �eld onto the plane of
incidence ~PB . (b) projection of the polarization onto ~PB , labeled ~P� ! PB

.

The selection rules for Quadrupole transitions are quite a lot more work to derive, but
they are analogous to the dipole selection rules:

F 0 = F or F 0 = F � 1 or F 0 = F � 2

m0
F = mF or m0

F = F � 1 or m0
F = mF � 2: (2.57)

We can describe the wave vector (k = !n=c ) and the polarization with just two angles
� and 
 . We �rst de�ne the coordinate system by the magnetic �eld so that B = B0ẑ.
Next, we can choose the wave vector to be con�ned to thex � z plane, and de�ne� as the
angle between the magnetic �eld and the wave vector. From Figure 2.6a, we see that the
wave vector is~k = k(sin � x̂ + cos� ẑ). In order to de�ne 
 we �rst project the magnetic
�eld onto the plane of incidence shown in Figure 2.6(a). We de�ne
 as the angle between
the negative vector of this projection (Shown as~PB ) and the polarization~�. From Figure
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2.6(b), we see that~� = cos
 cos� x̂ + sin 
 ŷ + cos
 sin� ẑ. Overall, we have

~k =

0

@
sin�

0
cos�

1

A , ~� =

0

@
cos
 cos�

sin

cos
 sin�

1

A : (2.58)

Now, we can look at the directionally dependent part of the matrix element:gq � cq
ij � i nj = 1

k cq
ij � i kj .

We �rst write out all possibilities for 1
k � i kj :

� i ky = 0

� xkz = k cos
 cos� cos� = k cos
 cos2 �

� zkx = � k cos
 sin� sin� = � k cos
 sin2 �

� ykx = k sin� sin


� ykz = k cos� sin


� xkx = k cos
 sin� cos� = k cos
 sin 2�

� zkz = � k cos
 cos� sin� = � k cos
 sin 2�:

The Racah Tensors can be written as the following:

c(0)
ij =

1
3

0

@
� 1 0 0
0 � 1 0
0 0 2

1

A , c(� 1)
ij =

1
p

6

0

@
0 0 � 1
0 0 i

� 1 i 0

1

A , c(� 2)
ij =

1
p

6

0

@
1 � i 0

� i � 1 0
0 0 0

1

A : (2.59)

So for the rank zero geometrical operator elements, we have

g(0)
xx =

� 1
3

cos
 sin 2�

g(0)
zz =

� 2
3

cos
 sin 2�:

And �nally for the overall operator, we have

g(0) = jg(0)
xx + g(0)

zz j =
1
2

j cos
 sin 2� j: (2.60)

For the rank one geometrical operator elements, we have

g(� 1)
xz =

� 1
p

6
cos
 cos2 �

g(� 1)
zx =

� 1
p

6
cos
 sin2 �

g(� 1)
yz =

i
p

6
sin
 cos�;
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Figure 2.7: Quadrupole geometrical constants: yellow areas have a high probability of
driving the transition and blue areas have a low probability. Two orientations are notable:
� = 45� , 
 = 0 � and � = 90� , 
 = 90� .

Figure 2.8: Quadrupole useful orientations: (a)� = 90� , 
 = 90� : only m ! m � 2 transi-
tions coupled (b) � = 45� , 
 = 0 � : m ! m strongly coupled,m ! m � 2 weakly coupled.
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and for the overall operator, we get

g(� 1) = jg(� 1)
xz + g(� 1)

zx + g(� 1)
yz j =

1
p

6
ji sin
 cos� � cos
 (cos2 � � sin2 � )j

=
1

p
6

j � cos
 cos 2� + i sin
 cos� j: (2.61)

Similarly, for the rank two geometrical operator elements, we have

g(� 2)
xx =

1

2
p

6
cos
 sin 2�

g(� 2)
yx =

� i
p

6
sin
 sin�:

And for the overall operator, we get

g(� 2) = jg(� 2)
xx + g(� 2)

yx j =
1

p
6

�
�
�
�
1
2

cos
 sin 2� � i sin
 sin�

�
�
�
� : (2.62)

In summary, all of the geometrical operators are

g(0) =
1
2

j cos
 sin 2� j

g(� 1) =
1

p
6

j � cos
 cos 2� + i sin
 cos� j

g(� 2) = jg(� 2)
xx + g(� 2)

yx j =
1

p
6

�
�
�
�
1
2

cos
 sin 2� � i sin
 sin�

�
�
�
� : (2.63)

As can be seen from Figure 2.7, there are two particularly useful orientations. If� = 90�

and 
 = 90� , then only the m ! m � 2 transitions are coupled. We call this orientation
orthogonal. If � = 45� and 
 = 0 � , the m ! m transitions are strongly coupled while the
m ! m � 2 transitions are weakly coupled andm ! m � 1 are completely suppressed.
We call this orientation XZ. The polarizations and wave vectors for these orientations are
shown in Figure 2.8.

Overall, when looking atJ $ J 0 transitions, the coe�cient we care about is

(� 1)F 0p
2F 0+ 1

�
2 J 0 J
I F F 0

� 2X

q= � 2

�
F 2 F 0

� mF q m0
F

�
c(q)

ij � i nj : (2.64)

So for the branching ratios, we look at Equation 2.64 and the geometrical constants
in Equation 2.63. For averaged values, you just assume that the geometrical constant is
equal to 1. For 133Ba+ and Ba 135Ba+ / 137Ba+ , these branching ratios are displayed in
Tables A.13 through A.24 for the case of averaged and the two interesting orientations we
mentioned earlier. In particular, for the shelving transition useful in chapter 3, the XZ
orientation branching ratios are displayed here in Table 2.6.
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2.3 Saturation Intensity

As we drive a two-level system with more power, the average population in the excited
state increases. However, the population asymptotes at 0.5, giving diminishing gains as we
increase the power. Furthermore, the linewidth of the transition increases with the power
after a point called the saturation point [27,30].

For a two-level system, the Hamiltonian can be written as

Ĥ = ~
�

0 
 ei!t =2

 e� i!t =2 ! 0;

�
; (2.65)

where 
 is the Rabi frequency of the transition, ! is the frequency of the laser, and! 0

is the frequency of the transition between the two levels. Solving Schr•odinger's equation,
and going into a rotating frame ~ce = ceei!t , whereci are populations of the levels, we end
up with the following di�erential equations:

@
@t

cg = �
i 

2

~ce

@
@t

~ce = i �~ce �
i 

2

cg:
(2.66)

The population dynamics of driving a two-level system depends on how the spontaneous
emission from the excited state balances the stimulated absorption driven by the laser.
Spontaneous emission is much easier to model if we switch to the density matrix formulation
for the populations:

~� gg = cgc�
g = � gg

~� ee = ~ce~c�
e = cec�

e = � ee

~� ge = cg~c�
e = cgc�

ee� i!t = � gee� i!t

~� eg = ~cec�
g = cec�

gei!t = � egei!t :

(2.67)

The � ii terms are called the populations, and the� ij terms are called the coherences.

Now, we can take the derivatives and substitute Equation 2.66 to get the following
di�erential equations:

@
@t

� gg = �
i 

2

(~� eg � ~� ge)

@
@t

� ee =
i 

2

(~� eg � ~� ge)

@
@t

~� eg = i �~� eg +
i 

2

(~� ee � ~� gg)

@
@t

~� ge = � i �~� ge �
i 

2

(~� ee � ~� gg) :

(2.68)

28



We can a priori introduce spontaneous emission as follows:

@
@t

� gg = �
i 

2

(~� eg � ~� ge) + � � ee

@
@t

� ee =
i 

2

(~� eg � ~� ge) � � � ee

@
@t

~� eg = ( i � � 
 ? ) ~� eg +
i 

2

(~� ee � ~� gg)

@
@t

~� ge = ( � i � � 
 ? ) ~� ge �
i 

2

(~� ee � ~� gg) :

(2.69)

These are called the Optical Bloch Equations, and the decay rates � and
 ? are called the
longitudinal and transverse decay rates respectively. In general, the transverse decay rate
can be written as
 ? = � =2 + 
 c, where
 c is a generic term for any form of decay besides
spontaneous emission. For our discussion, we assume that
 c = 0.

A useful quantity to de�ne is the population di�erence w between the levels, so that

@
@t

w = �
�

@
@t

� ee �
@
@t

� gg

�
= : : : = � i 


�
~� eg � ~� �

eg

�
+ � � � w: (2.70)

Finally, we assume that we have a steady state, so that all derivatives are equal to zero.
After some substitution, we can solve for our population di�erence at steady state:

w =
1

1 + s
;

where

s =

 2

2� 2
�
1=4 + � 2

� 2

� =
s0�

1 +
�

2�
�

� 2
� (2.71)

is the saturation parameter. The total scattering rate is given by


 p = � � ee = �
1
2

(1 + w) =
s0� =2

1 +
�

�

 ?

� 2
+ s0

: (2.72)

If we assume that our laser has a high intensity, we can approximate the denominator as

1 +
�

�

 ?

� 2

+ s0 � (1 + s0)

 

1 +
�

�

 ?

� 2
!

;

giving us the result of


 p =
�

s0

1 + s0

�
0

B
@

� =2

1 +
�

�

 0

?

� 2

1

C
A ; (2.73)
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where 
 0
? = 
 ?

p
1 + s0 is the power broadened linewidth. So as we increase the power,

the linewidth of the transition is increased. Using more power to collect more scattered
light has a disadvantage of broadening the linewidth of the transition. This is undesirable
because it could make it harder to select certain transitions and perform Doppler cooling.
So we need to make sure the intensity we are applying to our ions is reasonably low.

We assume that our detuning is zero � = 0, s = s0; we can de�ne saturation intensity
as

s =
I
I s

=
2
 2

� 2
: (2.74)

Noting that 
 = �h 0j"̂ � ~dj1i E0=~, and I = ( � 0c=2)E 2
0(where "̂ is the polarization of the

�eld and ~d is the dipole moment of the electron), we can solve for the saturation intensity:

I s =
c�0� 2~2

4jh0j"̂ � ~dj1ij 2
: (2.75)

Lastly, we make use of an expression for the longitudinal decay rate that comes from a full
quantum electrodynamics treatment:

� =
! 2

0

�� 0c2~
jh0j"̂ � ~dj1ij 2; (2.76)

wherec is the speed of light. This equation assumes that we're using linearly polarized light.
There is a way to derive this form simply using the formalism we've already developed,
however it must be assumed that the there is strong collisional damping, so that
 ? � 
, �.
It just turns out from quantum electrodynamics that this form holds even without this
approximation. Using Equation 2.76, we end up with the saturation intensity

I s =
~� ! 2

0

4�c 2
: (2.77)

Assuming a focused beam waist of 30� m at the barium ions, the saturation intensity
for the 493 nm, 553 nm, 614 nm, and 650 nm transitions are 0:62� W, 0:416� W, 0:397� W,
and 0:207� W respectively. In the lab, these powers are a good guideline to aim for to get
optimal performance.

2.4 Isotope Selectivity

There are many di�erent ways to ionize a neutral atom for trapping in an ion trap, including
electron bombardment, applying strong electric �elds, and using lasers. We chose to use
a two-step laser ionization process to ionize barium because of the isotope selectivity it
o�ers. Natural barium has many stable isotopes, with the highest abundance being138Ba+

at 72%; this ion is useful for calibration and as a Zeeman qubit.137Ba+ , at an abundance
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First Step Second Step

Level Wavenumber(cm� 1) Wavelength (nm) Wavenumber(cm� 1) Wavelength(nm)

6s2 1S0 0 - 42034.91 237.8975
6s6p1P1 18060.261 553.7019 23974.649 417.1073
5d6p3D 1 24192.033 413.3592 17842.877 560.4477
6s6p3P1 12636.623 791.3507 29398.287 340.1559
ionized 42034.91 237.8975 0 -

Table 2.7: Barium ionization energy levels: in the �rst step, we drive a coherent transition
to an intermediate state. In the second step, we eject the electron with a laser of higher
frequency than listed. [16,31]

of 11%, is useful because it's relatively common and has a nuclear spin of 3=2, giving us
up to eight hyper�ne levels to work with. 133Ba+ is a radioactive isotope with a half-life
of � 10 years; it has a nuclear spin of 1=2 making it an excellent choice for a qubit.

The energy needed to ionize neutral barium corresponds to a laser wavelength of around
238 nm - very low in the UV range. UV beams are more di�cult to work with, giving
us another reason to use a two-step ionization process. There are hundreds of di�erent
intermediate levels that we can use. Table 2.7 shows many di�erent intermediate levels
for this two-step ionization process. The �rst step of the ionization has to be coherent
and resonant so that we reliably transfer to the intermediate state, but the second step
can be a cheap, noisy, incoherent laser: the wavelength of which just needs to be lower
than the wavelengths listed in Table 2.7. We chose to use the 553 nm ionization scheme
with a 405 nm second step ionization laser, because the �rst step transition is the fastest
transition based on selection rules; this allows us to ionize and trap more quickly.

It turns out that di�erent isotopes of neutral barium have a slight isotope shift on the
coherent 553 nm transition. If the linewidth of our laser is small enough, this allows us to
essentially pick which isotope we wish to ionize.

The position of the di�erent resonances are shown in Figure 2.9.138Ba+ has the lowest
frequency, and is the easiest to trap. One thing to note is that135;137Ba+ both have three
di�erent hyper�ne levels on this transition, since the nuclear spin is 3=2. The frequencies
of all of these transitions are shown in Table 2.8.
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Figure 2.9: Natural barium transition spectrum: each isotope has a shifted �rst-step ion-
ization frequency, allowing us to select which isotope we wish to ionize and trap. a, b, and
c mean hyper�ne levelF = 5=2; 3=2; 1=2 respectively. Adapted from reference [32].

Isotope Freq. (MHz) Isotope Freq. (MHz) Isotope Freq. (MHz)

133g(1/2) -23.3 134 142.8 137(3/2) 274.56
138 0 132 167.9 135(3/2) 323.44

131(1/2) 0 133m(1/2) 172.9 131(3/2) 373.8
137(5/2) 63.43 133m(3/2) 216.55 133g(3/2) 386.65
135(5/2) 120.55 131 249.2 137(1/2) 549.47

136 128.02 128 271.1 135(1/2) 549.47

Table 2.8: Ionization selectivity: exact frequencies of the �rst step ionization transition for
di�erent isotopes of barium. The hyper�ne structure of the 135 and 137 isotopes give us
three di�erent transitions each. The center-of-mass of these transitions are also given. g
and m states are the ground and excited nuclear states. [32{35]
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CHAPTER3

Qudit Measurement

In this chapter, I discuss a method for measuring out the state of qudits with a shelving
scheme, which utilizes a metastable state with a long lifetime to store qudit states during
measurement. This work is also described in a paper co-written with Pei-Jiang Low de-
scribing all the protocols necessary for doing qudit quantum computation with 137Ba+ [36].

3.1 Shelving

State measurement for trapped ion qubits is typically done by driving a closed transition
on one of the qubit states and collecting the 
uorescence on a detector. A closed transition
is one in which the set of energy levels involved does not overlap with the other qubit state.
For 137Ba+ , if we encode each qubit state into one of the hyper�ne states, we can do this
by driving the S1=2 $ P3=2 transition. We can either drive theF = 2 qubit to the F = 3
P3=2 state, or theF = 1 qubit to the F = 0 P3=2 state. When we consider qudits with more
than two levels, we see that we cannot drive a closed transition on each qudit state using

uorescence.

Our solution is to use the metastableD5=2 state to \shelve" the qudit state. This state
has a long lifetime of� 30 s, and when we store states there, they are no longer driven by
the 
uorescence laser. The shelving approach to measuring a qudit is illustrated in Figure
3.1 for 3-levels. It consists of shelving all but one state in the metastable state, measuring
the remaining state, then repeatedly de-shelving and measuring states until the overall
state of the qudit is completely known.
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Figure 3.1: Shelving procedure: three-level qudit. (1): Map states j1i ; j2i to the metastable
state. (2): Fluoresce on the cycling transitionS1=2 $ P1=2. (3): If no 
uorescence detected,
return one state from the metastable state and (4): measure it with 
uorescence.
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D 5= 2
F 0 = 1 F 0 = 2

m 0
F -1 0 1 -2 -1 0 1 2

m F Frequency (MHz) 91.7507785 105.727 119.265 19.191 25.977 33.139 40.537 48.0933

S
1

=
2

F
=

1 -1 5020.300 4020.051 4034.027 4047.565 3947.490 3954.277 3961.439 3968.837 3976.393
0 5023.594 4023.345 4037.322 4050.859 3950.785 3957.571 3964.733 3972.131 3979.687
1 5026.886 4026.637 4040.613 4054.151 3954.076 3960.863 3968.024 3975.423 3982.979
-2 3007.567 4007.817 3993.840 3980.302 4080.377 4073.590 4066.429 4059.030 4051.474

F
=

2 -1 3010.864 4011.114 3997.137 3983.599 4083.674 4076.887 4069.726 4062.327 4054.771
0 3014.159 4014.408 4000.431 3986.894 4086.968 4080.181 4073.020 4065.621 4058.065
1 3017.450 4017.699 4003.723 3990.185 4090.260 4083.473 4076.312 4068.913 4061.357
2 3020.739 4020.988 4007.012 3993.474 4093.548 4086.762 4079.600 4072.202 4064.646

Table 3.1: Shelving transitions: the units are in MHz. We set the carrier to� 1090MHz
detuned from the 138Ba+ transition; the transitions listed are relative to the carrier. The
blue transitions are what we wish to drive for the shelving procedure. The yellow transitions
have frequencies within 1MHz of one of the desired transitions. However, these can be
suppressed (see text). The red transitions are within 20MHz of the shelving transitions,
have nonzero Clebsch-Gordan coe�cients, and cannot be suppressed by polarization, so
we must consider the errors from indirectly driving them.

From Figure 2.5, we see that theF = 3; 4 levels in the metastable state overlap one
another quite a bit. So we chose to use only theF = 1; 2 levels to store our qudit states. We
transfer eachF , mF state in the 6S1=2 level to theF 0 = F , m0

F = mF state in the 5D5=2 level.
Table 3.1 shows these transitions in blue, along with all of the other possible transitions.
Note that we set the carrier to be� 1090MHz detuned from the 138Ba+ transition. This
was chosen so that we could hit all of the transitions within a window of less than 200 MHz,
and the transitions don't run into each other at all. The yellow transitions have frequencies
near one of the desired transitions, and will reduce our transfer probability. However, if
we orient our shelving beam to be in the� = 45� , 
 = 0 � direction, these transitions are
completely suppressed, as shown in section 2.2.2, Figures 2.7. Transitions in red are not
suppressed by this technique, so there will be o�-resonant coupling to these.

Next, we need to decide how to perform these population transfers from the ground
state jgi to the metastable statejei . We propose to use rapid adiabatic passage, since it's
very robust against frequency noise, amplitude noise, and timing errors. A similar scheme
was used in [37] for138Ba+ .

Adiabatic passage works as follows: start by driving the transition o�-resonantly with
detuning from the transition �(0) = ! (0) � ! 0, where ! (t) is the laser frequency at time
t and ! 0 is the transition frequency. Next, sweep the detuning �(t) = ! (t) � ! 0 through
resonance, stopping at� �(0). For a 2-level system, the Hamiltonian in the rotating frame
~H = UHUy + i~( @U

@t)U
y(where U = exp

�
i
Rt

0 ! (t0)dt0
�

) can be written as

~H = ~
�

0 
 =2

 =2 � �( t)

�
; (3.1)

where 
 is the resulting Rabi frequency of the transition. The eigenstates of the sys-
tem are called the adiabatic or dressed states. The eigenvalues of this Hamiltonian are
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(a)
(b)

Figure 3.2: Adiabatic passage: (a) diabatic and adiabatic states energy vs detuning �.
There's an avoided crossing between the adiabatic states. (b) Graph of tan2�

Figure 3.3: Adiabatic passage triangle

� � = �( t )
2 + ~


2 , where ~
 =
p

� 2 + 
 2 is the e�ective Rabi frequency. These are the ener-
gies of each adiabatic state. The adiabatic states can be written as

j+ i = sin � jgi + cos� jei

j�i = cos� jgi � sin� jei ;
(3.2)

where� is de�ned in Figure 3.3. Using trigonometric identities, we can simplify and write
� as tan 2� = 


� . We can also get the diabatic statejgi (jei ) in terms of the adiabatic
states. This is done by multiplying one state by sin� (cos� ), the other by cos� (sin � ) and
adding (subtracting) them from each other. The result is

jgi = sin � j+ i + cos� j�i

jei = cos� j+ i � sin� j�i :
(3.3)

In adiabatic passage, we start with a large detuning so thatj� j � 
. From Figure
3.2(a), we see that thej�i adiabatic states approach thejgi (jei ) state for � �. We see the
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same thing if we consider the trigonometric tan graph in Figure 3.2(b): If we sweep the
detuning adiabatically, then we will remain in the adiabatic state, following the solid lines
in Figure 3.2(a), and transferring population between the ground and metastable states.

Finally, what exactly does it mean to sweep the frequency adiabatically? The Adiabatic
Theorem tells us that the adiabatic regime for a two-level system is de�ned by [38]

1
2

�
�
� _
� � 
 _�

�
�
� �

�

 2 + � 2

� 3=2
: (3.4)

So for our two-level system with only the detuning varying linearly with� , and starting
with a detuning �(0), we have

1
2


 � �
�

 2 + �(0) 2

� 3=2
: (3.5)

Essentially, we need to perform the sweep slowly, and have a comparatively large initial
detuning and/or Rabi frequency.

3.2 Errors

Using Schr•odinger's equationi~ @
@tj i = Ĥ j i , we get the following di�erential equations

for the ground and excited states:

@
@t

cg = �
i 

2

~ce

@
@t

~ce = i �( t)~ce �
i 

2

cg;
(3.6)

where ~ce = ceei
Rt

0 ! (t0)dt0
is the rotating frame excited population andcg and ce are the

populations of the ground and excited states respectively.

We can take derivatives and substitute to end up with the following decoupled di�er-
ential equations

�
@2

@t2
� i �( t)

@
@t

+

 2

4

�
cg = 0

�
@2

@t2
� i �( t)

@
@t

� i
�

@
@t

�( t)
�

+

 2

4

�
~ce = 0:

(3.7)

We transform into the following rotating frame: c0
g = cgexp

�
i
2

Rt
0 �( t0)dt0

�
, c0

e = ~ceexp
�

i
2

Rt
0 �( t0)dt0

�
.

We also use a linear sweep �(t) = �t , where� is the sweep rate. We now have the following
di�erential equations:

�
@2

@t2
+


 2

4
+

i�
2

+
t2

4

�
c0

g = 0
�

@2

@t2
+


 2

4
�

i�
2

+
t2

4

�
c0

e = 0:
(3.8)
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If we do a change of variables:� = i 
 2

4� , z = e� i�= 4p
�t , we end up with the following

di�erential equations:
�

@2

@z2
+ ( � � 1) +

1
2

�
t2

4

�
c0

g = 0
�

@2

@z2
+ � +

1
2

�
t2

4

�
c0

e = 0:
(3.9)

These are in the form of Weber's Equation, which can be solved analytically [39, 40].
The main way of solving these di�erential equations is by a lot of unintuitive substitution
and di�cult calculus [41]. Alternatively, the part of the solution we are interested in can
be more easily found using Contour integrals as shown in reference [42]. The result is the
probability that we successfully transfer population from the ground to the excited state:

PLZ = e� � 2 
 2=j _� j : (3.10)

This is called the Landau-Zener probability, and it only describes the errors from how
quickly the transfer was performed, or, how adiabatic the passage was.

(a) (b)

Figure 3.4: Shelving adiabatic passage and measurement error: (a) Equation 3.11 plotted
for various applied Rabi frequencies and passage timest = 2�

� . The horizontal axis is a
log-scale. The grey line gives the optimal parameters. (b) The passage time and �delity for
di�erent prime-dimensional qudits. Fluorescence time is included in the passage time, and
we assume that the amount of adiabatic passages needed is 2d � 3(the maximum amount
of transfers we would need to do for an arbitrary measurement).
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There are several additional sources for error. The overall �delity is given by

F = (1 � sin2 � )2

 

1 �
X

i

C2
i




2~
 0
i

! 2 �
1=2 + e� 2� 3 � � 
 =� (PLZ � 1=2)

�
e� t=t dec ; (3.11)

where i is the set of all unwanted transitions each transfer can couple to at the start end
end of the adiabatic passage,Ci is the relative branching ratio of an unwanted transition
compared to the desired transition branching ratio,~
 0 =

p
� 02

i + 
 2 is the e�ective Rabi-
Frequency of the laser coupling with one of the other transitions, and �� is the FWHM
laser linewidth.

The �rst term comes from imperfect adiabatic state preparation. For a constant Rabi
frequency, we would have to start the frequency sweep at detuning � =�1 to achieve
one of the adiabatic states perfectly. This is obviously unrealistic, mostly because we have
a plethora of other transition frequencies surrounding the desired transition. This can be
seen from Equations 3.2 and 3.3: with a �nite detuning �, the diabatic states do not
correspond perfectly to either of the adiabatic states.

The second term comes from coupling to all of the other transitions colored red in Table
3.1. We model these contributions to the error as o�-resonant Rabi 
opping at detuning �0i .
The excited state population of this o�-resonant coupling is in generalPe = 


~

sin2 ~
 t=2.

We assume a time average sin2 xt � 1=2. Finally, we must multiply this population by the
overall branching ratio Ci squared of the transition compared to the desired transition.
These branching ratios are listed in Table 2.6.

The third term is the dephasing and transfer-time error, derived in reference [43], and
it includes the Landau-Zener adiabacity error. Lastly, we have to consider decay of the
shelving state from its �nite lifetime(� 30 s forBa+ ).

For our experiment, we park our quantization magnetic �eld at 470� T. We transfer
jS1=2; F; mF i states tojD5=2; F 0 = F; m0

F = mF i states in the shelving manifold.mF $ m0
F

transtions are, in the smallest case,� 3:9 MHz apart in frequency.

There are additional motional sidebands on this transition at the secular trap frequency.
In a proposed blade trap, we expect this frequency to be! s � 2 MHz. In this case, for
some shelving transitions, the second motional sideband is less than 1 MHz away from the
transitions we wish to drive. The Lamb-Dicke parameter for the 6S1=2 $ 5D5=2 transition

is � = k
q

~
2m! s

= 2�
�

q
~

2m! s
� 0:0243� 1. Because the Lamb-Dicke parameter is so small,

the second (and higher) order sideband coupling will be negligible, and we ignore them.

To avoid sweeping through a �rst order sideband, we set the initial detuning at 1:6 MHz,
which is 200 kHz below the tilt mode frequency. We sweep across the level and ending with
equal but opposite detuning. Our laser will have a linewidth of less than 1 Hz [44]; we use
this for the following calculations.

With these properties, we calculated the �delity of population transfer for di�erent
Rabi frequency and overall passage time for the transition with the closest adjacent level
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in Figure 3.4(a). There is a trade-o� between the two variables and �delity. As long as
we can provide a Rabi frequency of greater than 110kHz, we can perform this passage in
under 1 ms with better than 99:94% �delity.

For our overall measurement process, we also have to consider each 
uorescence mea-
surement. The time for each 
uorescence is given by

t f luorescence �
Nphotons


 Detection
=

Nphotons

f f luorescence CE � QE
; (3.12)

whereNphotons is the number of photons needed to discriminate between a positive or nega-
tive reading, f f luorescence is the frequency we drive our 
uorescence transition at,CE is the
collection e�ciency of our imaging system, andQE is the quantum e�ciency of our cam-
era or PMT. We assume that our imaging system has NA = 0.5 and a quantum e�ciency
of 80%. A good estimate for our 
uorescence rate isf f luorescence � 1

2�T P 12
� 1=4 � 5 MHz,

whereTP 12 = 7:92 ns is the lifetime of the 6P1=2 state. Assuming we need around 10 bright-
state photons to discriminate between a bright or dark reading, each 
uorescence step takes
� 37� s.

Figure 3.4(b) considers the entire shelving measurement process for di�erent qudits up
to 7-levels. During a measurement, we can stop once 
uorescence has been seen, so we
usually don't have to do all of the transfers described in the shelving procedure. Here we
assume the worst case where we end up having to do all of the transfers(for d levels, this
is 2d � 3 transfers). As can be seen in the �gure, it's possible to get better than 98:5%
overall measurement �delity for even 7-level qudits. Both the 3- and 5- level qudits can be
measured with better than 99% �delity. Furthermore, because we can measure all of the
states in the ground manifold with little error, state tomography for 3- and 5-level qudits
is straightforward using this shelving technique.

Harty [45] was able to discriminate between a qubit state in theS1=2 and the D5=2

states with 
uorescence in43Ca+ ; their overall state preparation and measurement �delity
was better than 99:9%. An important distinction is that their transfer to the shelving
state was not coherent like our proposed shelving operation. If we assume that their 99:9%
error is mostly coming from the measurement, and that we see similar results, then our
overall measurement error will increase by a factor of (99:9%)n , wheren is the number of

uorescence measurements.

To improve the adiabatic state preparation, we could instead use chirped pulses, where
both the Rabi frequency and detuning are swept. Starting with a Rabi frequency of zero
and a large detuning will give us a near perfect correspondence between the diabatic states
and one of the adiabatic states. This technique could give us better than 99% �delities in
a shorter measurement time [46]. Alternatively, we could focus on improving our magnetic
�eld stabilization, laser frequency and intensity stabilization and do normal Rabi transfers
for an even shorter measurement time. Finally, when we do statistical measurements, we
can use an adaptive algorithm to do state 
uorescence on the state that the qudit is most
likely in, based on the previous measurements. Such an adaptive measurement would make
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the number of adiabatic passages necessary approachd � 1, dramatically decreasing the
measurement error.
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CHAPTER4

Four-Rod Paul Trap Optics

Since our lab is relatively new, and I am a part of the �rst round of graduate students,
there was a lot of optics infrastucture to be done. The main scope of my work for my
�rst year in the program was to pick out opto-mechanics for laser paths, pick out active
optical components such as AOMs(Acousto-Optic Modulators) and EOMs(Electro-Optic
Modulators), test lasers and optics, and come up with a plan for how to put it all together
on the optics table for trapping ions in a four-rod paul trap.

This chapter describes my work towards getting the lab set up for trapping ions. In
the �rst section of this chapter, I discuss the overall plan for the lasers and optics. Next,
I present a successful frequency-locking scheme using a wavemeter. Finally, I discuss a
system for distributing and controlling rf for driving the optical modulators.

4.1 Lasers and Optics

4.1.1 Lasers

To trap and manipulate ions, you need many di�erent lasers in the lab. First, we need to
ionize the neutral atoms. Lasers at 553 nm and 405 nm are used for the two-step ionization
procedure described in section 2.4. The 553 nm light is generated by an 1107 nm laser built
by Time Base [47], while the 405 nm laser is a very broad linewidth laser pointer. These
lasers have powers of� 5 mW(after frequency doubling) and� 100 mW respectively.

Other lasers are used to drive the various transitions shown in the energy structure of
barium in Figure 2.1. The 493 nm transition is useful for Doppler cooling, optical pumping,
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and 
uorescence measurement of spin states. We split this laser into two paths: one for
cooling and the other for pumping and 
uorescence. A 650 nm laser is necessary for re-
pumping from the 5D3=2 state, since the probability of decaying to this state from the 6P1=2

state is around 24% [24]. Both of these lasers are from Toptica [48], and provide around
10 - 20 mW and 15 - 25 mW of power, respectively, depending on how well we can couple
them. We found the Toptica �berdock used to couple them to be unreliable at times: every
couple of months, we have to re-align to the �ber, because the output suddenly dropped
to under 1 mW. We use a 1228 nm laser frequency-doubled to 650 nm to de-populate the
5D5=2 level. This laser, like the 1107 nm laser, was obtained from Time Base [47]. After
frequency doubling, this laser has� 1 mW output power.

Finally, we will use a 1762 nm laser built by Toptica [48] and stabilized by Stable Laser
Systems [44] to perform our shelving measurement as described in chapter 3. This laser will
be stablized to a linewidth of� 1 Hz, with a power of around 30 mW. One big advantage
with our necessary lasers is the fact that none of them are in the UV range, therefore
it's possible to do much of the optics manipulation with �ber devices. This is a distinct
advantage to using barium over other ions.

4.1.2 Optics Paths

There are a number of components which need to be placed in the path between the
lasers and the ions in order to gain control of di�erent aspects of the light. To generate
553 nm and 650 nm light, we must use a frequency-doubler immediately after a 1107 nm
and 1228 nm laser respectively. Each laser's output needs to be picked o� for monitoring
its wavelength. Most lasers need to be frequency modulated using an EOM. For lasers
which need fast switching o�/on, we have to place an AOM in the path. We need various
waveplates to control the polarization of each beam. We need to to pick o� part of the
light just before the trap to measure its intensity. Finally, we must focus each beam down
to a single point where the ion is using a lens or concave mirror.

The details of all of the components we need for each laser are illustrated in Figure 4.1.
There are three levels of control necessary for di�erent lasers: the 405 nm ionization needs
very little control, and simply needs to be turned on and guided to the trap. The 553 nm
ionization laser needs some basic frequency control. All other lasers need full control of
frequency, switching, polarization, and amplitude.

Following the optical paths in Figure 4.1, the �rst component is the frequency doubler
for the 1107 nm and 1228 nm lasers. This component doubles the frequencies of these
lasers to 553 nm and 650 nm respectively. Since these lasers are �ber coupled, we use HC
Photonics �ber frequency-doublers. With 80 mW of 1107 nm input power, we get around
5 mW of output 553 nm power: around 5% conversion. For 1228 nm, with 34 mW of input
power, we get around 1 mW of output 650 nm power: around 3% conversion.

We use Thorlabs 99:1 PM �ber splitters [49] to pick o� 1% of most paths, for measuring
the wavelength.
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Figure 4.1: Overall beam paths: each eyeball shape is a �ber coupler or collimator, and
each solid black object is a beam block. Dotted lines are �ber cables and solid lines are
free laser beams.
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Since137Ba+ has hyper�ne structure, each level is split into many di�erentF hyper�ne
levels. In order to drive all F levels, we need to use an EOM to impose sidebands on
the lasers. For the ground state 6S1=2, this hyper�ne splitting is on the order of 8 GHz,
which is relevant for 493 nm and 1762 nm transitions. For the 493 nm laser, we decided
to use an ADVR [50] �ber-coupled EOM, which has an insertion loss of around 6:5 dB.
With 20 dBm of rf power, the power of the �rst sideband is around 36% of the carrier
power. The 1762 nm laser hasn't arrived yet, but we will use an EOSpace [51] EOM with
an expected insertion loss of 3 dB. For the 650 nm and 650 nm transitions, we need to
generate sidebands on the order of 1 GHz; we went with Jenoptik [52] �ber-coupled EOMs
for both of these. The insertion loss is around 6 dB, and with around 15 dBm of rf power,
we can get around 50% power in the �rst sideband.

(a) (b)

Figure 4.2: EOM transition frequencies: transitions driven with (a) 5D3=2 $ 6P1=2 and (b)
5D5=2 $ 6P3=2 lasers. Blue transitions are always driven. Orange transitions are usually
not necessary because the lower state is not likely to be populated.

To gain additional frequency control as well as the ability to switch the beams on/o�
more quickly, we use AOMs in most beam paths. AOMs don't generate sidebands like
EOMs, rather, they o�set the frequency by some �xed amount. Typically, an AOM can
convert around 60� 80% of the input intensity into a di�racted output. The frequency
o�set gives us �ne control of the overall frequency of the light, and the di�raction allows
us to quickly turn the path on/o� by simply turning o� the rf power to the AOM. This
switching speed is limited by either the TTL(Transistor-Transistor Logic) signal or how
the speed of sound in the nonlinear crystal within the AOM device - either of which is
much faster than any physical shutter. Since the 405 nm and 553 nm timing requirements
are much less critical, we use physical shutters [53] to switch these beams on/o�.

We combine the cooling 493 nm, de-populating 650 nm, re-pumping 650 nm, and ion-
ization 553 nm beams into one optical �ber using a wavelength division multiplexor. This
allows us to align all of these beams together, simplifying the alignment procedure. It also
reduces the amount of optics needed for these beams around the trap, giving us extra space
to work with or expand the experiment with more optics.

Finally, we use a beamsplitter to pick o� part of each beam for measuring the intensity
just before the trap. Eventually this measurement will be used to feedback to the lasers
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