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Abstract

Quantum information has typically focused on using 2-level qubits to perform simula-
tion and computation. We propose to expand the number of levels for computation using
qudits, where d > 2. Doing so could be a viable option for making trapped ion systems
scalable for quantum computation. Our group in particular will use Barium ions because
of some energy features and convenient laser wavelengths. This thesis presents much of the
necessary background needed to work with Barium as a qudit for quantum computation.
Energy structure, branching ratios, and saturation intensities are derived and presented.
In addition, a method for selecting different isotopes of Barium for trapping is discussed.
A method for measuring out the state of a Barium qudit is presented, with error rates
estimated to be under 1% for up to 5-level qudits. Finally, various optics projects which
were necessary for building up our first ion trap are outlined.
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CHAPTERL

Introduction

For the past 30 years, we've seen quantum information ourish and become one of the
most active areas of modern physics. Quantum computers and simulators of today are
just starting to get to a point where they can solve some interesting problems. It's re-
cently been shown that an amount of just 50 qubits is enough to exceed the capabilities of
classical computing for emulating physical systems [1], reaching the so-called \Quantum
Supremacy" threshold. We're beginning to see trapped ion systems with control over 50-
100 ions [2, 3]. This amount of qubits can allow us to simulate interesting chemistry, or
to investigate the behavior of solid-state systems better than classical computers. While
they are already immediately useful for some problems, scaling up remains an immensely
important issue to solve. The ultimate quantum information system will incorporate quan-
tum error correction to allow us to do fully fault tolerant quantum computing. These error
correction schemes tend to require much overhead; theoretically, arbitrary errors on a sin-
gle logical qubit can be faithfully corrected using at least 5 extra physical qubits [4]. There
is much emphasis on the \at least", because in practice many more qubits than this are
needed. There are many di erent approaches to take in attempting to scale up to qubit
numbers more reasonable for error correction, such as shuttling ions to di erent positions
in one dimension [5, 6] or two dimensions [7], or by connecting multiple ion traps together
through photon buses [S]. In our group, the solution we explore is to utilize the higher
Hilbert space a orded by ion energy structure; i.e. using qiits with d > 2 levels rather
than qubits with just 2 levels.

As shown in Figure 1.1, the commonly usetl = 3=2 hyper ne qubit has many more
energy levels than the two used to de ne a qubit. Typically, steps are taken to essentially
exclude these other states, so that only the energy levels of the qubit are occupied. We
propose to take advantage of these energy levels, so that we can do more with fewer ions.
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Figure 1.1: Qubit vs qudit encoding: (a) qubit encoding using only two levels and (b)
5-level qudit encoding.

By extending to more levels, we gain several scaling advantages. Lanyon et. al. [9]
showed that the number of gates needed to implement a Tofolli gate reduced by more
than half by using qutrits rather than qubits. Recently it was shown that qutrits can
dramatically improve the circuit depth scaling compared to both qubits and qubits with
an additional ancilla [10]. Furthermore, there are indications that the error threshold
necessary for fault-tolerant quantum computation is higher for qilits than for qubits
[11{13]; i.e. the requirement is more friendly and we can correct all errors more easily.

For exploring qudits, our lab plans to use trapped barium ions. We chose this ion for its
long-lived metastable ®s-, state (useful for the shelving scheme presented in chapter 3),
and because most of the lasers we need are in the visible range (see Figure 2.3), simplifying
some of the optics involved.

This thesis is structured as follows. In chapter 2, | discuss my work on characterizing
our ion of choice -*’Ba* - in preparation for using it to explore qulits. The properties
| explore include energy structure, transitions strengths, saturation intensity, and isotope
selectivity. In chapter 3, | introduce and explore a shelving technique we propose to use for
state readout of qulits. Estimated error rates for this proposed scheme are presented. In
the nal chapter, | discuss some of the various infrastructural optics projects | completed
in order to bring up our lab's rstion trap, a four-rod Paul trap. The optics for each beam
path is laid out, a method for frequency locking the lasers is presented, and a cost-saving
rf sources solution for providing rf to various optics components is outlined.



CHAPTERZ

Barium lons

In this chapter, | describe how to calculate the complicated energy structure 6fBa*, and
how to add a magnetic eld perturbation. | then discuss calculations of the branching ratios
between these energy levels. The energy structure and branching ratios are important for
later chapters, especially chapter 3. Next, | present the derivation for saturation intensity
of dipole transitions. Finally, | introduce our method for loading speci c isotopes of Ba
and how we can proactively choose which one we would like to trap.

2.1 Energy Structure

As our ability to measure atomic spectra has improved and the theory of these spectra
has become more re ned, we have discovered more interactions which shift the spectra
from what was previous expected. One of the rst instances of this was Bohr's important
discovery that the energy levels of hydrogen are given by

E
En= 3 (2.1)
where n is the principal quantum number, andE, = 13:6 eV is the energy of the lowest
level. Bohr's model predicted the energy levels of hydrogen better than any previous
theories. However, this model was only telling a fraction of the story. Solving Schredinger's
equation agrees with Bohr's model in energy, but it tells us that there are actually multiple

degenerate state$ within these levels, each with di erent angular momenta.

The theory was modi ed when the Stern-Gerlach experiment revealed a discrepancy in
energy level splittings under an applied magnetic eld. A new quantum number, spin, was
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Figure 2.1: Hydrogen energy structure: smaller interactions are considered as we move
to the right. Bohr's model predicted only the di erent principal energy levelsn. Solving
Schredinger's equation results in many degenerate angular momentum levels within each
principal level. When the interaction between the electron spin and the angular momentum
is considered, we see ne structure, where eatchs 0 level splits into two levels; we also see

a Lamb Shift indicated by the arrows. Finally, we include the interaction of the nuclear
spin to get hyper ne structure splitting.

introduced, which gave gave rise to the ne structure of atoms. This ne structure comes
from the electron spins = 1=2 interacting with the electron's angular momentuml. For

| 6 0, each level is split into two ne levelsJ and J° Eventually, Schredinger's equation
was Xxed to include this spin and interaction, along with relativity, in the Dirac equation.
Fine structure is on the order of 10* 10 leV.

It was soon discovered that nuclei too have an intrinsic angular momentum, called
nuclear spin. The interaction of nuclear spin with the composite angular momentuih
leads to an additional hyper ne splitting of eachJ level into F levels. For hyper ne
structure, this splitting can have a higher multiplicity, since the nuclear spin can be any
integer or half-integer. Hyper ne structure is on the order of 10° 10 “eV. Figure 2.1
illustrates this progression of insight in the hydrogen atom, from Bohr's energy levels to
hyper ne structure.



The inclusion of electromagnetic elds brings even more richness to the energy structure
of atoms. An external magnetic eld splits each~ level into multitudes of magnetic sub-
levels. Applying external electric elds leads to the a shifting of energy levels called the
Stark e ect. Internal elds complicate the situation immensely, with electron screening and
isotope shifts shifting the energy levels by large amounts in some cases. For example, the
4S energy level has a lower energy than thelBlevel in multi-electron atoms, completely
contradicting the Bohr model.

Needless to say, theoretically calculating the energy levels of electron orbitals is a tricky
business. For anything higher than the helium atom, we have to resort to using various
approximations and simpli cations. One of the most common methods of simpli cation
is to use perturbation theory; this method allows one to calculate the energies without
additional interactions, then introduce further e ects afterwards as a perturbation. Using
perturbation theory, we are able to look at ne structure and hyper ne structure as small
perturbations on the Schmedinger's equation solution and thus calculate their approximate
e ects.

For ne structure, we must reconsider the motion of the electrons. Relativity says that
their kinetic energy is given by

KE = p2c2+mzc42—mcz+—p2 P + o (2.2)

0 0 2my  8mdcz T '
where p is momentum, c is the speed of light, andm, is the electron rest mass. The rst
two terms of the series are the mass energy and non-relativistic kinetic energies, which are
included in the Schmedinger formulation; the other terms are relativistic terms, which we
can treat as perturbations. Using perturbation theory on the rst relativistic term, we end
up with an energy shift of

272 3 n
E, = En - ; 2.3
' n2 " 4 |+1=2 23)
where = ;= is the ne structure constant, , is the permeability of free space;- is

Planck's constant,Z is the proton number, andE, is given by the Bohr energy(Equation
2.1).

The next ne structure e ect to consider is the motion of the negatively charged elec-
tron around a positively charged nucleus. The electron e ectively sees a moving positive
charge which imposes an e ective magnetic el@8¢; in the same direction as the angular
momentum C(see Figure 2.2). This e ect is called Thomas precession, and the net result
is an energy change of
272 nd@+1) I(1+1) s(s+1)

En

Es= o (I +1=2)(1 + 1)

(160); (2.4)
whereJ, |, s are the projections ofJ= C + S, [C, and S onto the z axis(S is the electron
spin vector). Note that this term only applies forl 6 0, since the electron needs an angular
momentum to couple to the e ective magnetic eld created by the nucleus.
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Figure 2.2: Thomas precession: the electron sees a positive charge spinning around it,
which induces a magnetic eld in the same direction as the electron angular momentum.

In the Dirac equation, there is an extra term which we haven't yet considered called
the Darwin Term. This term is nonzero only for electrons with a nonzero wavefunction at
the origin: | = 0. This term gives an energy shift of

_ 2nE2 o
= (1=0): (2.5)

Eo

If we add all of these shifts together, we end up with a surprisingly simple energy shift of

272 3 n
E = E, = : 2.6
n2 " 4 J+1=2 (2.6)

Note that this equation works for any angular momentuni.

A nal e ect typically classi ed as ne structure is the Lamb Shift. The Lamb Shift
comes from quantum electrodynamics; it essentially results from the electron interacting
with the vacuum of free space. Electron wavefunctions at the origin are e ectively smeared
out, shifting the energies up. This has the following e ect on energy [14]:

8 Z* *m 1
Els= ———— In— | =0): 2.7
s = § e n Z ( ) (2.7)
Again, since the Lamb Shift needs a nonzero wavefunction at the origin, this e ect is only
relevant for | = O orbitals.

Next, we discuss hyper ne structure [15]. There is only one e ect considered for hyper-
ne structure: the electromagnetic interaction between a nonzero nuclear spmand the
electron angular momentumJ. We use multipole expansion to get many di erent inter-
action terms. By symmetry, we only have magnetic dipole, electric quadrupole, magnetic
octupole :: For | = 0 electrons, the quadrupole contribution is negligible compared to the
dipole contribution. However, forl 6 O electrons, these are comparable. The octupole and



higher order terms are very small for all electrons, and are rarely considered. The magnetic
dipole term results in an energy splitting of

Emir= A(F(F+1) 1(1+1) J@+1)= AK (160) (2.8
Emd2=%(F(F+1) (I +1) J(J+1))=% (1=0); (2.9

whereA = 2'3°—|‘39hri3| is the dipole hyper ne constant, | is the nuclear spin magnetic
moment, o is the permeability of free space, g is the Bohr magneton,gs is the electron
spin g-factor, F is the projection of F = '+ J onto the z axis, r is the position of the

electron, andK =(F(F +1) I(I +1) J@J +1)).

For the electric quadrupole interaction, we get an energy splitting of

Eug= €0 Zr\g SK(K+1) 1(1+D)j( 1)_BIK(K+1) 20+1)IJ+1)

2021 1)J(23 1) 4 2021 1)J(23 1) ’

(2.10)
where Q is the nuclear electric quadrupole and/ is the electric potential experienced by
the electron from the nucleus.

Finally, we must consider what happens when we apply an external magnetic eBl
to our atom, inducing something called Zeeman splitting. This applied eld splits our
hyper ne levels into magnetic sub-levels of shifted energies given by

(FF+1)+ JWQJ+1) 1(I +1))
2F (F +1)

E:= o BMrBe = OF 8MEBe; (2.11)

whereg; = g + J“*”gfgj:% '*1) js the ne g-factor (g =1 is the angular momentum
g-factor), mg is the magnetic hyper ne quantum number,B, is the magnitude of the
magnetic eld, and ge = g, EFED* 10+ 1U*) g the hyper ne g-factor. Overall, our

2F (F +1)
hyper ne energy splitting is given by

AK | E%K(K +1) 211 +1)JJ +1)

2 "7 2@ @ 1 ¥ eBme (212

Enr =

In practice, rather than going through this lengthy calculation, it's much easier and
more accurate to simply measure the energies using spectroscopy techniques. Spectroscopy
was precise enough to measure hyper ne structure as early as the 1920's, and there is an
abundance of data on the energy levels of atoms and molecules. Experimentalists use
spectroscopy measurements as a starting point, then use perturbation theory to nd the
e ects of applied electromagnetic elds. The motivation for discussing how to calculate
the exact solutions was to understand where these overall splittings and shifts come from.

In the literature, ne levels nl; are cited as wavenumbers in the literature, while hy-
per ne structure is described by measured hyper ne constant8 and B for each ne level



Figure 2.3: 1¥’Ba* energy structure: [16] the 6,-, $ 6P;-, optical transition is used for
optical pumping, Doppler cooling, and uorescence measurement. The&S6, $ 5Ds-,
transition is used to shelve qdit states. The 8D;-, $ 6P-, transition is used to re-pump
dark states back into the cooling/ uorescence cycle. Thel®»-, $ 6P3-, transition is used
to empty the 5Ds-, state. Because of its nuclear spin=2, each level is split into hyper ne
levels: the frequencies of these levels are shown [17{19].



Level F o A [18{20] B [18,19] Lifetime Branching Ratios
[21{23] [24{26]
6S;-, 1 -0.5 4018.871 0
2 05
6P, 1 -0:166  743.7 0 79s 6S:=, 0.756
2 0:166 5D 3= 0.244
6P;, O 0 127.2 59 6 4ns 6S-, 0.756
1 06_6 5D3:2 0.029
2 0:66 5D5:2 0.215
3 066
5D;, O 0 189.7296 44.5408 82s 6S:=, 1
1 04
2 04
3 04
5Ds, 1 2.1 -12.028  59.533 35 6S;-, 0.846
2 1:099 5D 3=, 0.154
3 0.85
4 0.75

Table 2.1: Characteristics of'*’Ba*: gr is the hyper ne g-factor, A is the hyper ne
constant, B is the quadrupole hyper ne constant.

nl;. Figure 2.3 shows the energy structure of one of the ions our lab is most interested in:
137Ba*. Other various characteristics of*’Ba* are given in Table 2.1.

To trap ions and utilize the magnetic sublevels, we apply an external magnetic eld
Be. Equation 2.12 is exact when there are no external elds, however when we apply a
magnetic eld, it couples to both the angular momentum and the nuclear spin F ceases
to be a good quantum number for the system. For an exact solution, we must go back to
using just I"and J. The overall hyper ne Hamiltonian with an applied magnetic eld is

3r N*+3r Jy 1(01+1)J@ +1)

H=AF J+B
2121 132 1)

- TB(gJ m;Be+ gmBe): (2.13)

Expanding the dot products in terms of ladder operator& gives us the following
matrix elements of the Hamiltonian

B

20120 1)J@I 1)
S R P I
4 4

Wi = Amim; + —(gqym;Be + gim; Be) +
(2.14)

3
émmh+3m%ﬁ+ L1 +1)JJ+1)
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Table 2.2: Block form atomic hamiltonian: an example of a Hamiltonian put into block
diagonal form by rearranging the stategm,; m;i. ElementsA(A) and B (B) are given by
Equations 2.15 and 2.16 in the text, respectivel\p) is given by Equation 2.14 in the text.

meJ 1;m, 1JH| =

B 3 . .
-+3(m  1)(m; 1)+mmy; my LIm 1l J i

A+
2121 DERI 1) 2
(2.15)

. 3B _ . .

where
H1JJi=[1{+1) m@m DIPII+1) my(m; 1)

m, Lm 4 Ji=' B@FD my(m DIEG+D mm D]
My Zm 21133 0= 00FD mm DII0+D D 2

BE@+1) my(my DIPE+1) (my I)(my 2]
(2.17)

To calculate the energy levels, we just have to build this Hamiltonian for our energy
level nl; and magnetic eld B, then diagonalize it. Diagonalization of this matrix can be
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computationally di cult unless we arrange the energy levels cleverly. If we arrange the
energy levelgm;; m;i so that mg¢ = m; + m; levels are grouped, as follows:

jmJ;min ; mI;max | ;jmJ;min + 1; mI;max 1i e :jmJ;max ; mI;min | ;
jmJ;min + 1; ml;max i ;jm.];min + 2; ml;max Li:: :jmJ;max ; mI;min +1i ;

jmJ;max ; ml;max | ;
jmJ;min ; ml;max 1i ;jmJ;min + 1; ml;max 2 :jm.];max 1; mI;min i ;
jmJ;min ; mI;max 2i ;jmJ;min + 1; ml;max 3i:: :jmJ;max 2; mI;min [ ;

(2.18)

jmJ;min s Mi:min I

then the result is a block diagonal matrix as shown in Table 2.2. With this matrix, we can
diagonalize each block individually to get all of the energy levels.

11



Figure 2.4: ¥'Ba* 6S,-, state hyper ne splitting with magnetic eld: applying a magnetic
eld lifts the degeneracy, allowingmg levels to be resolved. Obtained by solving Equation
2.13 for each magnetic eldBe.
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Figure 2.5: 1¥’Ba* 5Ds-, state hyper ne splitting with magnetic eld: the F = 3; 4 levels
are very close to one another, so we choose to use drly 1; 2.
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2.2 Transition Branching Ratios/Strengths

The next useful data we need are the branching ratios/transition strengths of the various
dipole and quadrupole transitions we plan to use it*’Ba*. To build up to this, we must
rst discuss Clebsch Gordan coe cients.

Say we have two angular momenta; and J,. We add them to get the new basis
J = J1+ J,. Our new basis igJ;; J,; J; mi, which we can simplify tojJ,; J,; J; mi = jJ; mi
if we specifyJ; and J,. The eigenvalues in our new basis can easily be shown to be

T3 mi = Jy(3; + 1) ~3jJ: mi
2. 21
Jo jJd;mi = Jy(J, + 1) ~4J; mi (2.19)
J2J;mi = J(J +1)~4J; mi
JZjJ;mi = m~jJ; mi:

We can multiply this state by the identity to get a transformation between the two bases:

X
jlmi = j9% my; 32 myihd 2 my; 39 myjd; mi
Jf;jlé’;ml;mz (2 20)
j31; My Ja;mai = §3%:.3%: 3;mihd% 3% J; mjdy; my; Jo; mai; '

39,39;3,m

where the underlined brakets are called Clebsch Gordan Coe cients. These coe cients
essentially tell us how much each sub-state makes up the overall composite state.

If we apply the operatorsIlz, J'22 and J;, it can be easily shown thatJ°= J; and
m = m; + m,, leaving us with

X
jJJ;mi = JJ1; my; Jo; maindy; my; Jo; mojd; mi
J1;J2;m1;m2
X
jJdyma;dosmoi = j3;mihd;mjda;my; Jo; moi: (2.21)
Jm

Using the constraintm = m; + my, and setting the total number of states we have in each
basis equal, we nd the following limit for composite statesd:

le Jz] J Ji+ Jo: (222)
Multiplying the kets in Equation 2.21 by the brahl® mY, we get the orthogonality relations
X
hJg; m; J2; m3jJ; mihd; mjdy; my; Jo; Mai = myimd mimeo
x (2.23)
hJ; mjds; my; Ja; Maihd s my; Jos majdsmd = 550 e
mi;ma
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There is only one state for which] is the highest possible valud, + J,, so the Clebsch
Gordan coe cient is unity. From there, we use the ladder operatod™ = J7 + J; to nd
the others, making use of the relation

J jJ;mi = P JA+1) m(m 21)jIm 1i: (2.24)

Example : 1 =2, s=1
The maximal angular momentum stateis) = | + s=2+1=3with m=m+ mg=2+1=3.
Next, we apply theJ™ operator to thejJ; mi state, thel™ + S operator to thejl; m;;s; mqi
state, and set these expressions equal to each other.

Ji33i= P 33+1) 3(3 1)j32 = péjs; 2i

 +Sj22; 51 = P 22+1) 22 121,11+ P 11+1) 11 1)j22;L0i
=2j2 1,11 + p§j2;2;],'0i:
Equating these, we can solve for the Clebsch Gordan coe cients (underlined)
r_
. 2 . . 2, .
13;21 = 9—612;1;111I + (—312;2;];0|:

To get the coe cients for di erent J values, we use orthogonality(Equation 2.23):
h3;2j2;2i =0
r _ !
o 2 . 2 : : - :
h3; 22,2 = p—(_ahZ;l;J;lj t g®2L0 @211+ 52210)

2 1
= p—a+ p=b=0;
P52" P3

along with the completeness relatiora? + b? = 1, where a and b are the Clebsch Gordan
coe cients. We nd that a= #- and b= &, so that

j2;21 = pl—éjZ;l;];li + pz—f_SjZ;Z;LOi:

From here we continue to apply ladder operators and orthogonality with the completeness
relation to nd the remaining Clebsch Gordan coe ents.

Here are several useful symmetry relations for the Clebsch Gordan coe cients:

hJy; my; Jo;majda;mai = (- 1)°1792 7°hd,;my; Iy myjds; mai (2.25)
r
. . 2J5+1 . .
hJy;my;Ja;mojdg mai = (1 1) ™ S Thlgima; i majda; moi (2.26)
23, +1
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r

. . 2J3+1
hJg; ma; Jo; Majda; mai = (1 1)72° ™2
1, M1y J2; Mojds;mai = (1) 23, +1

hlp:mydo mojds;mai = (171792 sh: my;dor mojds; mai: (2.28)

hz;  my;Jdz; msjdq; myi (2.27)

Finally, it's useful to de ne the Wigner 3j symbol:

Ji1 J2 I3 ( Iylatdz s

= ————hJ;;mq;Jo; myjds; Mal 2.29
My M, Ms —92\]3—4_1 1M1 d2;My)ds 3 ( )
and the Wigner 6] symbol:
1Jl+Jz+Jg+J ) ]
Bode o (D) h01; 55 J; Mjdi1z; Ja; Iy mi: (2.30)

J3 3 Jaz T (2I,+D)@2JIx+1)

Next, we de ne a spherical tensor operator as a set ok 2 1 operators which transform
among themselves under rotation just like angular momentum statgd; mi do (J = k).
Rotation on an angular momentum state looks like

X X .
R( )jJ;mi = jJ:mihJ; mR( )jI; mi = jmidd () (2.31)
mo= J mo=J
d2)., ()= h;mYR( )jJ; mi: (2.32)
So for a spherical tensor operator, this rotation looks like
X k
ROTERY()= TIdE.(): (2.33)

"
Now, we apply a tensor operator to an angular momentum state
TMj 43%m4;

where °contains all non-angular momentum quantum numbers (radial). If we rotate by
R( ) and multiply by the identity, we see that they rotate separately,

RO)TX) %3%md = R()TWRY(HR()j 2I%ml:

The ket rotates asjJ%m4 and the operator rotates asjk;qgi. So overall, it rotates as
jk; ;3% m3. Without the tensor operator, this would look like

X
jkigdqmi = jk%dihk® o3I mik;qi:
k%qo
Similarly, with the tensor operator,
X
T®j %3%md = j<k S ofink® g8 mek;qi:

kO;qO
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Finally, multiplying by a bra on the left and only keeping the non-zero terms, we have
h;Jim jT¢9) 53%mf = " higim ok kS ot me ki g
koqP
=( D%*n;3 TR %3%I; mja% mGk;qi; (2.34)
where we introduced the Reduced Matrix Element, am-independent scalar:
h;d jjiT®jj 3% =( 1)*h;I;m j<I;mi: (2.35)

This statement is called the Wigner-Eckart Theorem. We can also use the orthogonality
relation(Equation 2.23) to get the inverse of the Wigner-Eckart Theorem for a di erent
expression for the Reduced Matrix Element:

X
h;d GiT®j %33 = D*  h;am TR) 83%mIhd; mjI% mek;i: (2.36)
m%q
In the case where a tensor operator only acts on a subspace of the angular momentum,
sayJ;, we can decompose the Reduced Matrix Element. We start with the Inverse Wigner

Eckart Theorem we just derived, multiplying by the identity twice with basesJ;, m;, J,,
m, and J9, m¢, J2, m9:
X
hiT®i39 = D ;miTjI% mihd; mjas mok; o
m%q
X
=( 1) h];ijl;ml;Jz;mzthl;ml;Jz;mijék)ij; m?; JSmJi
m%g;m1;mz;m%;mJ
h 3% m?; 32 mJjJ% mihd; mja%mlk;qi:
The operator only acts on theJ;; m; subspace, so we can pull the braketl,; m,jJ2; mdi
out of the operator term. Now the only nonzero terms occur whed, = J2 and m, = m3:

X
jT®EI% =( DX hI;mjdg;my; Iz maihd® md; 32 mSja% mihd; mja® mek; gi
m&%aimi;mz;m9m3

h 35 myTjIZ Mo 5,09 mymg

X

=( D*  h;mjdy;ma;Js; meihdd mY; Jo;myjd® mdhd; mjd® me k; gi
mSg;m1;ma;m$
h Jg;myj T3 mii:
(2.37)
Next, we use the Wigner-Eckart Theorem:

X

jT®I% =( D hI;mjdy;my; Ja; maeihd® md; 3o myjd @ mihd; mja® mek; gi

mSg;m1;ma;m$
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( 1)NIqjj T*jjIaihds; mejdd md; k;
X
= hly;my;Jz; myjd;mind2 m?; Jz; myjd% mihd; mjd% me k; gi
mOg;my;mz;m9
h 315 majd 0 md; k; gihd i TXjjJai;

where we conjugated the rst Clebsch Gordan coe cient, canceled the (1)*s and rear-
ranged the equation. Now, we apply the symmetry relation 2.25 to the two Clebsch Gordan
coe cients in line 2, giving us

X
hT®jja% = hig;my; Jz; majd; mihd % md; 3, myjd % md
mO%g;m1;mz;m9
(1" I 2K I gp 3% mYd; mihk; o 3% mjdy; maihd i Tjjdqi:
The explicit form for the Wigner 6] symbol, which we did not explore here, is [27]

Ji1 Jo Jio ( Lyhrdarderd X

J3  J Jos T @I+ )23+ 1)

hJ12; M12; J3; M3jd; Mi

m1;M2;Mm3;M12;M>3

h J1; mq; J2; M2jdiz; Miaihde; My; Jaz; Masjd; Mihdz; My; Js; Majdag; Maosi: (2.38)

Our current four Clebsch Gordan coe cients have this form, withd; ! k; J, ! 3% J3! J3; 3! J; Jin
So we can write this as a 6] symbol as follows:
X
h1; my; Jo; myjd; mihd 9 mY; 3o m,jd @ mihk; g; 3% mYJ; mihk; o; 39 m9jJ.; myi

mS%g;m1;mz;m$

k 39 J;

p
=( D@L DRI+T) T

Now we can nalize our decomposed equation:

m”T(k)”Jq :( 1)J°+k .]( 1)Jf+k J1( 1) k 39 32 J

k 39 J
J

p ks
A+ 1)@3%+1) 3 3 Jo WiTEdi

k J9 J;
Jp J 30
k J9 J;
J J 30

S 1w = 2P GBI eI D SRAGRR

= ( 1)3"*"”1”2'0 (231 + 1)(2J0+ 1) hJ4jj Tjjdai; (2.39)

where in the last step, we used the fact thal; + J, + J is an integer, so that ( 1)201+J2+J9) = 1,
Then we multiplied by the identity to arrive at the form shown in Equation 2.39.
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2.2.1 Dipole Transitions

We'll start out by looking at dipole ne structure and hyper ne structure matrix elements.
The dipole is a vector operator of rank 1, sk = 1. For ne structure (J = L + S), we rst
apply the Wigner-Eckart Theorem to the dipole operator:

hJ;m;jdgid% mdi = hjjdjjaqhI; m;ja%md; k = 1;qi: (2.40)

Next, we use the symmetry relation from Equation 2.27:
r

. . 2J3+1
h1; my; Jo; myjda;mai = (- 1)727 M2
1,M1;J2;Mojdz;msi = (1) 23, +1

RJ,; my; Js; mgjdy; myi;

with the correspondences, ! k=1;J,! J;J3! JC resulting in
r

hJ; myjdgjd® mSi = RIjjdjjad( 1)trarts? ° goillm“,mgp;mj;k:l; v
r
- . 2 +1 i )
= NjjdjjIa( 1)’ ™ Z]O—+1hjo;ngJ;mJ;k:1; i

Also, remember that in addition of angular momenta, we haven = m; + m,. In this case,
my; = md+ q

h; m;jdgid% mdi = Njjdjjadhd; m;jI%mS;k = 1;qi
r 2 +1
2J0+1
Now, let's express the dipole matrix element in terms of the Wigner 3j symbol. In terms of

= hjjdjjad( 1)° %me ms H%mdjdimyk=1; q: (2.41)

Equation 2.29, we have the following correspondences with Equation 2.4Q:! J% J,! k=1; J3!

So we can rewrite this as

hJ; m;jdgid% mdi = hjjdjjadhd; m;jI%mS;k = 1;q

= WjjdjjIq( 1) 2 +1 m g m, (2.42)

Since the dipole operator doesn't e ect spin, we can decompose this Reduced Matrix
via Equation 2.39:

| 191
JoJ

Hjidijaq = ( 1)~’°+'+S+1p 230+ 1)(21 + 1) Hjjdijl9 (2.43)

where we swapped the columns of the 6-j symbol from the symmetry relations for 6-
symbols [27].

Similarly, for hyper ne structure we have

I . N P—— F° 1 F
hF mejdgiF S mli = hEjidjFS( 1)* ™ F7 2F +1 me g me (2.44)
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J J°1

FO F |

We're interested in looking at a singlel ! J°transition at a time, so that W jjdjjJ4 is the

same for all of them. So overall we need to look at the coe cient

J J%1 FO 1 F

FO F | me g me
(2.46)

Now, for eachd ! J%F ! FCtransition, we have the following part of the coe cient as

a constant:

hEjidjjF% = ( 1)F°+J+'+1IO (2F0+1)(2J + 1) hjjdjjJY: (2.45)

( 1T ™M FY 1)F°+J+'+1IO (23 + 1)(2F%+ 1)(2F +1)

J J°1
FOF |

Sero(J;J9 = g (2FO+ 1)(2F + 1)(2J + 1) (2.47)

Our coe cient turns into
FO 1 F

. J+1 mg
SFFO(‘]!J()( 1) mg q Mg

(2.48)
The square of this value is the relative probability of that particular transition happen-
ing. So foreachd ! J° F ! FCtransition, we calculate the overall strengthSggo(J; J9.
We then look at the strength of the dierent mg ! m@ transitions given di erent light
polarizations g. The most important transition for us is the cooling/pumping transition
Si-» ! Pi-. The branching ratios for this transition are given in Tables 2.3 through 2.5.
For 13Ba" and '3°Ba’/1¥’Ba", all of the branching ratios are given in Tables A.1 through
A.l12.

Dipole Selection Rules

There are several situations where the Clebsch Gordan coe cients are zero, making
these particular transitions impossible. These situations de ne the Selection Rules: con-
straints which give us the possible dipole transitions.

For ne structure dipole transitions, we are adding angular momentgJ; m;i and
jk =1;0qi. From Equation 2.22, we get the selection ruld®= J or J°=J 1.

Recalling that m = m; + m, for addition of angular momenta, we infer the selection
rule: my=my; ormd = m;.

Next, the Clebsch Gordan coe cient hJ; 0jJ; 0; 1;gi =0, leading to another selection
rule: if m§ = my =0, then J°6 J.

An obvious selection rule is’= s, and m2 = mg, since dipole interactions don't change
spin.

The nal selection rule applies only wherns = 1=2. Then we have from Equation 2.22
jc 1= J I+1=2

And similar for J%1° since spin obviously doesn't change from dipole radiation. Now
suppose thatl®=1 1 andJ®=J 1. Then for the J° condition we get

jc 1=2 1j J 1 1+1=2 1
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jc 1= 1 1 J |+1=2 2
For the positive and negative versions respectively, we get
+3=2 J [+5=2
jc 3= 1 J | 3=

Both of these contradict the rst J;: J°conditions, so we have the selection rule: #=1=2
then (If 1°= 1 1thenJ’6 J 1).

So overall we have the following ne structure selection rules

J°=Jord’=J 1 (2.49)

m =m; orm = my (2.50)

If m=m; =0; thenJ®6 J (2.51)

= sand m? = mg (2.52)

If1I°=1 1;thenJ’6J 1 (s=1=2): (2.53)

For hyper ne structure, we have similar selection rules to Equations 2.49, 2.50, 2.51.
Again the nuclear spinl doesn't change, so we have an additional selection rule similar to
2.52 but regardingl and m,. Depending on the amount of electrons contributing to the
angular momentum, we may or may not have a selection rule similar to Equation 2.53 for
hyper ne structure.

6S1-2 $ 6P1-5, q=+1 65, $ 6P15,q= 1
F=1$ F°=1 F=1$%$ F=1
Mg 0 1 Mg -1 0
MEeo -1 0 MEgo 0 1
0.2887 0.2887 -0.2887 -0.2887
F=z1$ FO0=2 F=1$ F9=2
-1 0 1 -1 0 1
-2 -1 0 0 1 2
-0.7071 -0.5000 -0.2887 -0.2887 -0.5000 -0.7071
F=z2$ FO=1 F=2%$ F9=1
0 1 2 -2 -1 0
-1 0 1 -1 0 1
0.2887 0.5000 0.7071 0.7071 0.5000 0.2887
F=z2¢$ FO0=2 F=2%$ F9=2
-1 0 1 -2 -1 0 1
-2 -1 0 -1 0 1 2

-0.4082 -0.5000 -0.5000 -0.4082

0.4082 0.5000 0.5000 0.4082

Table 2.3: 13°Ba*/1¥’Ba* dipole branchingTable 2.4: *°Ba*/¥’Ba*" dipole branching

ratios: 6S:- $ 6P;-,, g= +1

ratios: 65, $ 6P, q= 1



681:2 $ 6P1:2, q= 0

F=1%$ F°=1
Mg -1 0 1
MEgo -1 0 1
0.2887 0 -0.2887
F=1$ F°=2
-1 0 1
-1 0 1
0.5000 0.5774 0.5000
F=2$ FO0=1
-1 0 1
-1 0 1
0.5000 0.5774 0.5000
F=2$ F0=2
-2 -1 0 1 2
-2 -1 0 1 2
-0.5774 -0.2887 0 0.2887 0.5774

Table 2.5: 1%°Ba*/ **’Ba* dipole branching ratios: &, $ 6P, q=0

2.2.2 Quadrupole Transitions

Transitions betweenS and D states can only be driven by quadrupole interaction. To
get their transition probabilities, we must look at the lF; mejA A jF% mi matrix element
[28, 29] multiplied by the ith polarization component ; and the jth index of refraction
componentn;. Let's start out by writing it in terms of Racah Tensor operatorsq(jq):

X2
HEmejnRjFSmei iy = HEmejr’C@jFAmeic? in;: (2.54)
g= 2

Next, we use the Wigner Eckart Theorem 2.34, and the Wigner 3-j symbol notation to
write

F 2 F° (@

hE; mejARjFS m2i in; = hFEjjr2C3jFy me g m G

o= 2

inj: (255)

Finally, we decompose the reduced matrix element

2 J° 7

p
FreCijFa = ( HF"> T @1+ )@Fo+1) [ & 2

o hijjir’c?ji4: (2.56)
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(@) (b)

Figure 2.6: Quadrupole transition laser orientation: describing the magnetic eld, wave
vector, and polarization with  and (a) magnetic eld B, wavevectork, polarization

~ plane of incidence, and the negative projection of the magnetic eld onto the plane of
incidencePg. (b) projection of the polarization onto Pg, labeledP | 5, .

The selection rules for Quadrupole transitions are quite a lot more work to derive, but
they are analogous to the dipole selection rules:

F°=ForF°=F 1lorF°=F 2
m2 = mg ormé = lormg =meg 2 (2.57)

We can describe the wave vectok(= In=c) and the polarization with just two angles

and . We rst de ne the coordinate system by the magnetic eld so thatB = Bg2.
Next, we can choose the wave vector to be con ned to the z plane, and de ne as the
angle between the magnetic eld and the wave vector. From Figure 2.6a, we see that the
wave vector isk = k(sin R +cos 2). In order to dene we rst project the magnetic
eld onto the plane of incidence shown in Figure 2.6(a). We de ne as the angle between
the negative vector of this projection (Shown a®g) and the polarization~ From Figure
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2.6(b), we see that-=cos cos R +sin $+cos sin 2. Overall, we have

0O 1 0 1
sin COS CO0S
R=@ 0 A ~=@ sin A: (2.58)
cos cos sin
Now, we can look at the directionally dependent part of the matrix elemengg? c,-‘j1 inj = Iicu i
We rst write out all possibilities for + k;:
iky =0
«k, = kcos cos cos = kcos cog
.k = kcos sin sin = kcos sir?
yKx = ksin sin
yKz = kcos sin
<Ky = kcos sin cos = kcos sin?2
,k; = kcos cos sin = kcos sin2:
The Racah Tensors can be written as the following:
0 1 0 1 0 1
1 0 O 0O 0 1 1 1 i 0
<°>__@o 1 0A,d 1)—19_@0 0 iA,d?=p=@ i 1 0A: (259
0 0 2 1i 0 6 0 0 o0
So for the rank zero geometrical operator elements, we have
1 .
© = — C0s sin2
2 .
) = — C0s sin2:
And nally for the overall operator, we have
g9 = jg9 + g9j jcos sin2 j: (2.60)

For the rank one geometrical operator elements, we have
(D= gl
gV = pcos cog
(D= p— cos sir?
(1= i :
o, p%sm Ccos;
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Figure 2.7: Quadrupole geometrical constants: yellow areas have a high probability of
driving the transition and blue areas have a low probability. Two orientations are notable:
=45, =0 and =90, =90.

Figure 2.8: Quadrupole useful orientations: (a) =90, =90 :onlym! m 2 transi-
tions coupled (b) =45, =0 :m! m strongly coupledm! m 2 weakly coupled.
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and for the overall operator, we get
gt V=g P+ gl P+ o, Y= p—éjl sin cos cos (cosd  sin? )j
1. . .
= p—éj COs cos2 +isin cos j: (2.61)

Similarly, for the rank two geometrical operator elements, we have

o 2= —p—cos sin2
ol 2 = p—sm sin :
And for the overall operator, we get
. . 11 . . .
o 2 =jg, P+ g, Y= 19—6 5 cos sin2 isin sin (2.62)

In summary, all of the geometrical operators are

1 . .

g = Sicos sin2 j
( 1) — 1 - - - -
g 7= p—(_sj COS Cc0S2 + isin cos j

o 2 =jg, P+, 2= 15)1—6 %cos sin2 isin sin (2.63)
As can be seen from Figure 2.7, there are two particularly useful orientations. If= 90
and =90, then onlythem! m 2 transitions are coupled. We call this orientation
orthogonal. If =45 and =0 ,them! m transitions are strongly coupled while the
m! m 2 transitions are weakly coupled andn! m 1 are completely suppressed.
We call this orientation XZ. The polarizations and wave vectors for these orientations are
shown in Figure 2.8.

Overall, when looking atJ $ J°transitions, the coe cient we care about is

P gpoyg 2 9° X F 2 FO

0 N
2F0+1 | F FO© - 2 Mg q mg )

( 1 inj . (264)

So for the branching ratios, we look at Equation 2.64 and the geometrical constants
in Equation 2.63. For averaged values, you just assume that the geometrical constant is
equal to 1. For!*Ba" and Ba **Ba‘/ ¥’Ba’, these branching ratios are displayed in
Tables A.13 through A.24 for the case of averaged and the two interesting orientations we
mentioned earlier. In particular, for the shelving transition useful in chapter 3, the XZ
orientation branching ratios are displayed here in Table 2.6.
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2.3 Saturation Intensity

As we drive a two-level system with more power, the average population in the excited
state increases. However, the population asymptotes at 0.5, giving diminishing gains as we
increase the power. Furthermore, the linewidth of the transition increases with the power
after a point called the saturation point [27, 30].

For a two-level system, the Hamiltonian can be written as

0 gt =2
A== g 1, (2.65)
where is the Rabi frequency of the transition, ! is the frequency of the laser, and g
is the frequency of the transition between the two levels. Solving Schmdinger's equation,
and going into a rotating framecs = c.€" , wherec are populations of the levels, we end
up with the following di erential equations:

@ i

p— = _%

%t | 2 i (2.66)
et 'T® 2%

The population dynamics of driving a two-level system depends on how the spontaneous
emission from the excited state balances the stimulated absorption driven by the laser.
Spontaneous emission is much easier to model if we switch to the density matrix formulation
for the populations:

g~ Gl = g9

e = €l = Gl = ce

e = Cg€e = GgGe€ ' =
_ _ it _ it .

g = €eCy = CeCy€" = g€ !

o i (2.67)
ge

The ; terms are called the populations, and the;; terms are called the coherences.

Now, we can take the derivatives and substitute Equation 2.66 to get the following
di erential equations:

@ [

@t = > (~eg 5o

@ =l )

—.ee— 5 \Teg ~ge

%t _2 i (2.68)
@te9 Tt > (ee 70)

@ . [

@{‘ge: I ~ ge I?('“ee "‘gg):
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We can a priori introduce spontaneous emission as follows:
[

@
@t 99 = 7 ("’eg ~96) + ee
@

@tee = ) (~eg ~ge) ee

. (2.69)
@{'eg:(i ?)"’eg+ I?("’ee "'gg)
@@Fge =( i 2) ~ge I? (~ee "'gg) :

These are called the Optical Bloch Equations, and the decay rates and, are called the
longitudinal and transverse decay rates respectively. In general, the transverse decay rate
can be writtenas , = =2+ ., where . is a generic term for any form of decay besides
spontaneous emission. For our discussion, we assume that 0.

A useful quantity to de ne is the population di erence w between the levels, so that

@ @ @ -
@\tN: @tee @tgg =ii= ey eg + Wi (2.70)

Finally, we assume that we have a steady state, so that all derivatives are equal to zero.
After some substitution, we can solve for our population di erence at steady state:

w = 1.
C1+s’
where
2 So
s= — = (2.71)
2214+ 14 2.2
is the saturation parameter. The total scattering rate is given by
1 So =2
p= ee= S(ltwW)= - (2.72)
1+ — + Sy

?

If we assume that our laser has a high intensity, we can approximate the denominator as
!

2 2
1+ — +s (l+s) 1+ —
? ?
giving us the result of 0 1
S =2
= 0 B X (2.73)
1+s 1+ —

?
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where 9 = ?p1+—so is the power broadened linewidth. So as we increase the power,
the linewidth of the transition is increased. Using more power to collect more scattered
light has a disadvantage of broadening the linewidth of the transition. This is undesirable

because it could make it harder to select certain transitions and perform Doppler cooling.
So we need to make sure the intensity we are applying to our ions is reasonably low.

We assume that our detuning is zero =0, s= Sp; we can de ne saturation intensity

as
2

I
= — = — 2.74

Noting that = h Q) djliEe=-, and| = ( oc=2)E3(where™\s the polarization of the
eld and d'is the dipole moment of the electron), we can solve for the saturation intensity:

2.2

Co

l¢g = —m
T 4o i

(2.75)

Lastly, we make use of an expression for the longitudinal decay rate that comes from a full
quantum electrodynamics treatment:

1 2

= 022~jhOj"\ a1ij 2; (2.76)

wherecis the speed of light. This equation assumes that we're using linearly polarized light.
There is a way to derive this form simply using the formalism we've already developed,
however it must be assumed that the there is strong collisional damping, so that ,

It just turns out from quantum electrodynamics that this form holds even without this
approximation. Using Equation 2.76, we end up with the saturation intensity

~ 12
‘0.
4c?’

IS_

(2.77)

Assuming a focused beam waist of 30n at the barium ions, the saturation intensity
for the 493 nm, 553 nm, 614 nm, and 650 nm transitions are6@ W, 0:416 W, 0:397 W,
and 0207 W respectively. In the lab, these powers are a good guideline to aim for to get
optimal performance.

2.4 Isotope Selectivity

There are many di erent ways to ionize a neutral atom for trapping in an ion trap, including
electron bombardment, applying strong electric elds, and using lasers. We chose to use
a two-step laser ionization process to ionize barium because of the isotope selectivity it
o ers. Natural barium has many stable isotopes, with the highest abundance bei#Ba*

at 72%; this ion is useful for calibration and as a Zeeman qubit3’Ba*, at an abundance
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First Step Second Step
Level  Wavenumber(cm?!) Wavelength (nm) Wavenumber(cm?!) Wavelength(nm)

6s21s, 0 - 42034.91 237.8975
6s6p 1P, 18060.261 553.7019 23974.649 417.1073
5d6p°>D, 24192.033 413.3592 17842.877 560.4477
6s6p>P 12636.623 791.3507 29398.287 340.1559

ionized 42034.91 237.8975 0 -

Table 2.7: Barium ionization energy levels: in the rst step, we drive a coherent transition
to an intermediate state. In the second step, we eject the electron with a laser of higher
frequency than listed. [16,31]

of 11%, is useful because it's relatively common and has a nuclear spin &2,3giving us
up to eight hyper ne levels to work with. ¥**Ba* is a radioactive isotope with a half-life
of 10 years; it has a nuclear spin of=2 making it an excellent choice for a qubit.

The energy needed to ionize neutral barium corresponds to a laser wavelength of around
238 nm - very low in the UV range. UV beams are more di cult to work with, giving
us another reason to use a two-step ionization process. There are hundreds of di erent
intermediate levels that we can use. Table 2.7 shows many di erent intermediate levels
for this two-step ionization process. The rst step of the ionization has to be coherent
and resonant so that we reliably transfer to the intermediate state, but the second step
can be a cheap, noisy, incoherent laser: the wavelength of which just needs to be lower
than the wavelengths listed in Table 2.7. We chose to use the 553 nm ionization scheme
with a 405 nm second step ionization laser, because the rst step transition is the fastest
transition based on selection rules; this allows us to ionize and trap more quickly.

It turns out that di erent isotopes of neutral barium have a slight isotope shift on the
coherent 553 nm transition. If the linewidth of our laser is small enough, this allows us to
essentially pick which isotope we wish to ionize.

The position of the di erent resonances are shown in Figure 2.938Ba* has the lowest
frequency, and is the easiest to trap. One thing to note is thaf>13’Ba* both have three
di erent hyper ne levels on this transition, since the nuclear spin is 32. The frequencies
of all of these transitions are shown in Table 2.8.
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Figure 2.9: Natural barium transition spectrum: each isotope has a shifted rst-step ion-
ization frequency, allowing us to select which isotope we wish to ionize and trap. a, b, and
¢ mean hyper ne levelF = 5=2;3=2;1=2 respectively. Adapted from reference [32].

Isotope  Freq. (MHz)| Isotope  Freq. (MHz)| Isotope Freq. (MHz)

133g(1/2) -23.3 134 142.8 | 137(3/2) 274.56
138 0 132 167.9 | 135(3/2) 323.44
131(1/2) 0 133m(1/2) 172.9 131(3/2) 373.8
137(5/2) 63.43 | 133m(3/2) 21655 |133g(3/2)  386.65
135(5/2) 120.55 131 2492 | 137(1/2) 549.47
136 128.02 128 271.1 | 135(1/2) 549.47

Table 2.8: lonization selectivity: exact frequencies of the rst step ionization transition for
di erent isotopes of barium. The hyper ne structure of the 135 and 137 isotopes give us
three di erent transitions each. The center-of-mass of these transitions are also given. g
and m states are the ground and excited nuclear states. [32{35]
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CHAPTER3

Qudit Measurement

In this chapter, | discuss a method for measuring out the state of dgits with a shelving
scheme, which utilizes a metastable state with a long lifetime to store dii states during
measurement. This work is also described in a paper co-written with Pei-Jiang Low de-
scribing all the protocols necessary for doing glit quantum computation with 3’Ba* [36].

3.1 Shelving

State measurement for trapped ion qubits is typically done by driving a closed transition
on one of the qubit states and collecting the uorescence on a detector. A closed transition
is one in which the set of energy levels involved does not overlap with the other qubit state.
For 3’Ba*, if we encode each qubit state into one of the hyper ne states, we can do this
by driving the S;-, $ Ps-, transition. We can either drive theF =2 qubit to the F =3
Ps-, state, or theF =1 qubit to the F =0 P3-, state. When we consider qdits with more
than two levels, we see that we cannot drive a closed transition on eachddfustate using
uorescence.

Our solution is to use the metastabld -, state to \shelve" the qudit state. This state
has a long lifetime of 30s, and when we store states there, they are no longer driven by
the uorescence laser. The shelving approach to measuring adjuis illustrated in Figure
3.1 for 3-levels. It consists of shelving all but one state in the metastable state, measuring
the remaining state, then repeatedly de-shelving and measuring states until the overall
state of the qudit is completely known.
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Figure 3.1: Shelving procedure: three-level git. (1): Map statesjli;j2i to the metastable
state. (2): Fluoresce on the cycling transitior8;-, $ Pi-,. (3): If no uorescence detected,
return one state from the metastable state and (4): measure it with uorescence.
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Ds=>
FO=1 Fo0=2
m2 1 0 1 -2 1 0 1 2
mg  Frequency (MHz) 917507785 105727  119.265 19.101 25.977 33.139 40537 48.0933
I | 5020.300 4020.051  4034.027 40475651 3947.490 3954127777 3961.439 39681837111 3976.393
f 0 5023.594 4023.345 4037.322  4050.859 3950178511 3957.571 3964173311 3972.131 3979.687
w 1 5026.886 4026:637/11] 4040.613 4054.151  3954.076 3960:863111 3968.024 397514231 3982.979
o -2 3007.567 4007.817 3993840111 3980.302 4080.377  4073.590 [14066142071 4059.030  4051.474
5 o~ 1 3010.864 40TTL147 3997.137 39831599111 4083.674 4076.887  4069.726 [14062:32711 4054.771
n 0 3014.159 4014.408 40001431771 3986.894 4086196811 4080.181 = 4073.020  4065.621 [140581065
w 1 3017.450 4017:699711] 4003.723 3990/18511 4090.260 408347311 4076312 | 4068.913  4061.357
2 3020.739 4020.988 4007012007 3993.474 4093548  4086.762 4079160017 4072.202 | 4064.646

Table 3.1: Shelving transitions: the units are in MHz. We set the carrier to 109MMHz
detuned from the'3®Ba* transition; the transitions listed are relative to the carrier. The
blue transitions are what we wish to drive for the shelving procedure. The yellow transitions
have frequencies within MHz of one of the desired transitions. However, these can be
suppressed (see text). The red transitions are within R0Hz of the shelving transitions,
have nonzero Clebsch-Gordan coe cients, and cannot be suppressed by polarization, so
we must consider the errors from indirectly driving them.

From Figure 2.5, we see that the= = 3;4 levels in the metastable state overlap one
another quite a bit. So we chose to use only tHe = 1; 2 levels to store our qdit states. We
transfer eachF, me state in the 65, level to the F°= F, m2 = m¢ state in the 5Ds-;, level.
Table 3.1 shows these transitions in blue, along with all of the other possible transitions.
Note that we set the carrier to be 109MMHz detuned from the1*Ba* transition. This
was chosen so that we could hit all of the transitions within a window of less than 200 MHz,
and the transitions don't run into each other at all. The yellow transitions have frequencies
near one of the desired transitions, and will reduce our transfer probability. However, if
we orient our shelving beam to be in the =45, =0 direction, these transitions are
completely suppressed, as shown in section 2.2.2, Figures 2.7. Transitions in red are not
suppressed by this technique, so there will be o -resonant coupling to these.

Next, we need to decide how to perform these population transfers from the ground
state jgi to the metastable statejei. We propose to use rapid adiabatic passage, since it's
very robust against frequency noise, amplitude noise, and timing errors. A similar scheme
was used in [37] fol*8Ba* .

Adiabatic passage works as follows: start by driving the transition o -resonantly with
detuning from the transition (0)= ! (0) !, where! (1) is the laser frequency at time
t and! ¢ is the transition frequency. Next, sweep the detuning ¢) = ! (t) !, through
resonance, stopping at (0). For a 2-level system, the Hamiltonian in the rotating frame

B = UHUY + i~(%§§uy(whereu = exp i é! (t9dt® ) can be written as

0 =2

=" 2 (p°

(3.1)

where is the resulting Rabi frequency of the transition. The eigenstates of the sys-
tem are called the adiabatic or dressed states. The eigenvalues of this Hamiltonian are
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Figure 3.2: Adiabatic passage: (a) diabatic and adiabatic states energy vs detuning .
There's an avoided crossing between the adiabatic states. (b) Graph of tan2

Figure 3.3: Adiabatic passage triangle

= % + % where = P — + 2 s the e ective Rabi frequency. These are the ener-

gies of each adiabatic state. The adiabatic states can be written as
j*+1 =sin jgi +cos jel
.J. .jg. . .J. (3.2)
ji =cos jgi sin je;

where is de ned in Figure 3.3. Using trigonometric identities, we can simplify and write

as tan2 = —. We can also get the diabatic statggi (jei) in terms of the adiabatic
states. This is done by multiplying one state by sin(cos ), the other by cos (sin ) and
adding (subtracting) them from each other. The result is

jgi =sin j+i +cos ji
3.3
jei =cos j+i sin ji : (3:3)

In adiabatic passage, we start with a large detuning so that | . From Figure
3.2(a), we see that thg i adiabatic states approach thggi(jei) state for . We see the
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same thing if we consider the trigonometric tan graph in Figure 3.2(b): If we sweep the
detuning adiabatically, then we will remain in the adiabatic state, following the solid lines
in Figure 3.2(a), and transferring population between the ground and metastable states.

Finally, what exactly does it mean to sweep the frequency adiabatically? The Adiabatic
Theorem tells us that the adiabatic regime for a two-level system is de ned by [38]

1 2 2 32

= _ — + : 3.4
5 (34)
So for our two-level system with only the detuning varying linearly with , and starting
with a detuning (0), we have

1 =
5 24 (0) 237 (3.5)
Essentially, we need to perform the sweep slowly, and have a comparatively large initial

detuning and/or Rabi frequency.

3.2 Errors
Using Schredinger's equatiori~@@j i = Kj i, we get the following di erential equations
for the ground and excited states:
@ [
— = _e-e
%t | 2 i (3.6)
@tee =i( e - %

R
where ¢ = C.€ 0! (19° ig the rotating frame excited population andcy and c. are the
populations of the ground and excited states respectively.

We can take derivatives and substitute to end up with the following decoupled di er-
ential equations
@ . @ 2
— — 4+ — =
@t i(t) at 4 =0
2

@ N
ol )t &=0

@ o (3.7)

@ i(t)@t

, . . R R
We transform into the following rotating frame: ¢j = cgexp 5 g (t19dt° , @ = eexp 3 Ot ( t9dt° .
We also use a linear sweep () = t , where is the sweep rate. We now have the following
di erential equations:

2 H 2
@+_+I_+t_ CO:O
@1 4 2 4 9
2 2 (3.8)
@+ |t =0
@' d zta %°



If we do a change of variables: = L2 i= 4P

di erential equations:

t, we end up with the following

0
cgo

(3.9)

('DOO
I
o

These are in the form of Weber's Equation, which can be solved analytically [39, 40].
The main way of solving these di erential equations is by a lot of unintuitive substitution
and di cult calculus [41]. Alternatively, the part of the solution we are interested in can
be more easily found using Contour integrals as shown in reference [42]. The result is the
probability that we successfully transfer population from the ground to the excited state:

P, =e =9 (3.10)
This is called the Landau-Zener probability, and it only describes the errors from how
quickly the transfer was performed, or, how adiabatic the passage was.

(a) (b)

Figure 3.4: Shelving adiabatic passage and measurement error: (a) Equation 3.11 plotted
for various applied Rabi frequencies and passage times 2-. The horizontal axis is a
log-scale. The grey line gives the optimal parameters. (b) The passage time and delity for
di erent prime-dimensional qudits. Fluorescence time is included in the passage time, and
we assume that the amount of adiabatic passages neededds 23(the maximum amount

of transfers we would need to do for an arbitrary measurement).
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There are several additional sources for error. The overall delity is given by

o

X
F=(1 sinP )2 1 C‘ZF) 1=2+e 2’ = (Py 1=2) e Flec; (3.11)
i |
wherei is the set of all unwanted transitions each transfer can couple to at the start end
end of the adiabatic passage;; is the relative branchinq, ratio of an unwanted transition
compared to the desired transition branching ratio, "= 2+ 2js the e ective Rabi-
Frequency of the laser coupling with one of the other transitions, and is the FWHM
laser linewidth.

The rst term comes from imperfect adiabatic state preparation. For a constant Rabi
frequency, we would have to start the frequency sweep at detuning =1 to achieve
one of the adiabatic states perfectly. This is obviously unrealistic, mostly because we have
a plethora of other transition frequencies surrounding the desired transition. This can be
seen from Equations 3.2 and 3.3: with a nite detuning , the diabatic states do not
correspond perfectly to either of the adiabatic states.

The second term comes from coupling to all of the other transitions colored red in Table
3.1. We model these contributions to the error as o -resonant Rabi opping at detuning °.
The excited state population of this o -resonant coupling is in generaP. = — sin? ~t=2.
We assume a time average €imt  1=2. Finally, we must multiply this population by the
overall branching ratio C; squared of the transition compared to the desired transition.
These branching ratios are listed in Table 2.6.

The third term is the dephasing and transfer-time error, derived in reference [43], and
it includes the Landau-Zener adiabacity error. Lastly, we have to consider decay of the
shelving state from its nite lifetime( 30s forBa™).

For our experiment, we park our quantization magnetic eld at 470 T. We transfer
jSi=2; F; mei states tojDs-p; F°= F; m2 = mei states in the shelving manifold.mg $ mg
transtions are, in the smallest case, 3:9 MHz apart in frequency.

There are additional motional sidebands on this transition at the secular trap frequency.
In a proposed blade trap, we expect this frequency to be;, 2MHz. In this case, for
some shelving transitions, the second motional sideband is less than 1 MHz away from the
transitio&s we wish J‘O drive. The Lamb-Dicke parameter for the $,-, $ 5Ds-, transition

is =k 5= 2 sm. 0:0243 1. Because the Lamb-Dicke parameter is so small,

the second (and higher) order sideband coupling will be negligible, and we ignore them.

To avoid sweeping through a rst order sideband, we set the initial detuning at:6 MHz,
which is 200 kHz below the tilt mode frequency. We sweep across the level and ending with
equal but opposite detuning. Our laser will have a linewidth of less than 1 Hz [44]; we use
this for the following calculations.

With these properties, we calculated the delity of population transfer for di erent
Rabi frequency and overall passage time for the transition with the closest adjacent level
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in Figure 3.4(a). There is a trade-o between the two variables and delity. As long as
we can provide a Rabi frequency of greater than 110kHz, we can perform this passage in
under 1 ms with better than 9994% delity.

For our overall measurement process, we also have to consider each uorescence mea-
surement. The time for each uorescence is given by

Nphotons _ Nphotons (3 12)

tfluorescence
Detection fquorescence CE QE

whereNpnotons IS the number of photons needed to discriminate between a positive or nega-
tive reading, f fiuorescence 1S the frequency we drive our uorescence transition aCE is the
collection e ciency of our imaging system, andQE is the quantum e ciency of our cam-
era or PMT. We assume that our imaging system has NA = 0.5 and a quantum e ciency
of 80%. A good estimate for our uorescence rate Siorescence le 14 5MHz,
whereTp 1, = 7:92 ns is the lifetime of the @4, state. Assuming we need around 10 bright-
state photons to discriminate between a bright or dark reading, each uorescence step takes

37 s.

Figure 3.4(b) considers the entire shelving measurement process for di erentdiis up
to 7-levels. During a measurement, we can stop once uorescence has been seen, so we
usually don't have to do all of the transfers described in the shelving procedure. Here we
assume the worst case where we end up having to do all of the transfers(for d levels, this
is 2d 3 transfers). As can be seen in the gure, it's possible to get better than 356
overall measurement delity for even 7-level qdits. Both the 3- and 5- level qulits can be
measured with better than 99% delity. Furthermore, because we can measure all of the
states in the ground manifold with little error, state tomography for 3- and 5-level qgits
is straightforward using this shelving technique.

Harty [45] was able to discriminate between a qubit state in thé&;-, and the Ds-,
states with uorescence in*3Ca* ; their overall state preparation and measurement delity
was better than 999%. An important distinction is that their transfer to the shelving
state was not coherent like our proposed shelving operation. If we assume that their®49
error is mostly coming from the measurement, and that we see similar results, then our
overall measurement error will increase by a factor of (%), wheren is the number of
uorescence measurements.

To improve the adiabatic state preparation, we could instead use chirped pulses, where
both the Rabi frequency and detuning are swept. Starting with a Rabi frequency of zero
and a large detuning will give us a near perfect correspondence between the diabatic states
and one of the adiabatic states. This technique could give us better than 99% delities in
a shorter measurement time [46]. Alternatively, we could focus on improving our magnetic
eld stabilization, laser frequency and intensity stabilization and do normal Rabi transfers
for an even shorter measurement time. Finally, when we do statistical measurements, we
can use an adaptive algorithm to do state uorescence on the state that the djii is most
likely in, based on the previous measurements. Such an adaptive measurement would make
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the number of adiabatic passages necessary approatch 1, dramatically decreasing the
measurement error.
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CHAPTER4

Four-Rod Paul Trap Optics

Since our lab is relatively new, and | am a part of the rst round of graduate students,

there was a lot of optics infrastucture to be done. The main scope of my work for my
rst year in the program was to pick out opto-mechanics for laser paths, pick out active

optical components such as AOMs(Acousto-Optic Modulators) and EOMs(Electro-Optic
Modulators), test lasers and optics, and come up with a plan for how to put it all together

on the optics table for trapping ions in a four-rod paul trap.

This chapter describes my work towards getting the lab set up for trapping ions. In
the rst section of this chapter, | discuss the overall plan for the lasers and optics. Next,
| present a successful frequency-locking scheme using a wavemeter. Finally, | discuss a
system for distributing and controlling rf for driving the optical modulators.

4.1 Lasers and Optics

4.1.1 Lasers

To trap and manipulate ions, you need many di erent lasers in the lab. First, we need to
ionize the neutral atoms. Lasers at 553 nm and 405 nm are used for the two-step ionization
procedure described in section 2.4. The 553 nm light is generated by an 1107 nm laser built
by Time Base [47], while the 405 nm laser is a very broad linewidth laser pointer. These
lasers have powers of 5mW(after frequency doubling) and 100 mW respectively.

Other lasers are used to drive the various transitions shown in the energy structure of
barium in Figure 2.1. The 493 nm transition is useful for Doppler cooling, optical pumping,

42



and uorescence measurement of spin states. We split this laser into two paths: one for
cooling and the other for pumping and uorescence. A 650nm laser is necessary for re-
pumping from the 5D ;-, state, since the probability of decaying to this state from the B,-,
state is around 24% [24]. Both of these lasers are from Toptica [48], and provide around
10-20 mW and 15-25 mW of power, respectively, depending on how well we can couple
them. We found the Toptica berdock used to couple them to be unreliable at times: every
couple of months, we have to re-align to the ber, because the output suddenly dropped
to under 1mW. We use a 1228 nm laser frequency-doubled to 650 nm to de-populate the
5Ds-, level. This laser, like the 1107 nm laser, was obtained from Time Base [47]. After
frequency doubling, this laser has 1 mW output power.

Finally, we will use a 1762 nm laser built by Toptica [48] and stabilized by Stable Laser
Systems [44] to perform our shelving measurement as described in chapter 3. This laser will
be stablized to a linewidth of 1Hz, with a power of around 30 mW. One big advantage
with our necessary lasers is the fact that none of them are in the UV range, therefore
it's possible to do much of the optics manipulation with ber devices. This is a distinct
advantage to using barium over other ions.

4.1.2 Optics Paths

There are a number of components which need to be placed in the path between the
lasers and the ions in order to gain control of di erent aspects of the light. To generate
553 nm and 650 nm light, we must use a frequency-doubler immediately after a 1107 nm
and 1228 nm laser respectively. Each laser's output needs to be picked o for monitoring
its wavelength. Most lasers need to be frequency modulated using an EOM. For lasers
which need fast switching o /on, we have to place an AOM in the path. We need various
waveplates to control the polarization of each beam. We need to to pick o part of the
light just before the trap to measure its intensity. Finally, we must focus each beam down
to a single point where the ion is using a lens or concave mirror.

The details of all of the components we need for each laser are illustrated in Figure 4.1.
There are three levels of control necessary for di erent lasers: the 405 nm ionization needs
very little control, and simply needs to be turned on and guided to the trap. The 553 nm
ionization laser needs some basic frequency control. All other lasers need full control of
frequency, switching, polarization, and amplitude.

Following the optical paths in Figure 4.1, the rst component is the frequency doubler
for the 1107 nm and 1228 nm lasers. This component doubles the frequencies of these
lasers to 553 nm and 650 nm respectively. Since these lasers are ber coupled, we use HC
Photonics ber frequency-doublers. With 80 mW of 1107 nm input power, we get around
5mW of output 553 nm power: around 5% conversion. For 1228 nm, with 34 mW of input
power, we get around 1 mW of output 650 nm power: around 3% conversion.

We use Thorlabs 99:1 PM ber splitters [49] to pick o 1% of most paths, for measuring
the wavelength.
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Figure 4.1: Overall beam paths: each eyeball shape is a ber coupler or collimator, and
each solid black object is a beam block. Dotted lines are ber cables and solid lines are
free laser beams.
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Since'®’Ba* has hyper ne structure, each level is split into many di erentF hyper ne
levels. In order to drive allF levels, we need to use an EOM to impose sidebands on
the lasers. For the ground state 8,-,, this hyper ne splitting is on the order of 8 GHz,
which is relevant for 493 nm and 1762 nm transitions. For the 493 nm laser, we decided
to use an ADVR [50] ber-coupled EOM, which has an insertion loss of around3dB.
With 20dBm of rf power, the power of the rst sideband is around 36% of the carrier
power. The 1762 nm laser hasn't arrived yet, but we will use an EOSpace [51] EOM with
an expected insertion loss of 3dB. For the 650nm and 650 nm transitions, we need to
generate sidebands on the order of 1 GHz; we went with Jenoptik [52] ber-coupled EOMs
for both of these. The insertion loss is around 6 dB, and with around 15 dBm of rf power,
we can get around 50% power in the rst sideband.

(a) (b)

Figure 4.2: EOM transition frequencies: transitions driven with (a) B3, $ 6P;-, and (b)
5Ds-, $ 6P3-, lasers. Blue transitions are always driven. Orange transitions are usually
not necessary because the lower state is not likely to be populated.

To gain additional frequency control as well as the ability to switch the beams on/o
more quickly, we use AOMs in most beam paths. AOMs don't generate sidebands like
EOMs, rather, they o set the frequency by some xed amount. Typically, an AOM can
convert around 60 80% of the input intensity into a di racted output. The frequency
o set gives us ne control of the overall frequency of the light, and the di raction allows
us to quickly turn the path on/o by simply turning o the rf power to the AOM. This
switching speed is limited by either the TTL(Transistor-Transistor Logic) signal or how
the speed of sound in the nonlinear crystal within the AOM device - either of which is
much faster than any physical shutter. Since the 405 nm and 553 nm timing requirements
are much less critical, we use physical shutters [53] to switch these beams on/o .

We combine the cooling 493 nm, de-populating 650 nm, re-pumping 650 nm, and ion-
ization 553 nm beams into one optical ber using a wavelength division multiplexor. This
allows us to align all of these beams together, simplifying the alignment procedure. It also
reduces the amount of optics needed for these beams around the trap, giving us extra space
to work with or expand the experiment with more optics.

Finally, we use a beamsplitter to pick o part of each beam for measuring the intensity
just before the trap. Eventually this measurement will be used to feedback to the lasers
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