A SCALABLE PARTIAL-ORDER DATA STRUCTURE FOR
DISTRIBUTED-SYSTEM OBSERVATION

by

Paul A.S. Ward

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2001

©Paul A.S. Ward 2001

AUTHOR’'S DECLARATION FOR ELECTRONIC SUBMISSION OF ADISSERTATION

I hereby declare that | am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronically available to the public.

ABSTRACT

Distributed-system observation is foundational to understanding and controlling distributed
computations. Existing tools for distributed-system observation are constrained in the size of
computation that they can observe by three fundamental problems. They lack scalable informa-
tion collection, scalable data-structures for storing and querying the information collected, and
scalable information-abstraction schemes. This dissertation addresses the second of these prob-
lems.

Two core problems were identified in providing a scalable data structure. First, in spite of
the existence of several distributed-system-observation tools, the requirements of such a structure
were not well-defined. Rather, current tools appear to be built on the basis of events as the core
data structure. Events were assigned logical timestamps, typically Fidge/Mattern, as needed to
capture causality. Algorithms then took advantage of additional properties of these timestamps
that are not explicit in the formal semantics. This dissertation defines the data-structure interface
precisely, and goes some way toward reworking algorithms in terms of that interface.

The second problem is providing an efficient, scalable implementation for the defined data
structure. The key issue in solving this is to provide a scalable precedence-test operation. Cur-
rent tools use the Fidge/Mattern timestamp for this. While this provides a constant-time test, it
requires space per event equal to the number of processes. As the number of processes increases,
the space consumption becomes sufficient to affect the precedence-test time because of caching
effects. It also becomes problematic when the timestamps need to be copied between processes
or written to a file. Worse, existing theory suggested that the space-consumption requirement of
Fidge/Mattern timestamps was optimal. In this dissertation we present two alternate timestamp
algorithms that require substantially less space than does the Fidge/Mattern algorithm.

ACKNOWLEDGEMENTS

Notwithstanding the claim on page ii, a dissertation is the product of many individuals. First
and foremost | thank my adviser, Dr. David Taylor, who has enabled me to pursue this research,
both by providing excellent advice and the financial support that | needed for my growing family.
Likewise, | wish to thank the various folk at IBM Canada, who provided both financial support
and a motive for this research.

David Taylor is but one of a long succession of teachers who have influenced and encouraged
me over the years, all of whom deserve my gratitude. | would like to thank the various faculty
of both the University of Waterloo and the University of New Brunswick. Similarly, the teachers
of Dalhousie Regional High School and King Edward VII Grammar School provided me with an
excellent education; the foundation necessary to pursue advanced research.

While teachers enable learning, friends and family provide encouragement. Ellen Liu and
David Evans deserve special mention, as do all the members of the Distributed Systems and Net-
works Group at the University of Waterloo. Over the years my parents have guided, encouraged
and, as needed, pushed me in my educational endeavors. In this, my most recent pursuit, they
have been joined by my wife, Shona, and children, Jonathan, Rebecca, James and Sarah.

Support is not motivation, and while IBM Canada provided an immediate motive for this
specific research, they could not provide the inner drive needed to achieve a doctorate. This |
attribute to my paternal grandfather and uncles who, from the time of my birth, it seems, have
always encouraged me in creativity and excellence.

Finally, but by no means least, | wish to thank the members of my committee, Jay Black, Ken
Salem, Kostas Kontogiannis and Richard LeBlanc, whose comments and criticisms have done
much to improve this dissertation. Jay Black, in particular, has be invaluable, stepping in while
David was on sabbatical.

For Shona
A wife of noble character is worth far more than rubies.

And for our children, Jonathan, Rebecca, James and Sarah

Wisdom is supreme; therefore get wisdom. Though it cost all you have, get understanding.
Esteem her, and she will exalt you; embrace her, and she will honor you.

CONTENTS

1 INTRODUCTION

1.1 MOTIVATION o e e e e e e e e e e e s e e e
1.2 CONTRIBUTIONS . . o v o v e e e e e e e e e e e e e e e e e e e
1.3 ORGANIZATION . . . o e e e s e e e s e e e

| REQUIREMENTS

2 FORMAL MODEL

2.1 RRTIAL-ORDERTERMINOLOGY . . . v v v i e e e e e e e e e e e e e e e e e

2.2 MATHEMATICAL ABSTRACTION v v v e e e e e e e

2.3 REMOVING MULTICAST AND MULTI-RECEIVE v v i

2.4 OTHERISSUES o o i o e e e e e e e e e e e e e e
3 DATA-STRUCTURE REQUIREMENTS

3.1 BVENTINSPECTION . . . v o o o e
3.2 SEEKING PATTERNS o o e e e e e e e e e e e e e e e
3.3 RACEDETECTION . . v v v o v e e e e e e e e e e e e e e e e e e e
3.4 COMPUTATION REPLAY . . . v o o o e
3.5 DISTRIBUTEDBREAKPOINTS o o i e e e e e e e e e e e e e e e e
3.6 CHECKPOINTING . . v v v v e e e e e e e e e e e e e e e e e s e e e s s s s e
3.7 BXECUTIONDIFFERENCE v v v o o o e e e e e e e e e e e e
3.8 PFERFORMANCEANALYSIS e e e e s e e e s e
3.9 VISUALIZATION e e e e e e e e e e e e e
3.9.1 TYPES OFDISPLAY o
3.9.2 SROLLINGAND ZOOMING v v v v e e e e e e e e e e e e e,
3.9.3 QUERYINGDISPLAYS
3.10 ABSTRACTION . . o i it e
3.10.1 B/ENTABSTRACTION . . & v v v o e e e e e e e e e e e e e e e e e e
3.10.2 TRACEABSTRACTION o o o e e e e e e e e e e e e e
3.11 SUMMARY OF REQUIREMENTS i i e e e e e e e e e e e e
4 PARTIAL -ORDER-DATA-STRUCTUREINTERFACE

4.1 BVENTIDENTIFIERS . . .« o o v i e s s e
4.2 SICESAND CUTS it e e e e e e e e e e e
4.3 BVENTS . o o i i e e e e e e e e e e e e e
4.4 THEPARTIAL ORDER o o e e
4.5 SATISFYING THE REQUIREMENTS v v v o e e e e e e e e e e e e

Vi

II' CURRENT TECHNIQUES 70

5 EVENT STORAGE AND ACCESS 71

5.1 RAW-EVENT PROCESSING i i i i e e e e e e e e e s e e e e 71
5.2 BVENT-ACCESSDATA STRUCTURE. . . v v v v v v e e e e e e e e e e e 75
5.3 FREESTOREMANAGEMENT v i i e e e e e e e 80
5.4 CALLBACK IMPLEMENTATION . . . o v v v i e e e e e e e e e e e e 83
6 A BRIEFHISTORY OFTIMESTAMPS 87

6.1 LOGICALTIME 88
6.1.1 THE LAMPORT TIMESTAMP & o i i e e e e e e e e e e e e e e e e e e a0
6.1.2 THE FIDGE/MATTERN TIMESTAMPt v v o e e e e e e e e e e e 90
6.1.3 PFOWLER/ZWAENEPOELTIMESTAMPS . . .« v v v it e e e e e e e e 92
6.1.4 ARD/JOURDAN TIMESTAMPS . . v v v v v e e e e e e e e e e e e e e 93
6.1.5 THEORETIMESTAMP & i i i i e e e e e e e e e e e e e s e s e e 95
6.1.6 THE SUMMERS CLUSTERTIMESTAMP v v v v i i i e e e 96
6.2 PRECEDENCERELATED EVENT SETS i v i e e e e e e e e e e e e 97
6.2.1 HREDECESSORS ANIBUCCESSORS. . . . v v v v v e e e e e e e e e e e e e 97
6.2.2 THINGSCONCURRENT o ottt e e e e e, 98
7 SCALABILITY PROBLEMS 101

7.1 THE VECTOR-CLOCK-SIZE PROBLEM v v v i i i e et 101
7.1.1 ONEBIG STRUCTURE . . . v v o o e 101
7.1.2 CALCULATE ONDEMAND . . . v o o e e e e e e e e e e e e e e e e e e e 104
7.2 THEORETICALOBJIECTIONS . . v v v v i v e e e e e e e e e e e e e s e e e 111
7.3 QURRENT TECHNIQUES FORSPACE-REDUCTION v v v v .. 113

Il SOLUTIONS 115

8 DIMENSION-BOUND TIMESTAMPS 116

8.1 BOUNDING THEDIMENSION v v o i e e e e e e e e e e e e e e e e e e 116
8.1.1 (GOMPUTINGCRITICAL PAIRS o o . 117
8.1.2 REVERSINGCRITICAL PAIRS o o e e e e e e e e e e e 118
8.1.3 RESULTS ANDOBSERVATIONS v v o e e e e e e e e e e e, 122
8.2 DYNAMIC-ORE TIMESTAMP ALGORITHM v v v o e e e e e e e e e e e e 126
8.2.1 INCREMENTAL COMPUTATION OFCRITICAL PAIRS 126

8.2.2 BUILDING PSEUDO-REALIZERS i v i i i 131
8.2.3 VECTORASSIGNMENT . . v v v o o e e e e e e e e e e e e e e e 135
8.2.4 HRECEDENCETESTS. . . .« o v v o o e e e e e e e e e e 136
8.3 ANALYSIS . . o e e e 137

Vii

9 DvyNAMIC CLUSTER-TIMESTAMPS 138

9.1 TIMESTAMP ALGORITHM v o o o e e e e e e e e e e e e e e 139
9.1.1 TWO-LEVEL ALGORITHM . . . o i i e e e e e e e e e e e e e e e e e 139
9.1.2 HERARCHICAL ALGORITHM o s e e 146
9.1.3 HE.IMINATING FIDGE/MATTERN TIMESTAMP GENERATION 154

9.1.4 HMRECEDENCERELATED EVENT SETS 155
9.2 QLUSTERINGALGORITHMS o o e e e e e e e e 156
9.2.1 HBXED CLUSTERS i i i e e e e e e e e e e e e e e e 157
9.2.2 SFLF-ORGANIZING CLUSTERS . . .+« v o o e e e e e e e e e 159
9.3 CACHING STRATEGY . o v v v e e e e e e e e e e e e e e e s s e s s s s s e 169
9.4 EBEXPERIMENTAL EVALUATION o o oo e 170
9.4.1 HRXED-CLUSTERALGORITHM o i ittt 170
9.4.2 SFLF-ORGANIZING ALGORITHM . . . v v v e e e e e e e e e e e e e e e e 180
9.5 ANALYSIS . o o e e e 184
10 CONCLUSIONS 187

10.1 FUTUREWORK . . . o o o o e e e e e e e e e e e e e e e 188
REFERENCES 190

viii

FIGURES

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7

DISTRIBUTED-SYSTEM OBSERVATION AND CONTROL 2
MODELING MULTI-RECEIVE OPERATIONS v v ittt e e 8
MODELING MULTICAST OPERATIONS & v v e e i i e e e e e e e e e 8
GLOBAL STATE . . . v o ot e e e e e e e e e e e e e e e e 19
GLOBAL STATE LATTICE o i e e e e e e e e s e e e e e e e 21
COMPUTATION REQUIRING MESSAGECONTROL . . . « v v v v v i i e e 24
XPVM DISPLAYS AT DIFFERENTTIME SCALES v v v v .. 30
POET' S SYNCHRONOUSREAL-TIME DISPLAY 31
POET PARTIAL-ORDERDISPLAY s e e e 32
LAMPORT STYLE DISPLAY e e e e e e e e e e e e e 33
ORDEREDPRIMITIVE EVENTS FORMING CONCURRENTABSTRACTEVENTS .. 40
PROBLEMS WITH CONVEX ABSTRACTEVENTS 42
ROET EVENT ABSTRACTION . . . o v v e e e e e e e e e e e e e e e e 44
FOET TRACEABSTRACTION. o o o i i e e e e e e e e e e e e e e e 46
NOT QUITE TRANSITIVE REDUCTION o i i e s et e e e 75
TRACE DATA STRUCTURE v i i i e e e e e e e e e e e e e e 76
LEASTRECORDABLEEVENT et et 77
LAMPORT TIMESTAMPS o i e e e e e e e e e s e e e e e e e e 91
FDGE/MATTERN TIMESTAMPS o v o i e e e e e e e e e e e e 92
FOWLER/ZWAENEPOELTIMESTAMPS« v v it et e et e e e e 93
ARD/JOURDAN TIMESTAMPS v o o i e e e e e e e e e e e e e 94
ORETIMESTAMPS . . . o o e e e e e e e e e e e e e e e e 95
SUMMERS CLUSTEREXAMPLE e e h e e 96
EXECUTION TIME V. VECTORSIZE o i i i it e e e i e e e e 108
EXECUTIONTIME V. CACHE SIZE i i e e it e e e e e e e e 111
CROWN S}AND BROADCAST PARTIAL ORDERS . .+« . v v v v i oot a s 112
QRITICAL-PAIR COMPUTATION o o e e e e e e e e e e e e e e e 117
EXTENSIONINSERTION o i i i e e et e e e e e e e e e e e e e e e 120
DIMENSION-BOUND V. NUMBEROFTRACES v v v .. 124
THE DIMENSION-BOUND OFLIFE o i i i e e e e e e e e e e 125
DYNAMIC-ORE TIMESTAMP ALGORITHM v it e e e e e e e 126
DYNAMIC CRITICAL-PAIR COMPUTATION v v i e e e e e e e e e e e 129
EVENT-INSERTIONALGORITHM o i v o e i i e e e e e e e e e e 132

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22

AVERAGE TRAFFIC PATTERNS (NOTE: SCALESDIFFER) 139

Two-LEVEL DYNAMIC CLUSTER-TIMESTAMP CREATION 141
FADGE/MATTERN CLEANUP CALLBACK . . . vt v v i e e et e et e e e e 144
Two-LEVEL DYNAMIC CLUSTER-TIMESTAMP PRECEDENCETEST 145
VARIANT FIDGE/MATTERN TIMESTAMPS v v v v e e e e e e 146
HERARCHICAL DYNAMIC CLUSTER-TIMESTAMP CREATION 147
HERARCHICAL DYNAMIC CLUSTER-TIMESTAMP PRECEDENCETEST 151
QLUSTER-TIMESTAMP PROJECTION TOLEVEL-% v .. 155
SLF-ORGANIZING TWO-LEVEL CLUSTER-CLASS PRIVATE DATA 162
S L F-ORGANIZING TWO-LEVEL CLUSTERMERGING 164
SAMPLE CLUSTER-RECEIVE AND TIMESTAMP-SIZE RESULTS 171
SAMPLE RATIOS OF CLUSTER- TO FIDGE/MATTERN- TIMESTAMP SIZES 173
RROBLEMS WITH JAVA CLUSTER-SIZE SELECTION v v v v v v .. 175
QUSTER-SIZE V. NUMBER OFTRACES« « v v v v it e e e et 176
RaTIOS OF CLUSTER-SIZE TONUMBER OFTRACES 177
RESULTS FORDOUBLING HIERARCHICAL TIMESTAMP 179
RESULTS FORSQUARING HIERARCHICAL TIMESTAMP 179
A/ERAGE RATIO OF LEVEL-k TIMESTAMPS TOTOTAL EVENTS 180
PVM IDEAL MAXIMUM -CLUSTER-SIZE ANALYSIS 181
SAMPLE SELF-ORGANIZING RESULTS . . .« v v v e e e e e e e e e e 182
CPTIMUM CLUSTER-SIZE SELECTION v v v v e it e e e e e e e e e e 183
TIMESTAMP SIZE FOROPTIMUM CLUSTER-SIZE SELECTION 183

TABLES

7.1
7.2

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4

COST OFLINEAR TIMESTAMPING v v v i e e e e e e e e e e e e 109
BENEFITS OFCACHING o i it e et e e e e e e e e 110
DIMENSION BOUNDS FORJAVA o e e e e e e e e e e e e s e e 122
DIMENSION BOUNDS FOROSFDCE 123
DIMENSION BOUNDS FORuC++ o o e e e 123
DIMENSION BOUNDS FORHERMES. o i v i e e e e e e e e e e e e e 123
DIMENSION BOUNDS FORPVM e 123

CLUSTER- TO FIDGE/MATTERN-TIMESTAMP-SIZE RATIO SUMMARY RESULTS . 172

CLUSTER-SIZE REQUIRED FORTIMESTAMPS NEAROPTIMUM 174
SFLF-ORGANIZING CLUSTER-TIMESTAMP RESULTS v v v v v v v v . 181
CLUSTER-SIZE RANGES FORPVM SAMPLE« o o i i i e e 182

Xi

1 INTRODUCTION

Distributed-system management is defined as the dynamic observation of a distributed compu-
tation and the use of information gained by that observation to dynamically control the com-
putation [99]. Distributed-system observation consists of collecting runtime data from execut-
ing computations and then presenting that data in a queryable form for computation-control
purposes. The purpose of the control is varied and includes debugging [8, 21, 25, 35], test-
ing [28, 29, 76, 176], computation visualization [37, 67, 71, 73, 89, 149, 151], computation
steering [38, 58, 81, 118, 158, 159, 160], program understanding [72, 93, 94], fault manage-
ment [57, 79], and dependable distributed computing [69, 119].

Tools for distributed-system management, such@s1{95, 147], Object-Level Trace [65]
and the MAD environment [86, 87], can be broadly described as having the architecture shown
in Figure 1.1. The various components are defined as follows.

The distributed system is the system under observation. Collecting together various re-
searchers’ views of what constitutes a distributed system, we arrive at the following general
consensus. A distributed system is a system composed of loosely coupled machines that do
not share system resources but rather are connedesbme form of communication network.

The communication channels are, relative to the processing capacity, low bandwidth and high
latency [110]. Note that while network bandwidths are improving, latency remains high. Further,
because of Moore’s law [108], it is not clear that network bandwidths are improving relative to
processor performance. Likewise, it is clear that wide-area latency will only get worse relative to
processor performance because of the laws of physics [36].

Both the machines and the network may be faulty in various ways [15]. The failure of any
machine or portion of the network in any particular way does not imply the failure of the whole
system. Indeed, partial failure is one of the most difficult aspects to deal with in distributed
systems [162].

A distributed computation is any computation that executes over such a distributed system.
Again, the consensus view is that the distributed computation is composed of multiple processes
communicatingsia message passing. The processes are physically distributed [97], their number
may vary over time [131] and they are sequential (that is to say, the actions that occur within any
process are totally ordered). The requirement for sequentiality is somewhat problematic at this
stage because of the prevalence of multi-threading. A multi-threading model is fundamentally
a shared-memory model, which is very different from a message-passing model. While some
work has started to address this issue [142, 39], we do not deal with it in this dissertation. The
communication may be synchronous or asynchronous, point-to-point (also referred to as unicast),
multicast or broadcast. The logical network is a fully connected graph &ny process may
communicate directly with any other process). In practice, most processes will communicate
with just a few other processes, and the computation will have a distinct topology. There is no
other knowledge of the underlying physical network [125]. The underlying physical network may

CHAPTER 1. INTRODUCTION 2

Distributed System Control Control
4 Code Entity
@@ Monitoring Monitoring Entity
Code = % W
O System

Figure 1.1: Distributed-System Observation and Control

not be (probably is not) fully connected. The topology of the computation may be quite different
from that of the underlying physical network. This broad description is used as it encompasses
the various more-specific descriptions that some researchers use and there is no generally agreed-
upon restriction of this definition.

It should be recognized that the distributed system and associated computation are not single
entities. This contrasts with the other components in a management tool (with the exception of
the monitoring and control code, described below) which are single entities. Thus, the distributed
computation is not expected to have a view of itself. Rather, the monitoring entity will collect that
global view. Insofar as the computation requires a view of itself, it can be provided by feedback
through the control code.

The distributed-system code must be instrumented in two distinct ways. First, monitoring
code must be present to capture data of interest. The specific data collected will vary according
to the tool's requirements but is fundamentally a subset of the local state of the processes of the
computation. This data is forwarded to the monitoring entity. Second, if the computation is to
be controlled in any way, the necessary control code must be linked to the system. For example,
if the application is debugging, this control code might include the necessary instrumentation to
allow the attachment of a sequential debugger.

The monitoring entity has two functions. First, it collects the data that is captured by the
monitoring code from the various processes of the computation. Second, it must present that data
in a queryable form. It thus acts as a central repository, providing a data structure for storing and
guerying the mathematical representation of the execution of the distributed computation.

If part of the purpose of the tool is computation visualization, it will have a visualization
subsystem that presents the monitored data to a human. While the specific visualization presented
will depend on the specific tool requirements, it ultimately is a representation of the distributed-
computation execution. The visualization may be manipulable in various ways.

The control entity will likewise be very tool-specific. In general terms, it takes input either
directly from the monitoring entityi (e, it queries the data structure representing the computation)
or from a human (or some combination of the two). Its function is to control the computsit#on (
the control code that it has access to) based on the observed behaviour of the computation.

By way of example, if we implement a distributed-breakpoint tool, a human will set a break-
point condition and then commence execution of the computation. The monitoring code will
relay the various events in the computation to the monitoring entity. It will build the data struc-

CHAPTER 1. INTRODUCTION 3

ture representing the execution. The control code will analyze the data structure to determine
when the breakpoint occurs. It will then cause the computation to be halted. We will discuss
specific techniques for distributed breakpoints in Section 3.5.

1.1 MOTIVATION

We wish to build and maintain large distributed systems, where “large” should be understood to
mean systems containing thousands of concurrently executing processes. We require that these
systems be dependable and, in the event of partial failure, capable of identifying and isolating
faults. We need to test and debug these systems. We may wish to steer the execution in certain
directions. We probably need precise technical understanding of the runtime computation, espe-
cially if we need to do performance tuning. To enhance our understanding we may wish to have
some visual presentation of the runtime computation. In summary, we need to be able to observe
and control large distributed systems.

Tools for this purpose, as described above, lack the scalability necessary to observe and con-
trol large distributed computations. There are three fundamental problems that must be resolved
to enable such tools to achieve the desired scalability. First, they require scalable data-gathering.
As defined, the monitoring entity is a single repository, which both bounds its scalability and
makes it an undesirable single point of failure. Second, any data structures that are used by the
monitoring entity must scale with the data collected. The specific data structures used depend on
the particular distributed-system model that is adopted by the tool. The model we, and most oth-
ers in this field, adopt is a partial-order one. Unfortunately, existing data structures for encoding
partial orders are either not dynamic or they do not scale with the number of processes. Third,
these tools require scalable information-abstraction mechanisms. In particular, visualization is
not feasible without appropriate abstraction, or at least will display such a small fraction of the
computation as to be meaningless. Likewise, reasoning about the computation is unlikely to scale
unless it is over a higher abstraction than raw data.

This dissertation addresses the second of these problems.

1.2 CONTRIBUTIONS

This dissertation provides the following significant contributions to scientific and engineering
knowledge.

1. The formalization of the operations on a partial-order data structure for distributed-system
observation.

2. Proof that timestamp vector-size affects the performance of precedence-test execution time
in distributed-system-observation tools.

3. Evidence that practical distributed computations do not in general have large dimension.

4. The creation of a centralized, dynamic timestamp algorithm that scales with partial-order
dimension, not width.

CHAPTER 1. INTRODUCTION 4

5. The creation of a centralized, dynamic timestamp algorithm based on capturing communi-
cation locality.

In spite of the existence of several distributed-system-observation tools, the requirements of
a partial-order data structure were not well-defined. To the best of our knowledge we are the first
to formalize these requirements. The value of this formalization is the ability to build tools based
on a partial-order abstract data type, rather than the cuacehbc approach based on events as
a core data structure. Tools built on a partial-order abstract data type would be able to readily
change the implementation of that data type, as needed. Current tools cannot easily change core
design choices such as timestamp algorithm.

An abstract data type is, in and of itself, of no value if there do not exist good implemen-
tation algorithms for that data type. Current implementation mechanisms for observation tools
use Fidge/Mattern vector timestamps (see Section 6.1.2). These timestamps require space per
event equal to the number of processes involved in the computation. The space-consumption
presents a scalability problem. Specifically, we have demonstrated that as the number of pro-
cesses increases, the size of these timestamps detrimentally affects the performance of the as-
sociated precedence-test algorithm. The cause of this is dependent on the manner in which the
tool uses the timestamps. In the case oER[95, 147], some timestamps are cached, subject to
available memory, while others are generated on-the-fly as needed for precedence testing. Clearly
the number that can be be cached is dependent on the size of the timestamp. The result of this
architecture is that computations requiring just a few hundred processes can spend much of their
execution time either generating or copying timestamps. An alternate approach, building the
partial-order data structure in memory, does not require timestamp copying, but then becomes
dependent on virtual memory as the data-structure size grows beyond the size of main memory.
If timestamps were smaller than the number of processes, then more of the data structure could
fitin main memory.

We therefore endeavored to create alternate timestamp algorithms that would scale with the
number of processes. Our requirement was that growth of the timestamp-vector size was less than
linear in the number of processes, while not substantially impairing the precedence-test execution
time. We developed two such scalable timestamps.

The first starts with the Ore timestamp (see Section 6.1.5), which is only suitable for static
partial-order encoding. In theory these timestamps can require space per event equal to the num-
ber of processes, as do Fidge/Mattern timestamps. We therefore initially demonstrated that real-
world computations would not generally require Ore timestamps of such a size. Indeed, we
showed that partial orders induced by parallel and distributed computations with up to 300 pro-
cesses can typically be encoded using these timestamps with 10 or fewer entries [164]. Given this
possibility proof, we then endeavored to create a dynamic variant. We did so by developing a tech-
nigue to create pseudo-linear extensions dynamically. This was done by incrementally computing
critical pairs of the partial order and then building extensions that reversed those pairs. Indices for
the extensions were developed by simulating the infinite divisibility of real numbers [165, 166].

The second technique starts with the Fidge/Mattern timestamp and encodes it in a space-
efficient manner. This was achieved by clustering processes. Events that only communicate

CHAPTER 1. INTRODUCTION 5

within the cluster only require timestamps of size equal to the number of processes in the clus-
ter. Events that receive communication from outside the cluster require full Fidge/Mattern time-
stamps. This approach was then extended to make the clustering hierarchical, which allowed fur-
ther space-saving and eliminated the requirement for a Fidge/Mattern timestamp [168]. This work
was further extended by clustering processes dynamically by communication pattern [169]. By
developing good clustering algorithms we were able to achieve more than an order-of-magnitude
space reduction while still enabling efficient precedence determination.

In addition to these contributions, various minor contributions have been made. First, we
have noted several problems related to existing information-abstraction mechanisms that can be
largely attributed to poor formalization. The most serious problem in this regard is that convex
abstract events are not well-defined, and that attempts to do so result either in cyclic precedence
between abstract events or a creation-order dependency.

Second, we have provided the first correct abstract formalization of synchronous events that
views them as single atomic events that occur simultaneously in multiple processes. We have
used this formalization to clean up the descriptions of various timestamp algorithms. We have
also generalized the concept of synchronous events from pairs of events to arbitrary numbers of
events. It is therefore possible to directly model operations such as barriers.

Third, we have formalized the transformation of multicast and multi-receive events into sets
of single-partner events. This is significant because it legitimizes the use of an existing, but
unproven, practice.

1.3 ORGANIZATION

This dissertation is organized into three parts, as follows. We first identify the requirements of
a distributed-observation tool. To achieve this we define a mathematical abstraction of a dis-
tributed computation. We then research current requirements for such tools, and translate those
requirements into operations on the mathematical abstraction. The set of such operations forms
the specification for our partial-order data structure.

In Part Il we describe current solutions for implementing such a partial-order data structure,
and identify the limitations of such solutions. The problems identified can be summarized as a
lack of scalable, dynamic precedence-test algorithms.

We address these problems in Part Il by offering two possible dynamic, centralized time-
stamp algorithms. These algorithms have various advantages and drawbacks with respect to each
other and with respect to Fidge/Mattern timestamps. However, we believe that the space-saving
they offer over Fidge/Mattern timestamps is such that they will scale more effectively as the
number of processes increases.

PART |

REQUIREMENTS

2 FORMAL MODEL

In this chapter we define the formal model of a distributed computation. There are (at least)
three possible techniques that might be employed here: Petri nets, a state-based approach, and an
event-based approach. While Petri nets have been used to model distributed programs [113], they
are not well-suited to our application. State-based approaches, on the other hand, are not so easily
dismissed. They are the preferred choice for sequential debuggers, slich asgdb, and are
frequently employed for the formal specification and verification of distributed algorithms [97].

The method used is to represent the computation as a &ipte A, > whereS is a set of

states A a set of actions, antl a set of behaviours of the form

a1 a1
So —> 81 —> S2...

wheres; € S anda; € A. Some form of logic, typically temporal logic, is then used to rea-

son about:. The problem with this approach is that, while it may be suitable for reasoning
about distributed algorithms, it is not well adapted to observing a distributed computation. There
are several aspects that make it poorly suited to our application. Perhaps the most significant
limitation is that, while communication and concurrency are probably the most significant as-
pects of interest in a distributed-observation context, they must be inferred in the state-based
approach rather than being central. Furthermore, because of non-determinacy and partial failure,
there is no well-defined global state in a distributed system at any given instant. In the case of
sequential-system observation there is a single, well-defined state at any given time and actions
deterministically move the system from one such well-defined state to another. It is this state that
the user or control entity of the observation tool explores. In a distributed computation there is
not a single deterministic movement by actions from one state to another. Instead, at any given
instant the system could be in any one of a large number of states.

The third technique, and the one we, and most others in this field, adopt, is the event-based
approach, originally developed by Lamport [96]. Rather than focusing on the state, it focuses on
the events (or actions, to use the terminology of the state-based approach) which cause the state
transitions. Information about events can be collected efficiently without regard to the current
“state” of the system. Causal links between events, and thus between local states, can then be
established.

The method taken is to abstract the sequential processes as sequences of four types of events:
transmit, receive, unary, andsynchronous. These events are considered to be atomic. Further,
they form the primitive events of the computation.

Transmit and receive events directly correspond to transmit and receive operations in the
underlying distributed computation. Every transmit event has zero or more corresponding receive
events in different processes. This models attempted transmission, where the message was not
received, unicast (or point-to-point) transmission, and multicast transmission. An unsuccessful
transmission is effectively equivalent to a unary event in terms of the mathematics we will adopt

CHAPTER 2. FORMAL MODEL 8

Transmitter X \ X Transmitter
b\“ Stream

Receiver

Receiver

(a) Multi-Receive Operation Direct (b) Multi-Receive Operation with Stream

Figure 2.1: Modeling Multi-Receive Operations

(see Section 2.2).

Every receive event has one or more corresponding transmit events. If there is only a single
corresponding transmit event then the underlying operation is a simple unicast or multicast trans-
mission. If there are multiple corresponding transmit events then the underlying operation is akin
to a transmitter writing several blocks of data to a stream which the receiver reads in one action.
Note that this can also be modeled by abstracting the stream as a process. The transmit events
would be to the stream process, rather than to the receiver. The receiver would have a single
receive event corresponding to a transmit event from the stream process to the receiver. This is
illustrated in Figure 2.1.

We note also that a similar transformation may be performed with multicast and broadcast
transmissions. Figure 2.2(a) shows the initial multicast. For such a multicast there is an obvious
transformation, shown in Figure 2.2(b), which is wrong. The reason itis wrong is that the transmit
operation is split into two events, denying its atomicity. Further, the first of the transmit events
precedes both of the receive events, while the second transmit only precedes the receive of the
second receiver. Itis not at all clear that this is a valid transformation. An alternate transformation,
shown in Figure 2.2(c), maintains a single transmit event in transmitter process, and introduces an
intermediary as did the multi-receive. This transformation maintains the events and precedences
of the transmitter and receiver processes.

While these transformations are legitimate (we will formally define the transformations and
prove their legitimacy in Section 2.3), we prefer to keep our model as general as possible. The
rationale for this is that we wish to model the user’s view of the system. We will only appeal to
these transformations as needed for implementation-efficiency reasons and for consistency with
existing observation tools.

\ Transmitter T Transmitter X Transmitter
Receiver 1 Receiver 1 X Receiver 1
Receiver 2 A% Receiver 2 \b% Receiver 2

(a) Multicast Direct (b) Point-to-point Multicast (c) Multicast with Intermediary

Figure 2.2: Modeling Multicast Operations

CHAPTER 2. FORMAL MODEL 9

Continuing with the remaining two types of primitive events, a unary event is any event of
interest that does not involve information transfer between processes. Its primary purpose is to
allow any additional action or state information to be recorded that the user of the formal model
desires.

Synchronous events correspond to synchronous operations in the underlying computation.
We model synchronous events as single logical events that occur simultaneously in one or more
processes. The reason it is one or more processes and not two or more is to model an at-
tempted synchronous operation that failed. An unsuccessful synchronous event, like an un-
successful transmit event, is effectively equivalent to a unary event. Synchronous events, like
unary events, have no partner events. However, unlike unary events, they do provide information
transfer between processes. We have discussed other methods of modeling synchronous events
elsewhere [167].

We now briefly review some basic partial-order terminology before presenting the formal
mathematical abstraction.

2.1 RPRTIAL-ORDER TERMINOLOGY

The following partial-order terminology is due to Ore and Trotter [114, 154, 155, 156]. While we
will not give detailed partial-order theory here, we will review a few of the important definitions
and terminology relevant to this document.

Definition 1 (Partially-Ordered Set) A partially-ordered set (or poset, or partial order) is a
pair (X, P) where X is afinite set and P is a reflexive, anti-symmetric, and transitive binary
relationon X.

First note the restriction to finite sets. This is not strictly a requirement of all partial orders, but
it is one that we impose as we are modeling distributed computations. As such, all sets we deal
with are finite. This restriction simplifies various theorems and proofs. Second, since fésset
often implicit, it is frequently omitted, and the partial-order is simply referred to by the relation
P. This invariably causes problems. We will therefore use the convention of subscripting the
relation with the set over which it forms a partial order. Indeed, we will extend this convention
to all relations over the seX. Third, note thatPx is reflexive. If Px is instead irreflexive, then

Py forms adtrict partial-order. The “happened before” relation, as defined by Lamport [96], is
irreflexive and corresponds to the relatiep that we will define in Section 2.2. For simplicity

all of the following definitions will assume that we are dealing with strict partial orders. Finally,
the termse; precedes:; andz, succeeds; are used whefw, zs) € Px.

Definition 2 (Subposet) A subposet (Y, P|y) isa poset whose set Y isa subset of X and whose
relation P|y istherestriction of Px to that subset.

Definition 3 (Chain) Px isachain if-and-only-if

Vzl,xgeX;xlyémg ((II1,(II2) € PX \ ((IIQ,(IIl) € PX

CHAPTER 2. FORMAL MODEL 10

A chain is any completely ordered poset. It is also referred to as a total ordeheikgnt of a

chain Px is the number of elements in its s&t (that is, the cardinality o). Theheight of a
posetPy is the height of the tallest chain that is a subposeRef Thelength of a poset is one

less than its height. The value of this definition is that it corresponds to the length of the longest
path in the directed graph that corresponds to the partial order.

Definition 4 (Antichain) Px is an antichain if-and-only-if
Vo, mex (z1,72) & Px A (22,71) & Px

An antichain is any completely unordered poset. Whdth of an antichain? is the number of
elements in its seX (that is, the cardinality o). Thewidth of a posetF is the width of the
widest antichain that is a subposetigf. In the context of a distributed computation, the width
must be less than or equal to the number of processes.

Definition 5 (Minimal Element) z; isaminimal element of poset Py if-and-only-if
Vasex (T2,71) € Px
A minimal element of a poset is any element such that no other element precedes it.
Definition 6 (Maximal Element) z; isamaximal element of poset Py if-and-only-if
Vasex (71,72) & Px
A maximal element of a poset is any element such that no other element succeeds it.

Definition 7 (Extension) Anextension, (X, Qx), of apartial order (X, Py) isany partial order
that satisfies
Vay,z0ex (71,72) € Px = (71,72) € Qx

If Qx is atotal order, then the extension is calldihaar extension or linearization of the partial
order. If (Y, Ry) is an extension of the subpogét, Ply-) of (X, Px), then(Y, Ry) is said to be
asubextension of (X, Py).

Definition 8 (Realizer) Given a poset (X,Py) andaset L = {(X,L%)|0<i< N} of N
linear extensions of the poset, L forms arealizer of P if-and-only-if

Py =)Lk
7

A realizer of a partial order is any set of linear extensions whose intersection forms the partial
order. Thedimension of a partial order is the cardinality of the smallest possible realizer.

CHAPTER 2. FORMAL MODEL 11

Definition 9 (Critical pair) (x,y) is a critical pair of the partial order (X, P) if-and-only-if
(z,y) & Px, (y,z) ¢ Px,and (X, PU{(z,y)}) isapartial order.

A critical pair of a partial order, also known as a non-forced pair, is any pair not in the partial
order, whose addition to the partial-order relation would result in a relation that is also a partial
order. Equivalently:

(:El,(IIz) € CPxy <«— ((II1,(II2) QP)(/\((IIQ,(IJ) €PX N
Vasex (((z3,71) € Px = (73,72) € Px) A (2.1)
(((L‘Q,III?,) € Px = ((II1,(II3) € PX))

whereCPy is the set of all critical pairs of the partial ordeX, Px). The significance of critical
pairs, as regards dimension, is in the following theorem [155]:

Theorem 1 (Dimension) The dimension of a partial order isthe cardinality of the smallest pos-
sible set of subextensions that reverses all of the critical pairs of the partial order.

A critical pair (x1, z2) is said to be reversed by a set of subextensions if one of the subextensions
in the set containérsy, x1). Note that the subextensions need not be linear.

Finally, we say that#; is covered byz,” or “ x5, coversz;” if there is no intermediate element
in the partial order betweeny andzxs. Formally:

Definition 10 (<: C Px x Px)
z1 <: Ty <= (r1,72) € PxA\ Bz, ((z1,73) € Px A (x3,72) € Px)

In the context of distributed debugging,#f <: zo we may also say that; is animmediate
predecessor of x5 or x5 is animmediate successor of x;. If multicast and broadcast operations

do not exist {.e., all communication is point-to-point) and synchronous events are limited to
synchronous pairs, then any event will have at most two immediate successors or predecessors.

2.2 MATHEMATICAL ABSTRACTION

We now present the formal mathematical abstraction of a distributed computation. First we define
the finite setsT, R, U, andS as being the sets dfansmit, receive, unary, and synchronous
events respectively. These sets are pairwise disjoint. Collectively, they form the set of events for
the whole computation:

E=TURUUUS (2.2)

For convenience of terminology we will use the lower case lettersu, ands (possibly sub- or
superscripted) to refer to specific transmit, receive, unary, and synchronous events respectively.
We will usee and f (possibly sub- or superscripted) to refer to specific events of unknown type.
Next, we defineP as the set of processes that form the distributed computation. Each sequen-
tial process is the set of primitive events that compose it together with the relation that totally

CHAPTER 2. FORMAL MODEL 12

orders those events within that process. Thus

VPEPP = (Epa <p) (2.3)

whereE, C £ is the set of events of the process aggtotally orders those events. Note that
(Ep, <p) is a chain. We will use and ¢ (possibly sub- or superscripted) to refer to specific
processes. Thus, will refer to the event set of procegsand <, its ordering relation. When we
wish to refer to specific events in processe will subscript the event identifier with the process
identifier. Thus for an event of unknown type in procesee will refer toe,. Likewise a transmit,
receive, unary, and synchronous event in progessuld bet,, r,,, u,, ands, respectively.

The relation=<,, totally orders the events of the procesaccording to the order of execution
in the process. That is, if eveaj; occurs in the procegs before event), then ej, <p €). As
such, it is convenient to simply number the events in the process, starting at 1, and then use
natural-number comparison as the ordering relation. We will superscript event identifiers with
their associated natural number. We will refer to this natural number as the position of the event
within the process or, more simply, as its position. Thus, we may define the ordering relation as

¢ <y el =i < j (2.4)

It should also be noted that an event is uniquely specified by its process combined with its position
within that process. We will therefore consideprocess, position to be the event identifier.
Note that a synchronous event will, in general, have multiple identifiers, as it occurs in multiple
processes.

Two further points must be dealt with regarding the relationship between processes and
events. First, every primitive event occurs in one or more processes:

Vece Ipepe €p (2.5)
Note that since only synchronous events occur in multiple processes we may also assert that:
VpgePptqVee € (E,NE) =e€S (2.6)

The flip side of this is that there must be a mapping from every event to the processes in which it
occurs. We therefore define two mapping functiahand that map events to processes and to
positions within processes respectively.

Definition 11 (¢ : £ — 27)
ple) ={plec By}
Definition 12 (¢ : £ — 2P*IN)

p(e) ={(p,n) | e € E, at position n}

Note that for non-synchronous events, these functions will map events to a single process and
for synchronous events there will be at most one position per process. Likewise, if the only

CHAPTER 2. FORMAL MODEL 13

synchronous events allowed are synchronous pairs, then for synchronous events the functions
will map to exactly two processes.

Second, it is sometimes useful to define the reflexive equivalent okghelation. It is
defined as:

i j i G\ e o
e, Jpe, e, <pe,Ve,=e¢) (2.7)

Thus far we have only related events to individual processes. We now incorporate the effect
of communication between processes. To do this, we definE thkation.

Definition 13 (Gamma Relation: I' C 7 x R) (t,r) € I' if and only if r is a receive event
corresponding to the transmit event ¢. Notethat v, r € R = 3, (t,r) € T

Every receive event will have at least one pair in the gamma relation, as it must have at least one
corresponding transmit event. The corresponding condition does not hold for transmit events, as
there is no guarantee that a transmit event will ever have a corresponding receive event. Further,
even if the transmit event does have a receive event, we want to be able to model the incomplete
state of the computation where the transmit has occurred but the receive has not. We also define
the functionsp andr to determine the set of receive events corresponding to a transmit event and
the set of transmit events corresponding to a receive event, respectively:

Definition 14 (p : T — 27)

p(t) ={reR|(tr) el}
Definition 15 (7 : R — 27)

T(r)={teT]|(tr) el}

As per our previous observatiofu(t)| > 0 while |7(r)| > 1. For convenience in future proofs
we will extend the domains of these two functions to all events, recognizing that an event that
is not a transmit has no corresponding receive events and an event that is not a receive has no
corresponding transmit events. Thyée) = () whene ¢ 7 and7(e) = § whene ¢ R.

We now define two partial-order relations, irreflexive and reflexive precedence, across the set
of events for the whole computation.

Definition 16 (Irreflexive Precedence: <¢C &£ x &) Irreflexive precedenceisthetransitive clo-
sure of the union of I" and <, over all processes.

<¢ = Transitive Closure (I' U (Upep <p))

Reflexive precedence is defined analogously:

Definition 17 (Reflexive Precedence: <¢C £ x £) Reflexive precedence is the transitive clo-
sure of the union of T" and <, over all processes.

<¢ = Transitive Closure (T' U (Upep <))

CHAPTER 2. FORMAL MODEL 14

Several points should be made about these definitions. First, observe that nothing other than
transitive closure is required to capture the effect of synchronous-event communication flow.
This may be contrasted with modeling synchronous events as collections of constituent events,
each of which is treated as atomic. Under that approach additional rules are required to capture
precedence, and to give reasonable meaning to the concept of precedence between constituent
events within a synchronous event.

Second, note that there is nothing in the formal model we have defined that requires these re-
lations to be anti-symmetric. If they are not anti-symmetric they cannot be partial-order relations.
Consider for examplét;,r,)) € I and(¢7,r;) € I'. By Equation 2.7y, <¢ t7. However,
t2 <e),y <¢ t2 andt? <g r,. Thus, by transitive closurg& <¢ r,. What has happened
here is that messages must have traveled backwards in time. In fact, any such anti-symmetry
would require at least one message to travel backwards in time. While this might be a desirable
feature in a distributed system, it does not currently exist. Thus, the relations are anti-symmetric.

Third, observe that the¢ relation is the “happened before” relation defined by Lamport [96].

It, together with the base sé&t is astrict partial order as it is not reflexive. Other terms that are
used for either this relation, or ther relation, include “precedes” and “causality.” The relations
themselves more realistically represent potential causality than actual causality. “Precedes” and
“happened before” both imply a temporal relation which, while they hold for events within the
relation, may also hold for many events not within the relation. That said, we will frequently use
any of the above terms in writing where it does not cause confusion. When we wish to be precise,
we will use the specific relationgs and=<¢.

The final aspect of the mathematical abstraction which has not been defined is concurrency.
We use the reflexive form of the causality relation to define concurrency as follows.

Definition 18 (Concurrent: ||¢ C £ x £) Two eventsare concurrent if they arenot in the causal-
ity relation: ' ' ,
e] lle ek <= ¢ Ze el A Ze]

Note that we need the reflexive form to avoid the problem of defining an event as concurrent with
itself.

2.3 REMOVING MULTICAST AND MULTI-RECEIVE

We now formalize the transformations necessary to remove multicast (including broadcast) and
multi-receive events and prove the correctness of these transformations. We do this in three
steps. We first specify the meaning of a legitimate transformation. We then formally define the
transformations for a multi-receive and a multicast event. Finally, we prove the legitimacy of
these transformations.

Definition 19 (L egitimate Transfor mation) Given partial orders (&, <¢,) and (€2, <¢,) where
&1 C &y, the transformation function 7 : (&, <¢,) — (€2, <g,) is legitimate if-and-only-if
(&1, <e,) isasubposet of (&, <e,).

CHAPTER 2. FORMAL MODEL 15

The justification for calling this transformation legitimate is that it preserves all existing ordering
and concurrency relationships and the only new relationships introduced pertain to events in the
second partial order not present in the first one. This transformation can equally be expressed as

Ve encer ((€1,€2) €<= (e1,e2) €<g,) A ((e1,e2) €<g,= (e1,e2) €=<s,) (2.8)

In other words, existing pairs in the partial order remain, and pairs that are not {§ thg,)
partial order are not introduced in ti&, <¢,) partial order.
Define a multicast event as any event for whichp, (e)| > 1. Note thate € 7. We now
define the transformation of the partial ordér, <¢,) containing multicast evertto the partial
order (&2, <¢,) for which |pa ()| = 1.
First, define the new procegs that will contain a sequence 0f; (t)|+1 events. The first
event,< p;, 1 >, is a receive event, while the remainihg (¢) | events are transmit events in
(&9, <¢,). Definey, as a one-to-one mapping from these transmit events to the receive events
corresponding to (V. (¢,r) € I'y; there will be|p, ()| such pairs). Now defing; as:

Ty =Ty —{(t,r) | (t,r) € D1} U{(t,<py, 1>) U { (¢, 7") | 72 : t" = 1"} (2.9)

The processes dE;, <¢,) are defined a®; U p;. Likewise the events ai§ U E,,. The partial
order(&s, <¢,) is then defined according to Definition 16 using theelation.

To remove all multicast events this transformation is repeated until such time as no multicast
events remain.

We now prove that this is a legitimate transformation. To do so we must show two things. First
we show that all pairs ikg, remain in<g,. Since all of the processes and events;imemain
in &, and since the only thing removed from theelation wasv, (¢, r), it is sufficient to show
thatV, (t,7) € ['y = t <g, r. Sincet <g,<p;, 1 > (itisin[y), Vis1 <pi, 1 ><e,<p,i>
(sincep, is a chain), an¥, (t,7) € T'1 = Ji>1 (<p,i>,7) € 72 (hence< py, i ><¢, r), then,
by transitive closurey,. (t,7) € I'y =t <¢g, 7. O

Second, we show that no new pairs are introduced on the evefit-38& do so with proof
by contradiction, by assuming,, .,ce, (e1,e2) €=<¢, Aler,e2) €<g,. Sinceep,ex € &1, they
are not inp;. Sincee;, ez €<¢,, they must be in the transitive closurelofu (U,cp, <,) which
means they must be in the transitive closurdof- {(¢,7) | (¢,r) € T'1} U {(¢t,<py, 1>)} U
{(#, ") | y2: 8" = r'} U (Upep,ugpy =»)- However, sincdey, e2) ¢<e¢,, they are neither in
the same process, nor in the transitive closur&,af (U,cp, <,). Therefore, there must exist
some events € p; such thate;, e3) €<g, and(es, e2) €<g,. Now, < p;, 1 > is the only event
in p; that has an immediate predecessor that is ngt,igince all other events i, are transmit
events. Further< p;, 1 > has only one immediate predecessaz, ¢. Therefore ey, t) €<g,,
since alsvecpy, <pi,1>=, eand(t,<py,1>) €<g,. Likewise, < p;, 1> is the only event
in p; that does not have an immediate successor npt.ifherefore 3., 2., 1> (€4, €2) €<s,.
Without loss of generality, let; be that event i, such that there is no successoetan p, that
precedes (in<g,) e2. Thus3, ey <: r such that(t,r) € I'y, by the definition ofy,. Therefore
(r,e2) €<g,.

CHAPTER 2. FORMAL MODEL 16

It is now sufficient to show thate;,t) €<¢, and(r,ea) €<g¢,, since(t,r) € I'y and will
therefore imply(e;, e2) €<¢, which will provide the contradiction. Suppoée, t) ¢<¢,. Since
(e1,t) €<g, then there must exist some eventc p, such thate;, e5) €<g, and(es,t) €<g,.
Since< p;, 1 > precedes (irg,) all events inp;, then(<p;, 1 >,t) €<¢,. Howeverj is covered
by <p;, 1>, and thugt, <p;, 1 >) €<g,, which is a contradiction.

Likewise, supposér, es) €=<¢,. Again, as above, this implies that <p,, 1>) €<g,. This
contradicty <p;, 1 >,r) €<g,, Which is true by transitive closure &%. O

The multi-receive transformation is analogous. Define a multi-receive evasitany event
for which |7 (e)| > 1. Note thate € R. We now define the transformation of the partial order
(€1, <¢,) containing multi-receive eventto the partial orde(&, <¢,) for which | (r)| = 1.

First, define the new procegs that will contain a sequence 6fi(r)|+1 events. The first
|71 ()| events are receive events, while the,, |71 ()| +1 > eventis a transmit event {8, <s,).
Definey, as a one-to-one mapping from the transmit events correspondint@t,) € I'y;
there will be|r; (r)| such pairs) to the receive eventsin Now definel’; as:

I'os =14 — (‘v’t(t,r) € Fl) U (<p,n, |7'1(’)”)|+1>,’)”) U v (210)

The processes d¢t,, <¢,) are defined a®; U p,. Likewise the events a& U E,, . The partial
order (&, <¢,) is then defined according to Definition 16 using Theelation.

To remove all multi-receive events this transformation is repeated until such time as no multi-
receive events remain. The proof that this is a legitimate transformation is analogous to that of
the previous proof, and so we omit it.

We note in passing that these are formal transformations for the purposes of the above proofs.
Using them in practice unaltered is probably a bad idea as they result in one additional process for
each multicast and multi-receive. In many instances this would not be necessary. For example, a
sequence of totally-ordered multicasts from the same sender to the same group of receivers could
make use of a single additional intermediary.

We also observe that similar transformations could be developed to convert synchronous
events occurring in more than two processes into collections of synchronous pairs, or even to
remove synchronous events altogether. Conversely, we could remove asynchronous events and
replace them with only synchronous events (note that the previous transformations are legitimate
if the new process had synchronous pairs rather than transmit and receive events). As we have
noted earlier, we prefer to maintain a general framework that is capable of modeling the compu-
tation as it occurred, rather than as might be preferable for our convenience.

2.4 OrHERISSUES

There is little in our formal description regarding partial failure, performance issues or varying
numbers of processes, although all three of these were observed to be features of a distributed
system. The performance issue will be the subject of specific tools, rather than of the model itself.
The monitoring code may be designed to determine performance-related problems. The control
portion can then be designed to steer the computation to improve performance. For example, this

CHAPTER 2. FORMAL MODEL 17

is the approach used in the Falcon system [37, 58, 81].

Correct handling of partial failure must be designed into the distributed system. This includes
the correct handling of failure within the monitoring and control system, and specifically the
monitoring and control code that is integrated with the distributed computation. For example, a
Byzantine failure in the computation could easily spread to the monitoring entity if the informa-
tion that is claimed to be observed by the monitoring code is not correct. We do not attempt to
deal with this issue in this work. We do presume that the information presented by the monitoring
code is correct and represents, in some measure, the behaviour of the computation. We presume
it is the responsibility of a user to determine if the observation is in error, and to act to correct
it accordingly. This is an area for future investigation. The only specific failure that the model
represents is that it does not require transmit and synchronous events to complete successfully.

The problem of a variable number of processes is evaded at present by modeling any process
that will ever exist during the course of a distributed computation as being implicitly present,
though without events, from the beginning. A process that leaves the computation simply ceases
to have events. While there is nothing in this approach that contradicts the formal model, and
it is a very simple method of dealing with a variable number of processes, it is not particularly
satisfying. The computation may be unbounded (as in the case of a distributed operating system)
or may have very many short-lived processes. As we shall see in Section 7.1, the effect of this
approach can be very expensive. The only solution to this we are currently aware of is that due
to Richard [124]. However, it presumes that the timestamps are used directly in the distributed
computations, rather than in the data structure of the observation system, and so is not directly
relevant to our problem.

Finally, we wish to observe that in the course of our abstraction we have, in fact, managed
to model a broader range of systems than simple distributed ones. We therefore take this brief
digression to discuss how broad our model is and what systems it can, in principle, cover.

We observe that it can trivially cover message-passing parallel computing, as this is largely
indistinguishable from distributed computing. The primary difference is in application and in the
speed of message passing. These issues are not relevant to the formal model we have defined.
In addition, it can be applied to concurrent programs, such as thread-based applications or multi-
tasking operating systems. Indeed, any system or environment that can be modeled as a collection
of co-operating sequential entities is covered by our model.

For the remainder of this dissertation, for the most part, we deal with the partial order as a
partial order. As such, although we have used the term “process” or “sequential process” to this
point, we will generalize the term to “trace,” where a trace is simply any sequential entity. It may
be a semaphore, a monitor, a shared variable, a thread, or possibly even a sequential process, as
per our original motivation. The key property of a trace is that it is a totally ordered set of events
that have been collected from a parallel, concurrent or distributed system. We choose not to use
the term “chain” because the data structures we build will be dependent on the nature of events
in the systems we are monitoring, rather than being an abstract mathematical construct. Various
properties of these systems will be crucial in our building of efficient data structures.

3 DATA-STRUCTUREREQUIREMENTS

To determine the requirements on the partial-order data structure, we must know what queries are
performed by various distributed-system observation and control tools. To identify these queries,
we must determine the general operations performed by these tools and translate those operations
into queries on the partial order. Having looked at debugging, monitoring, and steering tools, we
have identified the following as being general operations that are performed by these tools.

=

Event inspection

Seeking patterns

Race detection

Computation replay

Distributed breakpoints
Determining execution differences
Performance analysis
Visualization

© © N o g kDN

Abstraction

We now describe these operations and identify the queries they require of a partial-order data
structure.

3.1 EVENT INSPECTION

Event inspection is informing the user of “relevant information” associated with an event. This
relevant information can vary widely. It may be type information such as whether the event is
a transmit, receive, synchronous, or some other type. These types will be target-environment
specific, not the types we have defined in our formal model. Other information may include
partner-event identification, the time at which the event occurred, or various text information that
the developer may find useful. As long as the total quantity of data is not substantial this may be
collected and provided to the user fairly easily. The primary issue is finding the event of interest
within the data structure. This can usually be performed by simple indexing techniques, as we
can take advantage of the sequential nature of traces and just use the event identifier. It may be
marginally more complex in the target-system-independent environment, where the meaning of
what an event is must be associated with the target environment in some maogaegrsdives
this by the use of the target-description file.

It may also be desirable to provide some subset of the sequential state of a process. This can
be particularly useful in reasoning about consistent global states. However, if the quantity of state
information required is at all substantial, the cost of collecting it may be prohibitive. It may also

18

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 19

: 1 3
D1 8_ (ej (ej% D1
p2 5% 5%/523 =

(a) Inconsistent Cuts (b) Consistent Cuts

S
|

Figure 3.1: Global State

require some more-complex storage and indexing techniques than if the quantity of information
is small. Uninterpreted state information is relatively easy to index, since it can be treated in a
similar manner to large objects in database engines [50]. More sophisticated indexing is required
for interpreted state information, and is probably target-system dependent. We do not address
interpreted state information further in this dissertation.

The query requirements imposed by event inspection are then the ability to return basic and
extended event information given an event identifier.

3.2 SEEKING PATTERNS

Currently there are two key types of patterns that may be sought within a debugging, monitoring,
or steering context. First we may seek patterns within the structure of the partial order. For
example, we may wish to look for the pattern:
ey, <& €, Nep, =g eh, Nep e ep, s pL# p2 # 3 (3.1)

This particular pattern is a crude form of race detection. We are seeking events in taacks
that both precede an event in a third tradeut that have no synchronization between them. The
events thus form a potential race condition. We will discuss race detection in more detail below.

This form of structural pattern searching is equivalent to directed-subgraph isomorphism.
Specifically, it is equivalent to asking if the directed acyclic graph that represents the partial
order of the computation contains a subgraph isomorphic to the directed graph that represents
the pattern being sought. The directed graphs in this equivalence can be either the transitive
reductions or the transitive closures of the respective partial orders. This problem is known to be
NP-complete, even if the pattern sought is a directed tree [51].

The second type of pattern that we may seek is a pattern within a consistent global state. This
is frequently referred to as global predicate detection [18]. We will first explain what is meant by
a consistent global state. Consider the execution shown in Figure 3.1. Itis not possible for trace 1
to be in the state prior to the evesjtat the same time as trace 2 is in the state between edents
ande3, as shown in the first cut in Figure 3.1(a). On the other hand, it is possible for trace 1 to

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 20

be in the state between eventsande? while trace 2 is in the state between evedtande, as

seen in the second and third cuts in Figure 3.1(b). To explain these points further we must first
provide some clear definitions of our terms. The following definition is a modification of the one
due to Bastemt al [6], adjusted to include synchronous events.

Definition 20 (Consistent Cut: C C &) A subset of the set of events £ forms a consistent cut C
if and only if
Vel,ezgg (61 <g ey Nex € C) — e €C (3.2)

A consistent cut is a set of events such that no event is present in the set unless all of its pre-
decessors are present. It thus represents a possible state of the computation. Since we model
synchronous events as single logical events, a synchronous event is either in the cut or it is not.
Modeling a synchronous event as more than a single event would require modifications to the def-
inition to ensure that either all constituent events of the synchronous event are in the consistent
cut, or none are.

It is called a cut because it cuts the set of events in two, as shown in Figure 3.1. Those events
to the left of the cut line are part of the cut; those to the right are not. It is called a consistent cut
because the cut creates a consistent global state. Figure 3.1(b) shows various consistent cuts.

The set of consistent cuts ordered ©@yis a complete lattice [6]. The lattice for the compu-
tation of Figure 3.1 is shown in Figure 3.2. The computation can then be viewed as proceeding
on some path from the bottom element of the lattice to the top element. Note that this is not
strictly true, as it is possible for more than one event to occur simultaneously. However, any such
instance would amount to a race condition. If it is a significant race condition, it is a defect in the
program. If not, it will not be relevant which path is chosen. We will address this point further
below.

Given this view of the computation, and any ascending path as a possible execution sequence,
we may then consider the computation to have a possible sequence of global states that is the
sequence of states along that path. In other words, a potential global state of the computation is
any edge within the lattice. Such a potential global state is referred to as a consistent global state,
as it is consistent with a possible execution order of the computation. An alternate way of looking
at a consistent global state is to consider it to be a sequence of edges in the process-time diagram
which divide the computation to form a consistent cut.

Having acquired a notion of a consistent global state, we can seek patterns within that state.
Such patterns are referred to as predicates. There are several varieties that may be sought, such
as stable predicates (once the predicate is true, it remains true), definite predicates (the predicate
is true on all possible paths in the lattice), possible predicates (the predicate is true on some paths
in the lattice), and so forth. From the perspective of a partial-order data structure, the primary
concern is the ability to determine what is, or is not, a consistent global state. This is turn means
we need the ability to determine consistent cuts.

Given these two pattern-seeking operations, we can identify various requirements for our
partial-order data structure. Clearly, from the first type of pattern, we need to be able to seek out
precedence patterns in the structure. Thus, we require efficient determination-gf the and

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 21

1,2.3.1.2.3.1.2
€€y

ejeseseseses

e%e%e%%e%e%eé e%e%e?’e%e%e%e% e%e%e%e%e%eée%
e%e%e?e%e%e% e%e%e%e%e%eé e%e%e%e%eéeg e%e%e%e%eée%
ele?edele? eleZelelel e%e%@e%eée% eleledele?
/
e%e%e%e% e%eQe%eé e%e%e%eé e%eQeéeg e%e%eée%
]
eleel elele? elelel ele2el elele?
ele? e}e;////ele;, ele
el el
\/
0

Figure 3.2: Global State Lattice

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 22

|| relations. Note also the requirement in the sample pattern of Equation 3.1 to distinguish the
traces. It is therefore sometimes useful in pattern searching to be able to determine predecessors
and successors by trace of a given event, and likewise to identify all different-trace predecessors
and successors of a given event.

From the second pattern type, we can also identify a need to determine the set of greatest
predecessors to an event within each trace. This set of greatest predecessors of an event represents
the minimal events in their respective traces that must be present to form a consistent cut with
that event.

3.3 RACE DETECTION

We have already seen that race detection is, in some sense, a special case of structural pattern
seeking. Specifically, Equation 3.1 gave a crude pattern for determining possible races. There are
several problems with that particular pattern. First, because it uses precedence, rather than the
more specificoversrelation, it will catch many cases that are simply the transitive closure of the
specific race events. Thus, we start by narrowing the pattern to

: : . A : . : .
ep, <ieh, Nep, <iey Neb <iey Ney e ey, s p1#p2#ps (3.3)

This is now probably too restrictive, as it does not allow for any intervening events ingtgace
betweene), and 6’122. However, if we replace the covers test with a precedence test, then we
may open up the pattern too much, and catch a number of irrelevant cases. Given receive event
elﬁg with corresponding transmit evealﬁg, we need a pattern that catches the first preceding
receive from trace, and determines if its corresponding transmit event is concurrentefg\éiih

Thus, in a more general sense, we require a pattern language for specifying desired patterns,
complete with variables. Jaekl [68] and Fox [46] have performed some work in this direction,
though it is arguably at the level of grep-like matching, though on partial orders rather than
strings. What we envision is the next step to a Perl-like language, with all of the constructs of a
typical language, such as loops, variables, if-statemettts present, but also all of the partial-

order pattern matching built in. While such a language is beyond the scope of this dissertation,
we enable it by providing the necessary queries for pattern matching on the partial-order data
structure. The additional queries implied by this include partner, covers, covered-by, greatest
predecessor by type, and least successor by type, where these all have variants of same-trace,
different-trace and all-traces.

Unfortunately, for race detection there is a much deeper issue, which is that, even with a
perfect specification of a race condition, we have only identified a race condition. We have
not concluded that it is significant. In other words, non-determinism exists and is not necessarily
incorrect. First, non-determinism at the message-transfer level does not imply non-determinism at
the programming-language level. For example, in PVM [53] a receive operation can specify tags
on what it will receive. Thus, two successive receive operations may force a message ordering by
tags, where there appears to be a race condition when looking only at the corresponding transmit
events. Second, some programming languages are built around the concept of hon-determinism

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 23

(e.g., concurrent logic languages [134] which are built around Dijkstra’s guarded command [34]).
Finding a race condition in a program written in such a language is not significant in and of itself.
It is necessary to determine if the race condition is significant.

Damodaran-Kamal and Francioni [29] refer to programs with race conditions as nonstrict.
They are then classified as either determinate or nondeterminate. A nonstrict determinate program
is one whose output remains the same under all executions. That is to say, the outcome of race
conditions does not affect the program outcome. More precisely, it should not. If it does, the
program has a defect. In other words, a race condition is significant in a nonstrict determinate
program if the reordering of the outcome of the race causes a different output by the program.
Determining if the various races are significant in this instance is, to some degree at least, possible.
After recording the execution of the program, the program is replayed, but it is constrained to
follow the opposite outcome for each race condition in turn. If the output of the program remains
the same, then the race conditions were not significant. This is, of course, both expensive (though
automatable in principle) and requires replay capability. We will discuss replay further in the
following section.

The second class of nonstrict programs are those that are nondeterminate. These programs
produce a different output under different race outcomes. Damodaran-Kamal and Francioni [29]
claim that this is undesirable and do not deal with it further. The problem with this view is
that there are legitimate programs which create outputs that differ under differing race outcomes.
The canonical example is the case of the joint bank account. The account initially contains $10.
Simultaneously one party to the account deposits $100 while the other attempts to withdraw $50.
Under one execution the account has $110 at the end. In another, it has only $60. Both are valid
outcomes. Any distributed operating system will have behaviour that is similar to this. There is
no current solution to this problem that we are aware of.

There are, therefore, several issues that must be addressed by our data structure to deal with
race detection. First, it must support efficient structural pattern detection as per our discussion
above. Further, the event inspection must include enough detailed information to support race-
detection patterns. Thus, clearly the event identifier must be accessible, but also there must
be a tie-in to the code base in the event information. It is not clear if this information can
be made target-system independent, automatically generated, provide sufficient information for
race-detection purposes and be efficient. For the purpose of this dissertation, we assume that any
necessary tie-in with the code base can be made by data contained in either the basic or extended
event information.

3.4 COMPUTATION REPLAY

Computation replay is the constrained re-execution of a distributed computation such that it fol-

lows a specific partial order. Note that the partial order that the re-execution is constrained to
follow need not be the same as the partial-order induced by the original execution. Also note that
the constraint may be limited to a point in the re-execution, after which the computation may no

longer be so constrained. There are several reasons for doing computation replay.

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 24

1 2 1 2
e e e e
Y41 O O P ®. O
pn) pq X,\ N
I\) I\ I\
e € & €
(a) Causal Violation (b) Replay Technique

Figure 3.3: Computation Requiring Message Control

First, the act of debugging a computation interferes with the execution of that computation.
This is known as the probe effect [49]. To minimize this effect, we must minimize the impact of
debugging. One way of achieving this is to execute the program while collecting the minimum
amount of information necessary to determine the partial order of execution. This causes the least
perturbation. In order to closely examine the program execution, we re-execute it, constraining
it to follow the partial order of the original execution. This is the technique used by Yong and
Taylor [180].

While computation perturbation can be minimized using methods such as the above moni-
toring process, it cannot be eliminated. However, because of the event model that we are using,
we can capture the effects of these perturbations [104]. Specifically, any perturbation of the com-
putation caused by monitoring is equivalent to the delaying of an event in one trace relative to
some event in another trace (possibly caused by some unintended synchronization resulting from
the monitoring). This is nothing more than a race condition. The objective in this case is then to
execute the program, capturing the partial order of execution. The program is then re-executed,
constrained to follow the original partial order up to the relevant race condition, and then the out-
come of the race condition may be altered to the opposite of that which occurred in the original
execution. This may be performed automatically, by automating the search for race conditions
and then invoking the appropriate re-execution. Krandlenand Volkert [83, 88] have devel-
oped solutions for PVM [53] and MPI [109] using this approach, constraining the number of race
conditions considered by source-code analysis. Alternately, re-execution may be performed in-
teractively, with the developer selecting which race conditions to test. This is the approach used
by Kranzmiller et al. in their EMU [56], ATEMPT [84] and PARASIT [85] tool suite.

A third reason for computation replay is the need for efficient distributed breakpoints. We
will describe that in the following section.

To constrain an execution to follow a partial order in general requires control of the message
facility, since communication is not usually causally ordered. For example, in Figure 3.3(a), while
the transmit event] must be allowed to proceed, the message fepto e3 must delayed by the
replay facility to ensure that the message transmitted in eeistreceived first. While FIFO
channels would solve the specific problem shown, the message sentfrmuld just as easily
be to a third trace, which then transmits a message to be receivgdAgain, the message from
el must be transmitted, but delayed.

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 25

For systems in which communication is causally ordered, either by the design of the commu-
nication subsystem (see Isis, Horus, Totem, Newtop, Traesig?2, 3, 12, 13, 17, 41, 59, 101,

122, 130]) or because all communication is synchronous (see, for example, DCE [44, 179, 180]),
the replay facility does not need to control the communication subsystem. It is sufficient to force
an ordering on transmit and receive events (or synchronous calls and receives, in the case of syn-
chronous communication). The nature of the ordering is as follows. For any two receive events,
r1 andry that are causally ordered such that<¢ 79, we forcer; to occur before,, wherets

is the transmit event correspondingr$o Note that this will never violate the partial order due to

the causal-message-ordering property.

For systems in which causal message ordering is violated, the basic replay algorithm must
identify all such violations. Specifically, if <¢ t2 butry <¢ 71, then the message frotnmust
be delayed. The delay can be introduced by using a delay trace, as seen in Figure 3.3(b). The
previous algorithm then applies. The delay-trace transmit event is delayed undilréeeive
event has occurred.

While we have only specified the constraints required for replay algorithms, and specific
algorithms will vary in their details, it is clear that the primary data structure requirement for
these replay algorithms is efficient event-precedence testing.

An alternate technique is to checkpoint the computation at various intervals, and use the
checkpoints to avoid much of the replay. This is only applicable if the intent of the replay is to
reach a specific point in the computation and then proceed with some action. The reasons we
have cited all fall into this category, though there may be other reasons for which this technique
would not be applicable.

3.5 DISTRIBUTED BREAKPOINTS

A distributed breakpoint is intended to perform the same function for a distributed computation
that a normal breakpoint does for a sequential computation. That is, it is intended to allow a
user of a distributed-debugging tool to stop the computation on some specified trigger (typically
reaching a line of code or a change in the value of a variable) and examine the program state.
This is clearly a hard problem for a distributed debugger as there is no well-defined global state,
but rather a set of possible global states. We will first describe the relevant issues involved in
distributed breakpoints and then indicate what support would be needed from our data structure.

First, a trigger event may be as simple as a change in value or reaching a piece of code in
a sequential process that is part of the whole computation. However, there is no reason why it
should be so specific. The trigger event may be distributed over the computation, in which case
it would amount to a pattern that needed to be discovered, per our previous discussion. We will
name traces where trigger events occur as trigger-event traces. Likewise, those that do not contain
trigger events will be called non-trigger-event traces.

Given that a trigger event has occurred in the computation, we then need to decide exactly
what needs to be stopped and where. In a sequential debugger, the entire computation is stopped.
In the distributed case it is not quite as obvious. Clearly the trigger-event traces must be halted,
and this is a simple matter of applying the relevant sequential-halting solution. However, for

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 26

non-trigger-event traces, the solution is not quite as clear. One solution would be to allow such

traces to continue, on the presumption that they will halt as they become causally dependent on
the halted traces. At that point they would block, in a causally consistent state, and sequential
debuggers could be applied to those non-trigger event traces as needed.

There are at least two problems with this approach. First, there is no guarantee that non-
trigger-event traces will ever synchronize, and thus halt. For example, they may be slave pro-
cesses that perform a computation, asynchronously return the result, and then terminate. Thus,
after start up, they may no longer be causally dependent on a trigger-event trace. This problem
may be solved by forcing non-trigger-event traces to halt as soon as we have detected the trigger
event. By definition the computation will halt in a consistent global state, since it would not be
possible for a receive to occur before the corresponding transmit. However, there may be out-
standing messages (ones that have been sent but not yet received), and care must be taken not to
lose these. This solution is the method employed by Miller and Choi [107].

The second problem is that relevant debugging information may be lost. Specifically, the rea-
son we desire non-trigger event traces to be halted is that the trigger event may be causally depen-
dent on events that occurred in non-trigger event traces. However, by allowing those traces to con-
tinue, the relevant causes of the trigger event may be discarded. Thus Fowler and Zwaenepoel [45]
proposed the idea of@ausal distributed breakpoint. In this technique every trace must be halted
at the greatest predecessor event of the trigger event. This ensures that further processing in
non-trigger-event traces does not obscure the state that led to the causal message transmission.
This technique is not guaranteed to prevent the loss of relevant debugging information, since
the happened-before relation reflects potential causality, not actual causality. However, for well-
written programs potential causality and actual causality should coincide.

The Miller and Choi approach, insofar as it is useful, makes no requirement on our data struc-
ture. The Fowler and Zwaenepoel technique, however, does in two ways. First, we must be able
to identify the greatest-predecessor set of events. Second, it cannot be implemented without us-
ing replay. We note in passing that it is not clear that any distributed-breakpoint algorithm can be
implemented, or implemented efficiently, without replay. A simple approach would require that
every transmit event be followed by a local temporary halt until it could be determined whether or
not that event was a greatest-predecessor event to the breakpoint-trigger event. However, because
of transitivity, it is not clear quite how this might be determined in an online manner. This is, to
our knowledge, an open problem. Given this problem, the alternative is to perform a computation
replay up to the greatest-predecessor cut.

3.6 CHECKPOINTING

Replay may be time consuming. It may therefore be desirable to checkpoint the individual traces
at various times during the course of the computation. Replay to a given breakpoint is then ac-
complished by first starting at a set of checkpoints and proceeding until the breakpoint is reached.
This is more complex than replay from the start. The reason is that the set of checkpoints must
either form a consistent cut of the partial order in which no messages are outstaraljrihg

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 27

cut, C, must satisfyv; t € C = p(t) € C in addition to equation 3.2.), or the relevant message
information must also be logged.

There are two principle approaches to implementing the no-message-logging technique. The
first method is to ensure that when checkpoints are made, there are no outstanding messages.
A replay operation then requires the identification of the latest such checkpoint that is prior in
all traces to the causal distributed breakpoint. While the creation of such checkpoints is algo-
rithmically possible, to do so would substantially affect the performance of the system since it
effectively requires a global synchronization operation. The second method is to checkpoint in-
dividual traces as seems appropriate. When a replay operation is required, a set of checkpoints
is sought out that form a consistent cut with no outstanding messages and prior to the causal dis-
tributed breakpoint. This second method can rely on our data structure to determine the required
cut. Note that this method has no guarantee that the required cut will be found.

If message logging is possible then it is not necessary to find such a restricted cut. It may
not even be necessary to find a consistent cut. The Fowler and Zwaenepoel technique [45] uses
a coordinator to initiate checkpoints in a two-phase protocol. First, all processes are requested
to checkpoint. Each process informs the coordinator what the last local event identifier is that
it checkpointed. Having received responses from all processes, the coordinator issues a check-
point confirmation to all processes, indicating the maximum event checkpointed by each process.
After a checkpoint is initiated, each receiver logs all messages received until the checkpoint con-
firmation. After that, receivers log all messages which have a transmit event identifier that is
less than the identifier indicated in the checkpoint confirmation. All dependency information is
also recorded throughout. This is then sufficient information to restore the computation and com-
mence a replay, even though the restoration may not be to a consistent global state. Using this
technigue, the requirement of our data structure for checkpointing is simply to be able to identify
the checkpoint prior to the causal distributed breakpoint.

3.7 EXECUTION DIFFERENCE

Debugging systems are frequently used in a compile, test, debug cycle. A primary question
that a user may wish to know the answer to after making a code fix is whether or not the fix
made any difference, and if it did, what difference it made. The same cycle and questions occur
in debugging distributed computations. However, when presented with two displays of non-
trivial-size partial orders, a user cannot easily determine where those orders differ. Han [60]
therefore designed a system to determine those differences (more precisely, the point at which
the differences start, by trace). This is similar to structural pattern recognition, though with a
couple of important differences. First, the “pattern” being sought is of the same size as the partial
order it is being sought within. Second, where we will reject patterns that do not matckhé

pattern matching case is strict subgraph isomorphism), we explicitly wish to know the differences
between the two orders. That is, our primary concern is not an answer to the graph-isomorphism
guestion i.e, are these two partial orders identical?). This is one reason why graph-isomorphism
approaches to this problem are insufficient. A second, and stronger, reason is that execution-
difference algorithms can take advantage of factors in the partial order of computation that are not

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 28

present in general graph isomorphism. For example, the partial order has totally-ordered traces
within it that are not artificially generated. Rather, they correspond to sequential computation
objects. Once it is possible to match traces between partial orders, then event differences are
simply difference within those traces.

The data-structure support necessary for this is primarily event-identification information and
matching-partner information. In addition, trace-identification information might be useful. This
trace-identification information may be of limited value, since it is not guaranteed (in an arbitrary
target environment) that trace identification or order of appearance will remain the same between
executions.

It should also be noted that Han'’s algorithm is offline. It might be useful to have an on-
line version of this. Two possible online approaches are possible. First, if we have executed a
computation, and recorded its partial order of execution, then it may be desirable to monitor its
re-execution and invoke the debugger in the event that differences are detected. Second, if may
be useful to compare two simultaneously executing computations. This work is beyond the scope
of this dissertation.

Finally, it would be useful if more-sophisticated differences could be observed. The Han
algorithm is limited to indicating the point at which traces diverge. It may be that there is a
portion of difference, after which the computations continue with an identical order again. If this
were the case, identifying this difference in whole, rather than the starting point only, would be
quite useful. Again, this is beyond the scope of this dissertation.

3.8 PERFORMANCEANALYSIS

Performance analysis, and enhancement, is often a key requirement for observation and control.
For example, in Vetter's definition [160], program steering is either for performance enhancement
or application exploration. Enhancement mechanisms tend to be application-specific, even when
the steering mechanisms are of a more general nature, such as load balancing. The analysis that
leads to the need for a specific mechanism, though, can be general. We will therefore omit further
discussion of enhancement in favour of analysis.

There are various aspects of the partial-order model that make it attractive for performance
analysis. Specifically, the minimum execution time can be bounded by determining the longest
chain within the partial order (see, for example, the critical-path diagram of ParaGraph [62]). In
doing such a check, the partial-order data structure would have to maintain real-time information
for each event, and the longest chain would have to be determined with respect to this informa-
tion. Such a minimum execution time will only be achievable if there are a sufficient number of
resources present during the execution. This number is not simply the longest antichain, as traces
do not have a one-to-one correspondence with processes. This is apparent in Figures 2.1 and 2.2.
As such, it is necessary to determine the longest antichain that corresponds to processes. This is
likely target-specific. Also of value is the variation in parallelism over the course of the compu-
tation. This is akin to some notion of what the longest antichain is at a given point in time. This
may help in the dynamic scheduling of processors between multiple distributed computations so
as to maximize throughput for the whole. In a similar vein would be determining the minimum

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 29

execution time in the presence of a fixed number of processors that is smaller than the maximum
degree of parallelism. This is equivalent to determining the maximum chain in the event of creat-
ing an extension to the partial order such that the longest antichain is no more than the number of
processors. The common theme in all of these ideas is the requirement on the data structure for
determining antichains and longest chains, and for extending the partial order so as to reduce the
length of the longest antichain.

3.9 VISUALIZATION

We now look at the spatial visualization of the partial-order data structure, and the query require-
ments this imposes. The essence of this problem is to draw the directed graph of the transitive
reduction of the partial order. Given this, there are various issues involved. The graph may be
drawn based only on the partial ordering, based only on the real-times of the events, or based on
the combination of these. Since no non-trivial computation induces a partial-order that can be
displayed in entirety in a single screen, scrolling support is needed within the display. Clearly
this scrolling will be in the time dimension. For computations involving a significant number

of processes, the trace dimension will also have scrolling. An alternate approach for dealing
with large computations is to display the entire computation on the screen and allow zoom-in
for detailed examination. The display may be generated offline, after the event information is
collected, or online, during the course of the computation. If a visualization tool cannot answer
the questions that a partial-order data structure can answer (other than by careful observation),
we then describe it as an output-only display. Finally, the user may wish to abstract portions of
the display for various reasons. We will now describe these aspects in more detail, both in terms
of the features and the required algorithms to implement those features.

3.9.1 TyPES OFDISPLAY

The most elementary visualization of the partial-order data structure that we are aware of is the
XPVM [80] space-time view. It draws a horizontal bar for each PVM task. Communication
between tasks is represented by a line drawn between the two tasks, with the endpoints of the line
determined by the “real-time” of the transmission and reception events. We have placed “real-
time” in quotation marks as, at least with the earlier versions, no attempt is made to adjust the
timestamp values at each PVM task to ensure that messages are not viewed as traveling backwards
in time. Such messages are referred tdaghyons. This problem of tachyons, combined with
the absence of any other visual cue (such as an arrow), means transmit and receive events are not
distinguished in the basic display. In fairness to XPVM, there is support in the GUI to determine
this information on a message-by-message basis.

Real-time displays suffer from problems in addition to tachyons. The real-time of events may
be such that they are clustered in some locations, while sparse in others. An example of this
phenomenon is shown in Figure 3.4(a), which illustrates a master-to-slaves distribution followed
by a binary merge. Given that most, though not all, of the communication is at the right hand end
of the display, Figure 3.4(b) shows a focused display on this portion. Unfortunately, it now misses

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 30

tolstoy

tolstoy:bm
tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstay:bim

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

tolstoy:bm

(a) Wide Scale (b) Focused Scale

Figure 3.4:. XPVM Displays at Different Time Scales

four of the earlier transmit events from the master PVM task, even though there is, in principle,
room to show them. An alternate way of dealing with this issue is to have a time scale that is
sufficient to distinguish events, and then allow for breaks within the time-axis of the display. The
POET system uses this in its real-time display.

Synchronous events present a third problem for real-time displays. Logically a synchronous
event is a single event that occurs simultaneously in several processes. Physically it does not.
XPVM does not deal with this problem at all. It has a specific target environmierRyM, and
it treats that environment as though it does not support synchronous events. In reality there are
PVM operations that can be viewed as synchronous operations. For example, thaiiar()
function implements a barrier synchronization operation. This function is implemented by a
group of tasks sending barrier messages to the group coordinator. When the coordinator has
received the requisite number of barrier messages, it multicasts a continuation message to the
group tasks which will block at the barrier pending the arrival of this message. XPVM does not
visualize any of this communication. Rather it simply indicates in each task that it is performing
a pvmbarrier() function call. The starting and ending time of these will vary by task, though in
all tasks there will be an overlap point when the barrier is seen to be reached at the coordinator.

POET only supports synchronous pairs, which effectively map to synchronous point-to-point
transmit and receive eventsoPT's solution is to show a unary “transmit” event at the real-time
of the transmit. In addition, a ghost transmit event is displayed on the transmitting trace at the
real-time of the receive event. An example of this is shown in Figure 3.5(a). If the receiver
blocks prior to the transmit event this will be indicated as shown in Figure 3.5(b). To form a
complete synchronous RPC the receiver will return the results of the computation in a mirror
image operation of Figure 3.5(a).

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 31

receive receive—block receive
1 M 1 M)
I) I
2 O U 2 O U
transmit ghost transmit ghost
(a) Receiver Did Not Block (b) Receiver Blocks

Figure 3.5: ®BET's Synchronous Real-Time Display

We are not aware of other monitoring systems that provide a combination of real-time and
synchronous event support. In particular, we are not aware of any system that supports syn-
chronous events comprising more than two constituent events, with or without real-time support.
It is not clear how the BET solution could be extended to deal with these more-complex syn-
chronous events. A possible solution is to use the method used for abstract-event display (see
Section 3.10.1) though this might cause confusion as, in general, abstract events are not viewed
as occurring at a single logical time.

Visualization based only on real-time requires little data-structure support. It must record the
desired event information and the real-time of the event occurrence. For synchronous events, it
must record the real-time of the event’s occurrence for each process in which the synchronous
event occurs. There need not be any specific connection between events recorded, as is evident
in XPVM.

While displays based on the real-time of events may be useful in some applications, such
as performance analysis, it can hinder others. If the objective is debugging or program under-
standing, then the logical ordering of evenitg.(the partial order of execution) is often more
relevant than the real-time ordering of events. Figure 3.6 shows a partial-order display of the
PVM computation whose real-time display was illustrated in Figure 3.4. Note that this is one of
many possible displays, as partial-order displays are not, in general, unique. We believe that this
display more clearly delineates the logical execution of the program.

The primary issue in creating a partial-order display is choosing an event placement given
the wide variety of possibilities afforded by the partial-order of execution. The most common
method of event placement (used, for example, in ATEMPT [84], the Conch Lamport view [149],
PVaniM [151], and others) is to maintain Lamport clocks in the distributed computation and use
them to timestamp events. Event placement is then performed in a grid fashion, with the location
on the grid being determined by the trace number and Lamport timestamp of the event. Figure 3.7
shows an example of this type of display, again, for the same computation as is shown in the prior
figures.

One of the primary problems with this method of event placement is that it yields a rigid
display, as Lamport time is totally ordered. Thus events in one trace may appear to occur sub-
stantially prior to events in another trace, even though they may be causally concurrent. The Xab
approach [9, 10], or the dual timestamping method of PVaniM, go some way to dealing with this,

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 32

’ Functions Re-order traces Options Event abstraction

ttolstoys home pasward/ Pusges = %—h—i\“‘&‘_“‘_““‘“. e 8=
=S SN
N o, N Y
tolstoytbm K‘%‘% \“\‘\“!“E‘H i -
ttolstoyibm \\ '. \\:‘L -“h-‘ * -~
tolstoy:bm) ‘\ N g
\ e
ttolstoybm i

tol=toysbm
tolstoysbm

tolztoysbm

tol=toysbm

tolstoysbm

tolztoyibm
tol=toysbm
tolstoyibm

(tolstoysbm

AA A A A A A A A A A A A A A

itol=toy:bm

)

Hiddle: identify; Left/Right: scroll

Figure 3.6: ®ET Partial-Order Display

by moderating the Lamport time by the real-time. We will discuss that method below.

A second technigue is to use the idea of phase time [98]. The approach is to divide the events
into collections of concurrent events, and to display each collection as occurring at the same
logical time. Figure 3.6 illustrates such a phase-time view, though phase time is not a feature of
POET per se. A key problem with this approach is it is not possible in general to implement it.
Specifically, although we claimed that Figure 3.6 shows such a display, this is not strictly true.
All of the first events in all of the slave tasks are concurrent with all of the second set of transmit
events in the master task (those transmit events that are received at the third event in each slave
task). This is not apparent in this display. While this could be corrected for, what cannot be
corrected for is the initial events in the slaves themselves. They are concurrent with each other,
but not all are concurrent with the first sequence of transmit events from the master. Some are
successors and some are concurrent.

Stone’s concurrency maps [138] deal with the above problem by showing regions in each
trace, rather than individual events, in a similar fashion to the XPVM display. Regions have
starting and ending points within the time-axis. If a regi®nin one trace is causally prior to
a regionRy in another trace then the end point Bf is placed at a lower time location in the
time-axis than the start point dt,, if this is possible. Theaveat is necessary because it is not
always possible to satisfy this requirement, as illustrated by Summers [140]. One valuable feature
of the concurrency map is the ability to illustrate an abstract set of events within a trace that is in
various precedence relationships with an event or region in other traces.

The Falcon system [37, 58, 81] thread-lifetime view and XPVM both use a method that is

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 33

Wt CPYM Execution Yisualization

tolstoy: shome/pasward/pu<] B—m - -B---B---B-- -0 - - - B - -0 - -0 - -l - - - - - - - B - - -
jtolstoysbm El e T e e o
toletoy:bm

tolstoy:bm

tolstoysbm
tolstoysbm
tolstoybn
itolstoyrbn
tolstoysbn
tolstoysbn
tolstoysbn
tolstoysbn
it.olstoytbn
tolstoythn

tolstoythn

AA A A A A A A A A A A A A

tolstoyshn

Hiddle: identifys; Left/Right: scroll

Figure 3.7: Lamport Style Display

akin to concurrency maps, though with substantially different implementation approaches. The
XPVM method, as previously noted, is not partial-order-based. The Falcon technique uses a rule-
based approach. Different event types have rules associated with them to determine precedence
of events as they arrive at the visualization engine. For example, there is a rule that a mutex
operation must be preceded by a thread-create operation. It seems doubtful if this technique
could work in general, as the complexity of these rules will grow with the number of event types
and the likelihood of an error, resulting in an incorrect precedence display, would then be high.
Other techniques for implementing partial-order displays include maintaining vector clocks
within the distributed computation, using causal message ordering, and topological sorting of
the events based on event identity. The GOLD system [135] uses Fowler/Zwaenepoel depen-
dency vectors within the computation, though it is unclear what they gain by tli&T Bses
Fidge/Mattern timestamps, but not within the computation. Rather, it computes them within the
monitoring entity for the purposes of answering partial-order queries. Partlleh[116] use
causal message ordering within the network monitoring system. Presumably the monitoring sta-
tion must be a part of the causal-message-ordering system, and then it will never receive events
out of causal order. We do not believe such a system is practical because of the high overhead of
ensuring causal message ordering (iDig:?) in the number of processes [17]). The minimal ap-
proach necessary is to order events within traces and match transmit and receive events. In other
words, the monitoring entity should perform a topological sort on the events. ParaGraph [62]
does this after all of the event information is collected. There is no fundamental reason why this
cannot be performed online. Each event would be sent to a priority queue determined by trace
id. Events processed from the priority queues would be causally ordered if all prior events in the

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 34

trace were already processed and receive events had had their corresponding transmit event pro-
cessed. Itis therefore unclear what value is obtained by using other techniques if causal ordering
of the display is the only requirement.

The basic problem with partial-order-based displays is that no single view will suffice. The
reason is that any single view must order events that are unordered. A reasonable partial-order-
based display must allow scrolling within the display in such a manner that events can slide
relative to other events in recognition of their unordered nature. We will discuss scrolling in
detail in Section 3.9.2.

The final display technique used is to combine both real-time and partial-order-based dis-
plays. There are two features of this combined approach. First, some systems provide two data
displays, one real-time-based and the other partial-order-based. This is the approach taken by
PoeT and ATEMPT [84]. The second aspect is correcting the real-time of events to ensure that
it is consistent with the partial order of execution. Systems that perform such corrections include
the Xab system [9, 10], T and PVaniM [150]. There are several ways in which these cor-
rections may be performed. The simplest is to apply the Lamport clock algorithm [96] to the
real-time of events. However, it has been observed that this can significantly distort real-time
values, and so Taylor and Coffin developed an alternate algorithm which minimizes such distor-
tions [146]. The PVaniM system uses a dual-timestamp approach [150]. It presents partial-order
displays using a Lamport timestamp and Gantt charts (essentially concurrency maps) using a
Lamport-adjusted real-time timestamp. It is not entirely clear what the benefit is of maintaining
the Lamport timestamp.

Most of the systems we have studied are tied to specific target environments. Thus, XPVM
is tied to PVM, Falcon to Cthreads, and so forth. However, the features of these systems that we
have discussed are generalizable beyond their specific target. Has achieved a high degree of
target-system independence [148], and works with almost a dozen different target environments.

To summarize the requirements imposed by these basic visualizations, the data structure must
maintain the real-time of events, including the multiple real-times associated with synchronous
events, and must be able to produce a Lamport ordering.

3.9.2 S ROLLING AND ZOOMING

Any non-trivial computation cannot be meaningfully displayed within a single screen. There are
two (somewhat orthogonal) solutions to this problem. First, a detailed display may be created,
and then the user can scroll within that display. Alternately, the complete display may be shown,
and the user given the opportunity to zoom within that display. This problem affects both the time
and trace dimensions of the display. We will deal first with time-dimension scrolling.

The vast majority of systems present a text-editor-like approach to this problem. That is,
conceptually they create a fixed display of the entire partial-order. They present a portion of it,
which is effectively a window over that fixed display. Scrolling is then a question of moving the
location of the window over the fixed partial-order display. Given that creating such a complete
display is neither generally feasible nor necessary, various optimizations are applied. Usually
only a portion of the partial-order display is created, with the window into a subset of that. As

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 35

long as the scrolling operation is within the portion of the display that has been computed, it
will be a fairly quick operation. When it moves outside of that range a new display will have
to be computed. For a real-time based display this would appear to be the preferred form of
time-dimension scrolling.

Taylor [143, 144] argues fairly effectively that this is the wrong model for scrolling partial-
order based displays. Specifically, in providing only a possible ordering of events, or an ordering
consistent with the partial-order of execution, it effectively treats the partial-order as though it
were a total order. This will give a user an incorrect view of the system. Taylor's model is to drag
an event to one or other end of the currently visible portion of the time dimension. Other events
are then moved as required by the partial-order constraints. Note that other events will only move
if they have to, and only by as much as they have to. Thus, if an event is concurrent to the one
being dragged to the edge, it will likely change its position relative to the dragged event.

In the trace dimension most systems also treat the display in a text-editor-like fashion. As with
the time dimension, this is likely not a correct approach. Traces do not have order with respect
to each other, except insofar as is afforded by the structure of the software being monitored. The
default ordering of traces in most systems is determined by the order of arrival of events from
the monitoring entity, which, other than partial-order constraints, is determined by the arrival
order from the distributed computation. This may not be the best ordering possible, though it
is necessary for an online display algorithm. Alternate trace orderings are offered by various
systems. Both XPVM and®&T allow arbitrary trace re-ordering by the user. In additioogP
offers the ability to optimize trace location and move by precedence. Trace-location optimization
minimizes the apparent communication distance. This potentially corresponds to the structure
of the distributed computation software in that entities that communicate frequently are likely
related, while those that do not do so are likely less-connected in the software structure. Move by
precedence moves traces relative to some event. Specifically, traces that have causal predecessors
or successors to that event are moved closer to the trace containing that event.

The requirements on the partial-order data structure to enable display scrolling vary from
none, in the case of the text-editor-like systems, to greatest-predecessor and least-successor sets
for the RPOET scrolling algorithm. Trace movement imposes no requirements, but determining
minimal apparent communication distance does require the ability to determine aggregate com-
munication statistics by trace. For local optimization, statistics over a range of events in the trace
are required.

The alternate solution to scrolling is zooming. Zooming should not be considered to be sim-
ple magnification [115], though many systems limit it to this. Rather, it should provide additional
information. A very good example of such a zooming system is the System Performance Visu-
alization Tool for the Intel Paragon [67]. The full view shows the processors in the system, with
colouring to reflect activity. Zooming in shows actual load averages on a small number of pro-
cessors and message traffic load to neighbouring processors. Further zooming in reveals detailed
information about performance within a processor.

With this view in mind, there are several examples of zooming. Most have not tradition-
ally been considered to be zooming, though they are in this wider view. XPVM provides tra-

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 36

ditional magnification zooming, though the original image is then lost. The information-mural
approach [73] retains the original image of the entire computation, while allowing a zoom-in on
a portion. While it appears that this could provide additional information on zoom-in, rather than
simple magpnification, it does not appear that it does. Further, it does not appear to be the focus of
their work.

There are at least three other common features of monitoring systems that can be described
as forms of zooming: trace clustering, event abstraction and source-code display. We will discuss
trace clustering and event abstraction in detail in Section 3.10. Source-code display could be
viewed as the highest level of zoom-in, though it is usually implemented in the form of querying
the display, and so we will discuss it in the next section.

3.9.3 QUERYING DISPLAYS

While the primary purpose of a visualization is to present information to a user in such a manner
as to allow the information to be readily apparent, for a non-trivial computation this is not pos-
sible. Some information can be made clear, but only at the expense of making other information
obscure. All of the information that a user needs to know cannot be shown in a single display.
Rather, the display of information prompts questions from the user. Some of these questions,
such as “What happens if | drag this event to the left?”, may be resolved by scrolling around the
display. Others, such as “What does this look like up close?”, require zooming in or out. Still
other questions, such as “What is causally prior to this event?”, do not really fit either the zoom-
ing metaphor or scrolling, and must be asked more directly. The large variety of questions can be
grouped into two broad categories: questions pertaining to individual events and those concerning
the relationship between events. We will now describe the ways in which various systems deal
with these two groups of questions.

With the exception of scrolling capabilities, a significant fraction of visualization tools cannot
answer questions from either of these groups. Systems such a ParaGraph simply present a display
and hope that it is of value to the viewer. Such an approach we term an output-only display. It
requires little data-structure support, and scrolling within it is, of necessity, text-editor-like. The
typical approach in implementing such a system is to have a separate visualization engine that
acquires data from the monitoring entity but does not otherwise interact closely with it.

The next level, answering questions about events, is provided for in a variety of ways. A
typical minimal query capability is provided by XPVM. It allows a user to click on an event and
it will indicate the task identity, the PVM function and parameters that the event represents, and
the starting and ending times of the function call. ATEMPT allows the user to display the line
of code that the event corresponds to, providing a simple text window into the relevant source-
code file. Note that showing lines of source code does not provide the dynamic information that
XPVM provides. The combined functionality of these features is achieved in Object-Level Trace
(OLT [65]) which allows a direct connection between the visualization tool and a sequential
debugger. As with output-only displays, little data-structure support is required to implement
these capabilities. Specifically, each event requires the relevant information to be collected and
stored with the event.

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 37

The most complex query types pertain to relationships between events. XPVM provides
only the crudest support for this, in that a user can query messages. The result of this query
is that XPVM indicates which task the message is from, which it is to, the transmission time,
the message tag and the number of bytes. While this gives the illusion of value, in reality it
provides no more information than is available from the simple event querying. As with event
guerying, it requires only that the relevant information is collected with the transmit event, with
the exception of the message receipt time which must be collected from the receive event. The
POET system allows several types of user query. It can display all successor, concurrent, and
predecessor events to a given event. Data-structure support is required to compute these event
sets. Likewise, pattern-searching and execution-difference operations, described previously, are
displayed through the visualization engine. Finally, the PARASIT system [85], which is built on
top of the ATEMPT system, allows a user to reorder race message outcomes and re-execute to
determine the effect of this change. This requires replay-capability support in the data structure.

3.10 ABSTRACTION

Abstraction is the act of ignoring the irrelevant to focus on the essential. What is irrelevant and
what is essential is very much a function of the user’s current requirements. We shall discuss
some of the user’s criteria in the subsequent sections. In the context of our previous discussion on
visualization, abstraction can be seen as zooming in on some portion of the display, or zooming
out on the whole. It is zooming in because it focuses on essentials. It is zooming out because
details are omitted. Particular abstractions can be seen more as one or other of these views.

However, abstraction is more than simply a component of scalable visualization. It is also a
means of program understanding, and potentially enables analysis algorithms to focus on data of
interest, at a level appropriate for the algorithm.

There are several desiderata in abstraction. Initially, the primary purpose was to aid user
understanding, and insofar as this was achieved, the abstraction performed was a good one. Sub-
sequently it was observed that abstraction might be used to improve data-structure performance.
In principle, abstraction can help distributed management systems cope with excessive data by
limiting the amount of data that must be dealt with in various algorithms and operations. For ex-
ample, trace abstraction (discussed below) might allow algorithms to look only at interface events
of an abstract trace rather than all events within that abstract trace. Unfortunately, at present this
remains an idea in principle, not in practice. Further, we know of no current system that can use
abstraction in general for the efficient realization of a partial-order data structure.

There are currently two main abstraction techniques used in distributed observation and con-
trol. These are event and trace abstraction. We now examine these abstractions, again with a
focus on the requirements they would impose on our data structure.

3.10.1 E/ENT ABSTRACTION

At a very basic level, event abstraction is the act of creating abstract events from primitive ones.
In the most general definition, an abstract event is a set of primitive and other abstract events.

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 38

Unfortunately, most researchers use this vague definition, without formalizing it further, resulting
in a number of errors and inconsistencies. We will therefore create our own formalism and express
current methods as well as possible in that formalism, noting where problems or omissions occur.

First, since events may now be primitive or abstract, we will henceforth preface the term
“event” with either “primitive” or “abstract” when we wish to refer to events of that particular
type. Without the preface, the term “event” will refer to events of either type. Second, we
explicitly require that an abstract event cannot contain itself, either directly or through a recursive
chain. Third, since abstract events will be permitted to contain other abstract events, we will
create an abstraction hierarchy. We define level 0 of the hierathyto be the set of abstract
events that each contain a single primitive event. Thus

Ao ={{e} [ee &} (3.4)

We now define the higher levels of the hierarchy. To reduce complexity, we require that abstract
events at levelN can only be composed of abstract events at 1&vel 1, rather than of arbitrary
abstract events in any of the lower levels. Thusfor- 0

Ay C 24N (3.5)

This definition does not force abstract events to be non-overlapping, although most researchers
seem to implicitly assume this. However, we do not believe this to be a significant issue, as it
does not appear to affect any of the following analysis.

We describe an abstract event that is composed of a single event as “trivial.” It is useful to
formalize an equivalence of trivial abstract events with their component event, thus.

(0} = (3.6)

Note that this equivalence means that not only does every abstract event defined atkéstel
as a trivial abstract event at leviet- 1, but also in every higher level of the abstraction hierarchy.
Likewise, note that4, contains only trivial abstract events. An abstract event that is composed
of two or more events is “non-trivial.”

The set of all abstract events is then the union of these sets.

A=JA (3.7)
=0

Note that this definition does not imply that there are infinitely many abstract events. Specifically,
the equivalence of Equation 3.6 constrains the total to be not more than all possible enumerations
of primitive events.

For the remainder of this dissertation we will use the lettgrossibly sub- or superscripted,
to indicate an abstract event. We will use the subscript to refer to the abstract-set level in which
the event resides. Thusg € A;.

In addition to these simple definitions, various researchers have proposed further structure on

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 39

abstract events. Most of this structure has revolved around two issues. The first issue is attempting
to make abstract events in some sense atomic. What this means in practice is that after the inputs
are satisfied, the abstract event should be able to execute to completion, without an intervening

dependency.

The second issue is the question of what precedence relationships should be defined between
abstract events. There are several possibilities for extending the primitive precedence relation.
The first requirement, satisfied by all proposed extensions, is that it suitably degenerate to the
correct case for abstract events that are composed of single primitive events. That is

{ei} <4, {ej} == ei <¢ ¢ (3.8)

where < 4, is the precedence relation for abstract events in abstractsein addition to this
requirement, it is usually presumed that the precedence relation over all abstract eyergs,
the union of the precedence relations over the individual levels.

<4= U < A4; (3.9)

1=0

Itis not always clearly defined what precedence means between abstract events at differing levels
in the abstraction hierarchy, or even if such a definition is meaningful. Given our previous defini-
tion of trivial events, we will presume that precedence is resolved by “raising” the lower abstract
event to the same level in the hierarchy as that event with which it is being compared, and then
using whatever precedence relation is defined at that level.

{aF}y <4 db i<y

k !

a¥ <4 aé-(z) a; <4 a{ =7 (3.10)
af <4 {aj} i>3J

The definition of “covers” remains as in Equation 10, though it uses the abstract-event precedence

relation.

ol <ial = a' <4 N By al <4 af ANaF <4 d (3.11)

The final assumption in most prior work is that the definition of concurrency is essentially un-
changed from that of Definition 18, altering only the precedence relation from that over primitive
events to that over abstract events. Itis unclear whether this model of precedence and concurrency
is a good one for abstract events. Specifically, where primitive events are atomic, non-trivial ab-
stract events have duration. As such, it is not clear that their causal inter-relationship will form a
partial order. Disclaimers aside, we will now describe the various forms of abstract-event prece-
dence.

Kunz [89] lists two obvious possible definitions for abstract-event precedence. First, all prim-
itive events in one abstract event must precede all primitive events in the other abstract event:

ai<_,4aj<:>Vl

[
ekeaiveﬁleaj e <& 627, (3.12)

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 40

Figure 3.8: Ordered Primitive Events forming Concurrent Abstract Events

Note that while this definition is in terms of precedence of primitive events, it is is isomorphic to
the definition based solely on abstract events:

a' <4 a7 = YoiegiVyicq aF <4 d (3.13)

This approach yields a partial order over the set of abstract events, which has some appeal. How-
ever, there are few abstract events for which precedence would then hold [27]. It would also
require a modification of the definition of concurrency. The existing definition would imply that
abstract events were concurrent even though there might be significant communication between
constituent events. Indeed, the constituent events could be totally ordered, but the abstract events
considered concurrent under the present definition (See Figure 3.8).

The second obvious approach is that some primitive event in one abstract event must precede
some primitive event in the other abstract event.

at <4 d) =3,

l
ekeaiaeﬁleaﬂl e <& 621 (3.14)

Likewise, this is isomorphic to the equivalent definition using just abstract events. While this def-
inition requires no modifications to the definition of concurrency, it has the interesting property
that it is neither transitive nor anti-symmetric. The Ariadne debugger [27] takes this approach
as is, but defines theverlaps relation for such cases of symmetric dependency between ab-
stract events. It does not appear to deal with lack of transitive dependency at all. Cheung [20],
Summers [140], Basten [7] and Kunz [89] also take this view, but attempt to prevent symmet-
ric abstract events from being created by imposing further structure on abstract events. For the
remainder of this section we will use this precedence definition while describing the work of
Cheung, Summers, Basten, and Kunz.

To add additional structure, both Cheung and Summers define the input and output event sets
for an abstract event. These are as follows:

Definition 21 (Input Set: I C a) The input set, I, of abstract event « is the set of eventsin a
which have an immediate predecessor that isnot in a.

Iz{i|i€a/\(§|ajaj<:i/\aj¢a)} (3.15)

The output set is defined analogously:

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 41

Definition 22 (Output Set: O C a) The output set, O, of abstract event « is the set of eventsin
a which have an immediate successor that isnot in a.

O:{o|o€a/\(5|ajo<:aj/\aj¢a)} (3.16)

Note that although this has been written in terms of arbitrary abstract events, it appears that both
Cheung and Summers had in mind abstract events irfisiven these definitions, three classes of
abstract events were defined: the central-event, the complete-precedence, and the contraction.

The central-event class of abstract events requires that there exist an event within the abstract
event such that all input events precede it and all output events succeed it. This definition does
ensure that the precedence relation over abstract events is both anti-symmetric and transitive.
However, it appears to be excessively restrictive. A simple two-way information exchange be-
tween processes could not be formed into an abstract event, even though this might be desirable.
The problem is the requirement for a single event through which all precedence must flow.

The complete-precedence class of abstract events relaxes this restriction and enforces only
that all input events must precede all output events. This definition still ensures that the prece-
dence relation over abstract events is a partial order. This is probably the weakest structural
restriction that allows arbitrarily interconnected abstract events and still provides this guarantee.
However, it is arguably too restrictive a definition. It does not, for example, permit multiple
concurrent events to be a single abstract event. This particular usage of abstract events would
be prevalent for parallel computations in which multiple processes perform the same actions on
different data (the SPMD model).

Cheung studied a more general class of abstract event, contractions, which was first defined
by Best and Randell [11]. The definition is as follows:

Definition 23 (Contraction)
1. All primitive events are contractions
2. An abstract event a{ isa contraction if and only if

@ v, cad @il isa contraction
i—1%4

k . . l k l
(b vaf;aﬁ a; <:4; ag <ig; 0 = Elaiflea{ a; <Ay Qi—1 <A, G

A contraction that has only one immediate predecessor and one immediate successor is a simple
contraction. Systems of simple contractions retain the anti-symmetric and transitive properties
with respect to precedence. As such they have some appeal. The EBBA Toolset [8] is an example
of a distributed debugging system using simple contractions for abstraction. Strictly speaking
they are less restrictive than complete-precedence events. The manner in which they are less
restrictive is that there can be input events that do not precede output events and output events
that are not preceded by input events. This appears to have no practical value. Contractions that
are not simple cannot be arbitrarily interconnected and reflect the transitivity of the underlying
event set. Summers created a set of rules for interconnection that would ensure transitivity, though
it is not clear that this could be efficiently used in practice.

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 42

1 N
> I

Y
VAR I
/

N
I
AN [NN

<

(a) Abstract Even{{e3},{e1}} (b) Are These Convex? (c) Cyclic Precedence
Figure 3.9: Problems with Convex Abstract Events

Given the problematic nature of ensuring transitivity, Kunz [89] and Basten [7] abandoned
it as a requirement, but attempted to maintain anti-symmetry by defining the class of convex
abstract events as follows:

Definition 24 (Convex Abstract Event) An abstract event ¢; is convex if and only if

Va{,l,af,leai aleA al_y <4 a' Nal <4 af,l =d eaq
Several notes should be made about this definition. First, the terminology is somewhat imprecise,
since it is taken, essentially as is, from the Kunz’'s dissertation. He does not clearly indicate
exactly what set the precedence relation is over, and the most we can presume is that it is over the
whole set of abstract events. Further, it is not clear if an abstract evierdonvex if

3 ~ameAag—1 <aa™ANa™ <4af Na™da; Na™ €al |

al b 6l €ais
It could be argued that this is due to a poor formalism on our part, though no alternative has been
suggested. This problem could be corrected by changing the requirement from membership in
the abstract event to membership in the event or in any of its subcomponents. The difficulty with
this alteration is in the cost of testing for convexity. However, a deeper problem exists, exhibited
in Figure 3.9. In Figure 3.9(a) we see tHdtl},{e?}} is a legal convex abstract event. However,
we now cannot forn{{e?},{e}} into a convex abstract event, sinffe} },{e?}} will be both a
successor and a predecessor, but will not be part of the new abstract event. On the other hand,
if {{ed},{e?}} had not yet been formed into an abstract event, thgh},{ei}} would be a
perfectly legal convex abstract event. Clearly it is problematic for the legality of convex abstract
events to depend on the order in which they are created.

Basten provides a slightly different definition.

Definition 25 (Convex Abstract Event) An abstract event ¢; is convex if and only if

Va- & ~eesagfl -<Ae/\e-<,4af_1:>66ai

i—190;_1€a;;

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 43

Again, the terminology is somewhat imprecise. He usdlough this will not alter the substance

of the definition. He also does not clearly indicate exactly what set the precedence relation is over,
and the most we can presume is that it is over the whole set of abstract events. The difference is
that he requires the intervening event be a primitive one. Thus, in Figure 3.9(b),{abi 21}
and{{e?},{e}} are legal convex abstract events, and the order in which they are created does not
affect their legality. The notion behind this definition is that an abstract event, once all primitive
input events have occurred, can complete execution independently of external influence. This
was the premise behind contractions, and thus it is a reasonable one, and appeared easier to work
with than contractions.

Unfortunately, this definition too has deep problems. First, observe in Figure 3.9(b) that
abstract events are symmetric. Worse, in Figure 3.9(c), the abstract events, legal convex events
according to Definition 25, are not symmetric but form a precedence cycle. It is one thing to
abandon the transitivity of precedence, but quite another when precedence is cyclic. We know of
no simple way to fix these problems.

This brings us back to the core issue of this, which is the data-structure requirements imposed
by abstract events. There are two levels at which these requirements may be formed. First, a client
of the data structure may wish to simply compute abstract events according to an algorithm of its
choosing. In this regard, the data structure must provide the necessary precedence-determination
algorithms, as required by many previous operations. At a deeper level, however, we would like to
incorporate an abstract-event hierarchy within the data structure. Thus, the data structure would
be responsible for maintaining the hierarchy, ensuring that abstract events met the appropriate
criteria, and keeping track of the various abstract events to which primitive events belonged.
Having dissected the various event-abstraction algorithms and found them lacking, we choose
not to impose such a requirement on our data structure at this time.

Two final comments must be made about event abstraction. First, the data-structure require-
ments prior to our work have largely been formed around the question of what timestamps are
required by abstract events to reflect the relevant precedence relationship. The timestamps devel-
oped have in turn been based on Fidge/Mattern timestamps at the primitive-event level. This is
probably not a good approach.

Second, many distributed observation systems do not display or otherwise process abstract
events. The ATEMPT system incorporates edge contractions, a subset of contractions. Specific
unary events may be merged in the display into a single abstract event. This is displayed using
a triple event object, to indicate that it is hiding multiple unary events. TbeTRsystem in-
corporates convex abstract events. Figure 3.10 shows a possible event-abstraction view of the
binary-merge computation shown in Figures 3.4 and 3.6. The abstract events are rectangles,
usually covering multiple traces, with solid coloration on traces where primitive events exist as
constituents of the abstract event.

3.10.2 TRACE ABSTRACTION

Just as event abstraction is the act of creating abstract events from primitive ones, trace abstraction
creates abstract traces from primitive ones. In the most-general definition, an abstract trace is a set

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 44

Functions Re-order traces Options Event abstraction

ttolstoy: Ahomespasward/pu<;

LT

R Y A Y Y R

tolstoysbm

™

Folstog:bm

ftolstoysbm

tolstoysbm

ttolstoysbm

Folstog:bm

ftolstoy:bn

ttolstoysbm

tolstoyibm

folstoysbm

ftolstoysbm

btolstoy:bm

folstoysbm

ttolstoysbm

A A A A A A A A A A A A A A

O 0O 0 o0 o0 ooooo o oo o

SIS
1

tolstoyibm

Figure 3.10: BET Event Abstraction

of primitive and other abstract traces. Itis usually implicitly assumed that an abstract trace cannot
contain itself, either directly or through a recursive chain. This yields a hierarchy of abstract trace
sets, with primitive traces at the base. We therefore define sets in an analogous fashion to abstract

event sets. »
27 N-1 N >0
Pr C 3.17
N‘{{{p}lpeP} N=0 (3.17)

wherePy is the set of abstract traces at eyl As with abstract events, we describe an abstract
trace that is composed of a single trace as “trivial” and formalize the equivalence of trivial abstract
traces with their component trace, thus.

{p'} =p (3.18)

An abstract trace that is composed of two or more traces is “non-trivial.” The set of all abstract
traces is

P=JP (3.19)

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 45

which is finite for the same reason that the set of all abstract events is finite.

As in event abstraction, the primary problem is to deal with the correct representation and
manipulation of event precedence. In this regard, Cheung [20] defined a consistent interface cut
as follows. Consider a set of traces, which are to be divided into two abstract traces. Create
a virtual interface, the interface cut, between the two abstract traces, which intersects messages
that are passed between the abstract traces. Every message between the abstract traces creates
two events in the interface cut, a receive from the sending abstract trace and a transmit to the
receiving abstract trace. Such an interface cut is consistent if the events it is composed of are
ordered such that no new precedence relationships are implied by its presence.

There are several problems with this idea of a consistent interface cut. First, it cannot exist
in the general case, since Cheung required it to be totally ordered. His solution to this was to
require that an abstract-trace interface point have a representative trace through which all com-
munication would flow. This may appear to be an excessive restriction, though it is not difficult
to overcome in practice. It is possible to declare there to be multiple interfaces, one for each
communicating trace between the two abstract traces. This approach is effectively equivalent to a
single partially-ordered interface, composed of multiple totally-ordered interface cuts. Note that
creating a minimal set of such cuts would be NP-hard.

A more serious problem, observed by Taylor [145], is that a consistent interface cut can cause
user confusion. Specifically, the events on the interface cut are totally ordered even though the
communication that they represent may not be so ordered. This point remains true even with
abstract traces that have a representative trace. As sadT, takes the view that events on
the interface should maintain the same partial-order relationship as the communication events to
which they correspond. The effect of this is to move from a symmetric view, where the objective
is to maintain the same view on both sides of the abstract-trace interface, to an asymmetric one,
where only the traces inside the abstract trace are used to determine the interface. The quality
of the resulting abstract traces is then a function of the quality of the clustering. If traces that
communicate together frequently are placed in the same abstract trace, and in distinct abstract
traces from those with which they communicate infrequently, then the abstract traces should be
of good quality. If the clustering is poorer, then it is more likely that the abstract traces will
require as many totally-ordered interface cuts as the real traces they represent.

The primary work of data structures for trace abstraction revolves around the problem of
precedence-relationship determination in the presence of trace abstraction. Specifically, as with
event abstraction, the issue has tended to be posed in terms of what is the appropriate timestamp
for an event given that it is in an abstract trace and other traces are also in abstract traces. This can
be decomposed into two distinct problems. The first is the timestamp determination for the events
that are in the interface cuts. Cheung provides an algorithm for this in term of Fidge/Mattern
timestamps. The second issue is determining if it is possible to reduce the amount of information
that needs to be processed by the observation system when using trace abstraction. Both Cheung
and Summers give abstract-trace-timestamp algorithms, but both are offline and require an initial
calculation of Fidge/Mattern timestamps for all events. It does not appear to be the case that
integrating trace abstraction with the partial-order data structure, as opposed to merely allowing

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS 46

Functions Re=-order traces Options Event abstraction

tolstoy:shome/pasward/pe<. B—— - - -® | | B B | >

tolstoyibm <

1
NN N

tolstoy:bm <

tolstoyibm <

tolstoy:bm <

]

tolstoy:bm <

ftolstoy:bm < | >

I

tolstoy:bm <

o-4567

Functions Re=-order traces Options Event abstraction

tolstoy: home/pazward/pys B—— - - -B N‘ /'= B B B | -
talstoy:bn < \\ ! l / / /
-1 | / /

4-03 u /
o-4567 |

N4

Figure 3.11: PET Trace Abstraction

clients to compute trace abstractions, would be of particular value.

Displays of abstract traces tend to be similar to displays of real traces, with some simple
marker to indicate that it is an abstract, rather than a single, trace. The ATEMPT system simply
labels the relevant interface cut with the user-selected name. It is able to do this as no effort
is made to have a correct interface cut, which in the general case requires more than a single
trace line. The BET system uses an alternate background colour for the cuts that compose
the interface. An example of theoRT trace-abstraction method is shown in Figure 3.11. It is
the same binary-merge computation as that of Figure 3.10, with the same abstract events. The
difference is that in the top illustration the lower eight processes have been abstracted into a single
abstract trace and in the bottom one a hierarchy of trace abstractions has been created.

The figures also have some errors in them, as a result of incorrect interaction between trace
and event abstraction. Specifically, abstract events that have constituents both within and without

CHAPTER 3. DATA-STRUCTURE REQUIREMENTS a7

the abstract trace do not have an event displayed at the abstract-trace interface trace if those events
within the abstract trace are not communication events with partner events outside the abstract
trace. Thus, the third multi-trace abstract event in the upper figure fails to show an event in
the interface trace even though that abstract event spans the abstract trace. The essence of this
problem is that trace abstraction is nhot completely orthogonal to event abstraction. In particular,
event abstraction can cover multiple traces, as well as multiple events within a trace. The lower
figure has an additional problem that the bottom interface trace abstract events do not have the
transmissions to them displayed. This problem may simply be a code defect, since there is no
clear abstraction-interaction issue.

3.11 SUMMARY OF REQUIREMENTS

We now briefly enumerate the requirements, as identified above.

1. Event lookup
2. Basic and extended information store, containing at least

(a) real time(s) of event
(b) line of code of event

Determining precedence relationships between events

Trace and non-trace predecessor and successor identification
Greatest predecessors and least successors of an event
Partner identification

Longest (anti-)chain determination

Aggregate communications statistics by trace

Statistics over events within a trace

©CeNOOhA®

4 PARTIAL-ORDER-DATA-STRUCTUREINTERFACE

Having identified the general operations and the associated queries that they imply, we enumer-
ate the formal interface for the partial-order data structure. We do so in the form of a set of C++
classes. The major classes are PartialOrder, CutRef, SliceRef, EventRef, EventID, EventPosi-
tion, and TracelD. In addition to these, there are iterators associated with the PartialOrder and
SliceRef classes. We now describe these classes, starting with the simplest and working up to the
PartialOrder class.

4.1 EVENT IDENTIFIERS

The event identifier is composed of the event position and trace. These classes are intended to be
lightweight, primarily intended to allow comparison within a trace and to facilitate event lookup.
We describe the position and trace classes first, and then the composite.

The EventPosition class has the following definition.

cl ass Event Position {

publi c:

Event Posi ti on();

Event Posi ti on(const unsigned int);

Event Posi ti on(const Event Positiong&);
Event Posi tion();

const Event Position& operator= (const unsigned int);
const Event Position& operator= (const EventPosition&);
const EventPosition operator+ (const int) const;
const EventPosition operator- (const int) const;
const Event Position& operator+=(const int);

const Event Position& operator-=(const int);

const Event Position& operator++();

const Event Position& operator--();

const EventPosition operator++(int);

const EventPosition operator--(int);

bool operator==(const unsigned int) const;

bool operator==(const EventPosition&) const;

bool operator!=(const unsigned int) const;

bool operator!=(const EventPosition&) const;

bool operator< (const unsigned int) const;

bool operator< (const EventPosition& const;

bool operator<=(const unsigned int) const;

bool operator<=(const EventPosition&) const;

48

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 49

bool operator> (const unsigned int) const;
bool operator> (const EventPosition& const;
bool operator>=(const unsigned int) const;
bool operator>=(const Event Position&) const;

s

The specification of these methods is essentially as might be expected given the definition of an
event position in Section 2.2. For example, the comparison operations correspond to the process-
precedence equations (Equations 2.4 and 2.7), where it is assumed that the event positions occur
on the same trace. The significant differences are as follows. The event position created by
Event Posi ti on(0) does not correspond to an eveper the definition of event position,

they are assigned natural numbers), but rather is that position prior to the first event. In like
fashion, the decrement operations will not decrement prior to this position.

There is no upper bound on the event position, though the interface does limit assignment or
comparison with unsigned integers to UINMAX (typically defined in /usr/include/limits.h). It
is expected that an implementation of this class will impose an upper bound on event positions.
In doing so it should ensure that the increment operations do not wrap.

Note that the postfix increment and decrement operations return a copy rather than a reference.
The reason for this is that they are not returning the value after the alteration, and thus cannot
return a constant reference to the object. Rather, they must return the value of the object prior
to the alteration. This can only be done by making a copy of the object and returning that.
Likewise, the addition and subtraction operators must return a copy, rather than a reference. The
expense in such operations is not in the copy. Indeed, this class and the subsequent TracelD and
EventID classes are sufficiently lightweight that copying is often cheaper than the dereference
cost required when the reference is used. However, returning a copy rather than a reference
requires the constructor to be invoked. Since most usage of these operators discards the result,
the destructor is then immediately invoked. It is generally preferable to evade this by returning a
constant reference to the object, and that will be our practice for most of the remaining classes.

Finally, for reasons that will become apparent in Section 4.2, the class must provide a non-
position EventPosition. That is, any comparisons (excluding equality) with this non-position shall
result in an exception being thrown. Likewise, incrementing or decrementing it will result in an
exception.

All of the methods of the EventPosition class should probably be implemented inline.

The TracelD class has the following definition.

class Tracel D {
publi c:
Tracel () ;
Tracel D(const Tracel D&);
“Tracel) ;
Tracel D& operator= (const Tracel D& ;
bool operat or==(const Tracel D& const;

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 50

bool operator! =(const Tracel D& const;

s

The TracelD class is relatively simple because trace identifiers are not ordered in the same way
that event positions are. Rather, the identifier simply has to be unique relative to other trace
identifiers. Although the constructor is public, TracelD objects created outside of the partial
order are not in general meaningful. The purpose of the public constructor is for client code to
be able to use TracelD objects returned from the partial order. As with the EventPosition class,
the TracelD class must provide a non-trace TracelD. It is expected that the TracelD class will be
implemented inline.

The EventID class encapsulates the EventPosition and TracelD, providing a unique identifier
for every event. It provides most of the methods of the EventPosition class, though with slightly
modified specification. First, since it is not meaningful to compare an event identifier with an
unsigned integer, those methods from the EventPosition class are not part of the EventID class.
However, we do retain (in)equality testing with integers. This is solely for the purpose of testing
against 0, which is considered to be equal to that EventID which contains either the non-position
EventPosition or the non-trace TracelD. We refer to such an EventID as the NULL EventID.

Second, as the class contains the trace identifier, comparisons between EventID objects with
differing traces will result in an exception being thrown. Itis not the intent of this class to provide
partial-order event-comparison capability. Rather it is providing-thend <, capability per
the EventPosition class. It should also be noted that the multiple event identifiers of synchronous
events will not be considered equal. To determine their equality requires examination of the Event
object. Third, there are member access functions for the TracelD and EventPosition. They both
enable the provision of information and the direct alteration of the EventPosition or TracelD.

The formal specification of the EventID class is as follows.

class EventI D {

publi c:
Event | () ;
Event | D(const Event | D&);
Event | D(const Tracel D& const unsigned int);
Event | D(const Tracel D& const Event Position&);

“Event 1 () ;

const Event| D& operator= (const unsigned int);
const Event| D& operator= (const Eventl D&);
const Event| D& operator+ (const int) const;
const Event| D& operator- (const int) const;
const Event| D& operator+=(const int);
const Event| D& operator-=(const int);
const Event| D& operator++();
const Event| D& operator--();
const Event| D operator++(int);

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 51

const EventID operator--(int);

bool oper at or==(const Event| D) const;
bool operator! =(const EventlD) const;
bool operator==(const int) const;

bool operator!=(const int) const;

bool operator< (const EventlD) const;
bool oper at or<=(const Event| D) const;
bool operator> (const Eventl D) const;
bool oper at or>=(const Event| D) const;
Tracel D& tracel D();

const Tracel D& tracel X) const;
Event Posi ti on& event Posi tion();
const Event Position& eventPosition() const;

s

Note that as with with the TracelD class, creating an EventID outside of the partial order is not
in general meaningful. It is only useful to enable EventID objects to be used by client code. As
with the constituent classes, all methods are expected to be implemented inline.

4.2 SICES AND CUTS

A slice is a subset of the set of events such that there is at most one event per trace. It may be
thought of as the boundary events of a cut (not necessarily a consistent cut). Indeed, a cut, again
not necessarily a consistent cut, is the closure of a slice ovetithelation. Thus

VerceVeorepe! <pe? = el €k (4.2)

whereo is a slice andk is its corresponding cut.

The need for the distinction between slices and cuts is that the operations differ. For example,
iterating over a slice is a reasonable operation, costitly) where N is the number of traces.

By contrast, iterating over a cut could be extremely expensive, since the cut could cover most of
the events within the partial order. On the other hand, comparing cuts and checking containment
are reasonable operations that make less sense on slices. Due to their similarity, easy conversion
between the two types is required.

In general slices and cuts will require a non-trivial amount of space. As such copying is a
poor choice. On the other hand, slices and cuts are not guaranteed to be integral components
of the partial order. That is, their presence is not necessarily required to maintain the partial
order. As such they will need to have space allocated, and subsequently deleted when it is no
longer needed. This effectively rules out the use of C++ references. The remaining choice,
C++ pointers, is unattractive for several reasons. First, it leaves the correct memory-management
deletion operations up to the client code. This is problematic for several reasons, not least of
which is that it divides the allocation and deallocation of memory between different entitzes (

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 52

the partial-order data structure library will allocate and the client code will deallocate) which
invariably results in memory leaks. Second, slices can have iterators and the lifetime of the
iterator must be tied to that of the slice, otherwise it leads to the possibility of using an iterator
on a deleted slice, with undefined results. In particular, detecting and fixing such defects is not
always trivial. Third, it makes the use of overloaded operators substantially less clear in client
code.

We therefore opt to specify slices by means of a SliceRef class which, when implemented,
provides the necessary memory management and limits the required copying. We use a variant
technique from one described in Question 16.22 of the C++ FAQ Lite [23]. It provides Java-
like reseatable references, rather than C++-style aliases or the copy-on-write semantics of the
C++ FAQ Lite approach. The former is insufficient, as we have already noted, while the latter
is more expensive and less flexible than our approach. The scheme can be subverted, but not
accidentally. Further, it is not clear what value would be obtained by such a subversion.

The specification for the SliceRef class is as follows.

class SliceRef {
publi c:
SliceRef();
Sli ceRef (const Cut Ref &) ;
SliceRef (const SliceRef&);
“SliceRef();

const SliceRefé& operator= (const CutRef&);
const SliceRefé& operator= (const SliceRef&);
Event Posi ti on& operator[] (const Tracel D&);

const Event Position& operator[](const

const EventID
const SliceRefé&
const SliceRefé&
const SliceRefé&
const SliceRefé&
const SliceRefé&
const SliceRefé&
const SliceRef
const SliceRef

pri vat e:

class Data {
publi c:
Dat a() ;

Dat a(const Dat a&) ;

“Data();

operat or () (const
operat or+ (const
operat or- (const
oper at or +=(const
oper at or - =(const
operat or ++() ;

operator--();

operat or++(int);
operator--(int);

nmut abl e unsi gned int _count;
/'l Gther slice data

Tracel D& const;
Tracel D& const;
int) const;

int) const;
int);

int);

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 53

1

voi d operator&();

voi d* operator new size_ t);
Dat a* _slice;

s

First note that the private portion is part of the interface specification. An implementer is not free
to change this as desired, though it may be augmented. Several facts about this private portion
should be emphasized. First, the class is reference-like in size. It should require no more than a
pointer. This is important since it allows us to treat the class as a reference, having multiple copies
of a given slice, without incurring a substantial space or performance penalty. In particular, the
copy constructor needs only to allocate and initialize this pointer and the count field of the Data
subclass. Second, the address and new operators are private. This is to prevent the accidental
subversion of the memory-management scheme. Though we could have provided a SlicePtr
class and tied it into the memory management scheme, it is not clear that this would provide
substantial additional value. The smallness of the slice class enables us to return copies rather than
references, and thus have only automatic copies. Third, the Data subclass maintains the actual
slice data, and a count variable for memory management purposes. Any alternate techniques that
provide the requisite data storage and memory management capacity are permissible.

The public methods of the SliceRef class can be broken down into four categories. First, it
contains the necessary constructors and destructor. These behave essentially as expected, with
the exception of the default constructor. In normal C++ usage, references are aliases that are not
reseatable. They must therefore be assigned at their declaration. The SliceRef class, however,
specifies a reseatable reference. As such its default constructor does not require it to reference
a slice at declaration. However, it is probably not meaningful to invoke methods on such a
reference. There are at least two solutions to this. The implementer may constrain such a SliceRef
object to have only one valid method, which is assignment. The invocation of any other methods
(excluding deletion) will cause an exception to be thrown. This approach requires that every
method invocation first verify that theslice pointer is not null. This unnecessarily degrades
runtime performance. An alternate solution, as presented in the C++ FAQ, is to use statically
assigned data for the default constructor. In our application a slice with no members for every
trace would be appropriate. Normal usage of the SliceRef class will likely never use this specific
slice, but it allows the implementer to avoid the check on #iiee pointer.

The assignment operator will reseat the reference. In doing so it is responsible for ensuring
that its current referent slice is correctly disposed of as needed. Likewise, it must ensure that
the new referent is aware of the additional reference. The operator shall not make a copy of the
slice data, and is thus a relatively cheap operation. Due to the potentially problematic nature of
assigning a slice from a cut, the interface also specifies an assignment operator for that purpose.
That assighnment operator must not simply reseat the reference, since itis a reference to a different
object type. Rather, it must make a copy, though it may do so using copy-on-write semaentics,
the C++ FAQ.

Third, the SliceRef class provides access by trace identifier to the corresponding event, if any.

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 54

This can be used to determine or alter the event position recorded for a given trace. Alternately,
it will provide a copy of the event identifier for the event recorded for that trace. We note at this
point that access to a trace for which no event is recorded, per the definition of slice, must return
a non-position EventPosition.

Finally, a slice may be incremented or decremented. To do so is to alter the event position of
all of the events recorded in the slice by the increment or decrement amount. This jgeddime
rules for EventPosition increment and decrement. An implementation may choose to perform the
alteration at the time of request, or may defer until the slice is used further. A deferral approach
enables the implementer to avoid iterating over the events until needed. However, care must be
taken to ensure that the EventPosition increment and decrement rules are correctly followed. This
does not apply to the operator+() and operator-() methods which must create a new copy of the
data to be returned. It should be noted that one application of these operators is to make a copy
of the slice data. This is achieved by adding nothing to a slice and saving the result.

A slice has an iterator subclass to provide iteration over the slice events. It is defined as
follows.

class SliceRef::lterator {
publi c:
Iterator(const SliceRef&);
Iterator(const lterator&);

“lterator();
voi d initial ();
bool done() const;

const EventID nextEventl|D();
const Event Ref & next Event () ;

void operator= (const Iterator&);
private:

void operator&();

voi d* operator new(size_t);

Hs

As with the SliceRef class, it is expected to be small and is therefore constrained to being
automatic, rather than heap allocated. Likewise, it must be tied-in to the SliceRef memory-
management scheme. The assignment requires, as with the SliceRef class, a pointer and local-
state copy, and not a copy of the slice. The methods are essentially as might be expected for an
iterator. The initial() method will reset the local state to enable re-iteration over the events of the
slice. Three points should be observed here. First, the iterator does not guarantee an ordering of
the events. As such, there is no guarantee that invoking the initial() method will result in a repeti-
tion of the events in the same sequence. Second, the slice itself may be altered during the course
of an iteration. This will not, in general, be caused by the partial-order data structure library
code. Rather, nothing is included in this interface to require concurrency control of any vari-
ety on the slice, and thus the client code may change it. While addressing concurrency-control

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 55

issues in the data structure is beyond the scope of this dissertation, it is expected that any im-
plementation of this structure in a multi-threaded environment will provide serializability at the
method-invocation level. Third, on first use the initial() method is not needed. It is only required
if, after iterating, the client code needs to re-iterate over all events in the slice.

The done() method returns true when all events in the slice, if any, have been returned through
invocations to nextEvent or nextEventID since the initialization or the last invocation of initial()
occurred. The nextEvent() and nextEventID() methods return the next event or its identifier re-
spectively. Note that these are not separate iterators. Both will advance the same local-state value
that is recording the current slice event. The value in having nextEventID() is that it does not re-
quire a lookup in the partial order, where nextEvent() does. If the EventID is all that is required,
then this will be faster. On the other hand, if the actual event is required, the nextEvent() method
will be faster as it does not require the creation and destruction of an intermediate EventID. Af-
ter all events, if any, in the slice have been returned and nextEventlD() is invoked, the EventID
returned will be the NULL EventID. Likewise, if nextEvent() is invoked under the same circum-
stances, the EventRef returned will be one with a NULL EventID.

The CutRef class, as we have noted, provides a closure of the SliceRef class. It therefore
maintains essentially the same information, though it provides a different interface to that infor-
mation. For essentially the same reasons, it must provide the same type of memory-management
capability as does the SliceRef class. We will not specify the memory-management aspects here,
though, partly to avoid redundancy, but also because there is more flexibility in achieving it. A
simple approach that an implementer might choose is to have a single SliceRef object as member
data. In such an approach a CutRef object would have the same size as a SliceRefialbfect,
size of a pointer.

The formal specification of the CutRef class interface is as follows.

cl ass CutRef {

public:
Cut Ref () ;
Cut Ref (const Cut Ref &) ;
Cut Ref (const SliceRef&);

“CutRef ();

bool contai ns(const Eventl D& const;
bool consi stent () const;

bool operat or ==(const CutRef & const;
bool operator!=(const CutRef&) const;
bool operator< (const CutRef&) const;
bool oper at or<=(const Cut Ref & const;
bool operator> (const CutRef&) const;
bool oper at or >=(const Cut Ref & const;

const Cut Ref & operator= (const CutRef&);
const Cut Ref & operator= (const SliceRef&);
const Cut Ref & operator& (const CutRRef& const;

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 56

const Cut Ref & operat or &(const Cut Ref &) ;
const Cut Ref & operator| (const CutRef&) const;
const Cut Ref & operator| =(const CutRef&);

Hs

The methods fall into two broad categories: containment testing and set alteration. Containment-
testing methods consist of the usual subset cuperset$), etc. methods, as well as element
containment. In addition, the CutRef class provides a consistency check that determines if a
cut is consistent. It should be noted that this consistency check is likely to be an expensive
operation. The obvious algorithm 3(/N?), whereN is the number of traces. The set-alteration
methods are assignment, intersectiopdr at or &), and union ¢per at or |). Set difference

is not provided because the result is not a cut. As with the SliceRef class, the CutRef specifies a
reseatable-reference assignment operator for CutRef assignment, and copy semantics (expected
to be copy-on-write in an implementation) for assignment from a SliceRef object.

4.3 BEVENTS

The EventRef class provides methods for all of the properties that an event has. These can be
broadly broken down into four categories: constructors, destructor and assignment, basic and
extended event information including type information and arithmetic operators, comparison op-
erators, and precedence-related event sets. In addition, for reasons we will describe shortly, the
EventRef class must provide a memory-management capability in the same vein as the SliceRef
and CutRef classes. Before describing these we first present the formal interface specification.

cl ass Event Ref {
publi c:
Event Ref () ;
Event Ref (const Event Ref &) ;
Event Ref (const RawEvent &) ;
“Event Ref () ;
const Event Ref & operator= (const Event Ref &) ;

class Type {
public:
enum Type {unary, transnit, receive, synchronous,
m ni mum maxi mum undefi ned};

b

Type type() const;
bool unary() const ;
bool transmt () const;
bool receive() const ;

bool synchronous() const;

const Event| D&

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE

event I D() const;

const Event Position& eventPosition() const;

const Tracel D&
Sl i ceRef

const Event| D&
const Event Ref &
Sl i ceRef

Set Ref

i nt

BufferPtr&

const Event Ref &
const Event Ref &
const Event Ref &
const Event Ref &
const Event Ref &
const Event Ref &
const Event Ref &
const Event Ref &

bool
bool
bool
bool
bool
bool
bool
bool
bool

const Cut Ref
const Cut Ref
const SliceRef
const SliceRef
const SliceRef
const SliceRef

bool
const Sli ceRef
const SliceRef

tracel () const;
event | Ds() const;
partnerl D() const;
partner() const;
partners() const;

al |l Partners() const;
partner Count () const;
ext ended() const;

operator+ (const int) const;
operator- (const int) const;
operat or+=(const int);
operator-=(const int);
oper at or ++() ;

operator--();
operat or ++(int);
operator--(int);

operat or==(const int) const;

operator!=(const int) const;

oper at or ==(const Event Ref & const;
operator!=(const Event Ref &) const;
operator< (const Event Ref & const;
oper at or <=(const Event Ref & const;
operator> (const Event Ref & const;
oper at or >=(const Event Ref & const;
operator|| (const Event Ref & const;

pr edecessor Set () const;
successor Set () const;
gr eat est Predecessor() const;
| east Successor () const ;
| east Concurrent () const ;

gr eat est Concurrent () const;

covered() const;
covers() const;
coveredBy() const;

57

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 58

const Event Ref & nonTraceCovers() const;
const Event Ref & nonTraceCover edBy() const ;

s

Before describing these methods we first comment on the memory-management requirement.
There are a variety of reasons for specifying this. As with slices and cuts, events may consume
a non-trivial amount of memory (indeed, this is the core scalability issue that this dissertation
addresses). As such, copying is a poor choice. However, unlike slices and cuts, events are
an integral component of the partial-order data structure. It might therefore be reasonable to use
pointers to const or const references to specific event objects within the data structure. The reason
we choose against this option is that it limits flexibility in the implementation of the data structure.
Once a pointer or reference is returned to client code the object that is pointed or referred to can
never be moved or deleted. This substantially constrains an implementation, especially as the
data-structure size grows beyond main memory. We therefore have chosen to specify the same
reseatable-reference technique that we adopted for the SliceRef and CutRef classes.

The constructors and destructor for the EventRef class are specified as follows. The default
constructor will specify an event with a NULL EventID. The only legal operations that may be
performed on such an event are assignment and equality testing. Other method invocations will
result in an exception being thrown. The copy constructor will seat the reference to the input pa-
rameter, ensuring that the memory-management scheme is appropriately updated. The destructor
likewise ties in with the memory-management scheme. The RawEvent constructor is required to
specify an appropriate interface to the EventRef class for raw event data according to the specific
tool for which it is implemented. The various restrictions imposed on this RawEvent structure
will be addressed when we present the formal partial-order storage method in Section 4.4. Finally,
assignment will reseat the reference in the same fashion as SliceRef assignment.

The various event-information methods are as follows. The type-information methods behave
essentially as expected. The two exceptions are the minimum and maximum types, which are
those types assigned to that event that precedes or succeeds, respectively, all current events on the
trace. The undefined type is used wherever the EventID is NULL. The basic event information
is somewhat more compleRer Definitions 11 and 12, every non-synchronous event has exactly
one position, while synchronous events can have more than one position, but at most one per
trace. We therefore define the method eventID() as returning the unique EventID object for this
event if it is non-synchronous and any one of the multiple EventID objects if it is synchronous.
All of the event IDs for a synchronous event will refer to the same event, though they will not
be equal under EventID equality testing. For consistency in the case of a synchronous event,
the EventlID returned by the method should be the same one for any invocation for that event.
We will refer to that EventID as the canonical EventlD for that synchronous event. The method
eventlDs() returns a slice containing the event positions for each trace in which the event has a
position. It thus corresponds directly to the functipfe). Since the EventPosition and TracelD
are accessible through the EventlD, for coding simplicity we provide those methods directly in
the EventRef class.

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 59

Partner information for transmit and receive events is returned by the various partner methods.
In the general case a system can have multicast and multi-receive events. In such a case there is
no guarantee that there will be at most one partner event per trace. Indeed, the example of a
multi-receive operation shown in Figure 2.1(a) has three transmit partners in one trace for the
receive event. For this purpose we define the allPartners() method which returns a SetRef of all
partners, where the SetRef class is any reasonable set class, such as that provided by the standard
template library. For unary events the set returned will be empty. While synchronous events, like
unary events, have no partners, it is sometimes convenient to treat the various EventlDs other
than the canonical EventID as partners. We thus define this as the expected behaviour of this and
the subsequent partner methods.

Normally all partners are not required. Rather, the greatest preceding or least succeeding
partner in a given trace is all that is required, since the other partners are superfluous with respect
to precedence issues. For this slightly restricted case we define the partners() method which
returns a SliceRef of the greatest preceding (for receive events) or least succeeding (for transmit
events) partner for each trace, if any. This method is sufficient if the system being monitored does
not have multi-receive, and multicast reception is limited to one per trace. This does not appear
to be a significant restriction in practice.

A more significant restriction, though a common one in existing observation tools, is a limi-
tation of events to one partner, with the application of the appropriate transformations of Sec-
tion 2.3. This limitation is imposed on transmit, receive, and synchronous events. For this
restricted case, we define the partner() and partnerID methods that returns the EventRef and
EventID, respectively, of the partner event. These methods will throw an exception if invoked
by an event with more than one partner. For unary events and transmit events for which the
corresponding receive event has not yet been stored in the data structure, partnerlD() returns
the NULL EventID while partner() returns the an EventRef with the NULL EventID. A partner-
Count() method is provided, in part to prevent such invocations. This method returns the current
number of partners for the event.

The extended() method simply returns a pointer to an uninterpreted buffer of event informa-
tion. This information will be tool-specific, and so little more can be said about it. The one
observation that we make is that a BufferPtr class must be defined that allows flexibility with re-
spect to the physical location of the buffer of extended information. The standard smart-pointers
techniques of C++ can be applied here.

For the sake of convenience, the various arithmetic operators provided by EventID are also
provided with EventRef. There are three significant differences. First, the EventRef operators
return EventRef objects, and thus require a retrieval operation on the partial-order data structure.
If only the EventID is required, then such operations should be performed on the EventID, not
on the EventRef. Second, decrements prior to the first event in a trace will result in an EventRef
being returned that has the EventPosition prior to the first event. Such an event has type minimum.
Third, if the result of an arithmetic operation exceeds the current maximum event recorded for the
given trace, then the EventRef returned has that EventPosition that succeeds the current maximum
event in the trace. Such an event is defined initially as type maximum, though it is subject to

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 60

change at such time, if ever, as a new maximum event is stored in that trace. Due to the nature
of the EventRef class, the data for the new event would be immediately accessible through this
retrieved event.

The comparison operators provide the expected functionpétythe definitions of<¢, <¢,
and ||¢ given in Chapter 2. The only significant observation that should be made is that all
EventIDs of a synchronous event will be equal under EventRef equality testing, since all such
EventIDs will retrieve the same EventRef. Equality testing with an integer is only meaningful if
the integer is 0, and is used for testing if an EventRef has a NULL EventID.

The precedence-related event sets are defined as follows. The predecessorSet() method re-
turns a cut of all events causally prior to this event, usig We would like the successorSet()
method to return a similar cut of all events that causally succeed this event, again according to
<¢. Unfortunately, this is not a cut, since a cut is closed un¢gerHowever, we can return a cut
of all events that are causally prior or concurrent to the given event. The successors are then all
events not in the returned cut. This is then the cut that is returned by the successorSet() method.
The greatestPredecessor() and leastSuccessor() methods provide the slices corresponding to these
cuts, respectively. Thus,

greatestPredecessorg(e) = {eg) | eg; <geN A (eg, <p e'; A el; <e 6)} (4.2)

and
leastSuccessorg (e) = {e% | e <¢ ei A /He’; (elg <p e% A e <g e’If)} 4.3)

The leastConcurrent() method provides the slice of those events that are concurrent to the
given event such that there is no event causally prior that is also concurrent.

leastConcurrentg(e) = {ej el lee N B (ek lee A e <¢ ej>} (4.4)

Likewise, the greatestConcurrent() method provides the slice of those events that are concurrent
to the given event such that there is ho causal successor that is also concurrent.

greatestConcurrentg (e) = {ej el lee N B (ek lee A e <e ek)} (4.5)

The least- and greatestConcurrent sets were defined by us for the computation of critical pairs
(see Section 8.1.1).

Finally, there are five methods that pertain to event coverage. First, the boolean method cov-
ered() returns true when all events that will cover an event have been stored in the data structure.
For a unary or a receive event, this occurs when the trace successor is stored. For a synchronous
event, all trace successors must have been stored. For a transmit event, in addition to the trace
successor, all matching receive events must have been stored. The covers() method returns the
slice of all events that this event covers. Likewise, the coveredBy() method returns the slice of
all events that cover this event. Note that covers() is expected to be complete on any invocation,
where coveredBy() may be incomplete because the relevant events may not yet have been stored

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 61

in the data structure. The nonTraceCovers() and nonTraceCoveredBy() methods provided the
same functionality, though for the restricted case of single partner events. As with the partner()
method, if more than a single event is covered by either of these methods an exception will be
thrown. The coverage methods are almost synonyms for the partner methods, though they satisfy
the formal definitions otovers of partial-order theory.

4.4 THE PARTIAL ORDER

The PartialOrder class provides event storage and retrieval, state information, iterators, and call-
back methods. It is defined as follows.

class Partial Oder {
public:
Parti al Order();
“Partial Order();

const EventRef& store (const RawEvent &) ;
i nt remove (const int);

fl oat remove (const float);

i nt renove (const Cut Ref &) ;

i nt remove (const EventlD&);

const Event Ref & operator()(const Eventl D& const;
const Event Ref & operator () (const Tracel D&,
const Event Position&) const;

i nt traceCount () const
i nt tot al TraceCount () const
i nt event Count () const
i nt t ot al Event Count () const
i nt rawkEvent Count () const
i nt t ot al RawEvent Count () const
i nt t ot al Rawst or ageCount () const

const EventID minEventID (const Tracel D& const;
const Event Ref & ni nEvent (const Tracel D& const;
const SliceRef& m nEvents() const;

const EventID rmaxEventID (const Tracel D& const;
const Eventl D maxRawEvent| D(const Tracel D& const;
const Event Ref & maxEvent (const Tracel D& const;
const Event Ref & maxRawEvent (const Tracel D& const;
const SliceRef& maxEvent s() const;

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE

const SliceRef& maxRawEvent s() const;

class i Type {
publi c:
enum i Type {all Traces, activeTraces,
linear, traceOrder, events, rawkvents};
1
1
class Iterator {
Iterator(const i Type::i Type, const Partial Order&);
Iterator(const Iterator&);

“lterator();
voi d initial ();
bool done() const;

const TracelD nextTrace();
const Event Ref & next Event () ;
voi d operator= (const Iterator&);

s

Iterator& iterator(const i Type::iType,
const Partial Order&) const;

class Cal |l back {

public:
vi rtual “Cal | back();
virtual bool callback(const Tracel D&);
virtual bool callback(const Event Ref&);
virtual bool callback(...);

s

cl ass Paraneters {
friend Partial Oder;

public:
Par anet ers(Partial O der &) ;
Par anet er s& event (const Event| Dg&);
Par anet ers& trace(const Tracel D&);
Par anet ers& cut (const Cut Ref &) ;
Paraneters& slice(const SliceRef&);
Par anet ers& event Type(const Event Ref:: Type::eType);
Par aneters& iterator(const iType::iType);
Par anet er s& event Count (const int);

62

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 63

Par anet er s& spaceConsunpti on(const int);
Par anet er s& spaceConsunpti on(const fl oat);
bool activate();

}s

cl ass cbType {
public:
enum cbType {firstEvent, newlrace, iterator,
store, rawStore, renove, retrieve,
newPar t ner, newPart ner Stored, covered,
event Count, spaceConsunpti on,
structural Pattern, predicate};

s

Paranet ers& regi sterCal |l back (cbType::cbType, Callbackg&);
Par anmet er s& der egi st er Cal | back(cbType: : cbType, Call back&);
Par anet er s& enabl eCal | back (cbType:: cbType, Call back&);
Par anmet er s& di sabl eCal | back (cbType: : cbType, Callbackg&);

}s

The store() method takes raw events and incorporates them into the partial order. It imposes the
following limitations. First, events do not have to be stored in a linearization of the partial order.
However, any event that is stored that has not had all the events it covers stored will not, in the
initial instance, be incorporated into the partial order as far as precedence is concerned. That is,
while a retrieval will find the event, most of the comparison and all of the precedence-related
methods of the EventRef class will throw an exception if invoked on this event. The comparison
operators that will still work correctly are equality tests and comparison to events within the same
trace. The event may be considered to have a local, but not a global, timestamp (see the discussion
of timestamps in Chapter 6).

The second limitation pertains to synchronous events. While the partial order treats them as
single, multi-homed events, they will not typically be received that way as raw data. Rather, sev-
eral events will be received by the monitoring entity from different traces, each identifying itself
as a synchronous event, and giving some partner information. Two requirements are imposed on
this partner information. First, the closure of it must encompass all of the event’'s homes. Second,
there must be some clear way of identifying when event information has been received for all of
the homes. That is, the cardinality @fs) must be computable. In the case of systems restricted
to one partner, the cardinality is two or less. Note that until all of this information is received,
the synchronous event cannot be fully incorporated into the partial-order data structure. As in
the issue of events received out of linear order, some operations will result in exceptions being
thrown. The partial failure of some component of the distributed system or of the monitoring
code may result in the data structure eventually no longer being able to incorporate new events.
This issue is beyond the scope of this dissertation.

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 64

Event removal is facilitated by the four remove() methods. The purpose of event removal
is to deal with the fact that any monitoring entity cannot accumulate information indefinitely.
The system will run out of physical storage. From time-to-time, which should be user-selected,
the system must remove old information. For a partial order, events removed should form a
consistent cut. The reason is that this will preserve the property that if an event is present in the
data structure, its successors, if any, will be present. If all of the events for a given trace are
removed, that trace is referred to as inactive. Traces with events are active.

The cut to be removed can be system or user specified. For a system-specified cut, remove()
is invoked with either an integer, specifying approximately how many events should be removed,
or a float, specify the percentage of events that should be removed. The returned value is the
actual number or percentage of events removed, respectively. For a user-specified cut, the user
can either specify the cut directly or specify an event to be removed. If a cut is specified, it will be
checked for consistency. If it is not consistent, no events will be removed. If an event is specified,
it and all of its predecessors will be removed. Each of these removal methods will return a count
of the number of events removed.

Event retrieval is through operator(). For convenience, it allows retrieval by either EventID
or TracelD and EventPosition. If the event sought was at one time present, but has been removed,
then the EventRef of type minimum and with EventPosition(0) for that trace will be returned. We
do not provide an analogous maximum for event retrieval that exceeds the current maximum on
the trace, as new event storage will invoke the store callback. If the event sought is not present
and the previous condition does not apply, then an EventRef with the NULL EventID will be
returned.

Various state-information methods provide trace- and event-count information, and identify
the least and greatest current event by trace. The trace count is a count of all active traces. The
total-trace count includes all traces that have ever had events. The event count is a count of all
events that are currently fully incorporated into the partial order. The total event count is a count
of all events that are or ever were fully incorporated into the partial order. The raw-event and
total-raw-event counts are similar, but they include all events that have been stored, whether or
not they have been fully incorporated. Thus, they includes incomplete synchronous events and
events received out of linear order. The total-raw-storage count is a strict counting of the number
of store() invocations that did not result in an exception being thrown.

The least event by trace may be retrieved either as an EventID or an EventRef. A slice of
all least events can likewise be retrieved. If the trace is inactive then the EventID will have
EventPosition(0) and, if an EventRef was requested, type minimum.

The greatest event by trace may be retrieved either as an EventID or an EventRef, and may be
either the greatest raw event or the greatest fully-incorporated event. A slice of all greatest events
can likewise be retrieved, again either the greatest raw or fully-incorporated event. If the trace is
inactive then the EventID will have that EventPaosition that is one greater than was the maximum
prior to its removal. If an EventRef was requested it will have type maximum.

Iterators are provided through the iterator() method. The parameter iType::iType determines
the types of iterator. Six types are currently provided. First, allTraces, provides iteration over

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 65

all traces, whether or not they are active. The traces are accessed through invocation of the
nextTrace() method. The activeTraces iterator is similar, but provides iteration only over active
traces. The invocation of nextEvent() on either of these iterators will cause an exception to be
thrown.

Iteration over events is provided by linear, traceOrder, events, and rawEvents. The linear
iterator provides the events in a linearization of the partial order, and is only over events that
have been fully incorporated into the partial order. Different linear iterators will not necessarily
produce the same linearization. Events are provided sequentially by trace using the traceOrder
iterator, again only over events that have been fully incorporated. Different traceOrder iterators
will not necessarily provide the traces in the same sequence, though the events on the trace will
for correctness be in the same sequence. The events iterator is likewise only over events that
have been fully incorporated, but does not guarantee that they are provided in a linearization or
in trace order. It is probable that the events will not be in a linearization, as that is not likely
the most efficient method for providing all events. Finally, the rawEvents iterator is an iterator
over all events that have not been fully incorporated. It, together with the events iterator, provides
iteration over all stored events. Access to the events is provided by the nextEvent() method. The
invocation of nextTrace() on any of these event iterators will cause an exception to be thrown.

The various other methods, notably initial() and done(), perform the same function as those
of the slice iterator. As with the slice iterator, none of these iterator guarantees a particular view
of partial order that does not change during the invocation of the iterator. In particular, events and
traces may be added or removed from the partial order at any time.

The callback methods are dependent on two subclasses, Callback and Parameters. The Call-
back subclass must be inherited by objects that wish to register as callback objects. It defines
the methods that may be invoked for various callbacks. The variable argument callback method
enables arbitrary parameters to be passed in the callback. However, most callbacks will only
need to pass either an EventRef or a TracelD, and as such those methods have been defined to
improve efficiency and enable lightweight callbacks. The callback methods return a boolean in-
dicating success or failure. The PartialOrder class will disable the relevant object from being
further invoked if boolean failure is returned. A virtual destructor is required to ensure correct
disposal.

For Callback object registration a Parameters class is defined. This class enables the pass-
ing of parameters to the callback triggers using the named-parameter idiom described in Ques-
tion 10.15 of the C++FAQ Lite [23]. This is best illustrated by example. To register a callback
for every synchronous event that is stored on a particular trace, we would write the following.

partial Order.registerCallback(Partial Order::cbType::store,
cal | backnhj ect).
event Type(Event Ref : : Type: : synchronous).
trace(tracel D);

wherecal | backQbj ect is the callback object andr acel Dis the TracelD of the trace for
which we wish callbacks. Default values are set for the various parameters as follows. The

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 66

EventID will be set to the NULL EventID. The TracelD will be set to the non-trace TracelD. The
SliceRef and CutRef will be empty. The EventRef type is undefined. The iterator type will be
linear. The event count will be -1, as will the space consumption integer and float parameters.
The PartialOrder, required by the Parameters constructor, will be set by the PartialOrder register()
method to that PartialOrder for which the register() method was invoked. The PartialOrder is
needed for the activate() method.

The activate() method can be optionally used to force immediate activation of the callback,
and to provide feedback on the success or failure of the specific callback method. It must be the
last method of the method chain. The primary cause of failure would be to deregister a callback
that was not present, enable one that was not present or not disabled, or disable one that was not
present or not enabled. The fairly minor nature of these failures is the reason failure feedback is
not typically needed. If activate() is not invoked, the callback method will not be activated until
the next invocation of a PartialOrder method. For most callbacks this will be the first occurrence
at which the callback needs to be activated. However, for iterator callbacks, early activation may
be desirable.

The specific set of parameters is not yet fully defined, and is likely to be implementation-
specific. In particular, predicate and structural-pattern callbacks do not have parameters de-
fined. Predicate callbacks would likely require the examination of the extended event information
which, as we have already noted, is system specific. It is probable that the correct approach to
this is to enable the creation of user-defined functions that operate on this extended data, and have
those functions passed as parameters. Structural-pattern callbacks will have parameters that, in
part, depend on the pattern language chosen. These issues are beyond the scope of this disserta-
tion.

There are four callback methods: register, deregister, enable, and disable. They perform
essentially the functions as might be expected by their names, though it should be noted that
a callback that is registered will be enabled until it is disabled, either explicitly or by the data
structure. Every Callback object that is registered and enabled will cause a small space and
performance penalty on the data structure. As such, a Callback object should be disabled if it
is not needed for some time, and not going to be invoked for that period. Likewise, a Callback
object that is registered but disabled should be deregistered if it is no longer needed, as it will
cause a small space penalty and likely a small performance penalty when new Callback objects
are registered.

There are fourteen callback types, many of which have at least optional parameters. We
describe them in turn. The firstEvent callback has one optional parameter, eventType. If the
parameter is not set, the callback will be invoked on the full incorporation of the first event of
every new trace into the partial order. If it is set, it will only be invoked if the first event on the
trace is of the specified type. The callback method invoked is callback(EventRef&).

The newTrace callback is similar, though parameterless, being invoked on the creation of a
new trace for the storage of a new event. Note that the event stored that causes the creation of the
new trace may not be fully incorporated into the partial order. The callback method invoked is
callback(TracelD&).

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 67

The iterator callback provides a callback version of the iterators. If the optional iType::iType
parameter is not altered, it will default to a linear iterator. The callback will commence at such
time as the PartialOrder is subsequently invoked. For immediate activation, the activate() Param-
eter method should be included. Thus

partial Order.regi sterCall back(Partial Oder::iterator,
cal | backnj ect).
iterator(Partial Order::activeTraces).
activate();

will cause an activeTraces iterator to be set up that repeatedly invokes the callback(TracelD&)
method of the callbackObject with the results of nextTrace() until there are no further active
traces. An iterator callback will iterate through its sequence at most once, after which it will

deregister itself.

The store callback optionally takes EventRef::Type::eType, TracelD, EventID, SliceRef, and
CutRef parameters. If no parameter is passed, it will invoke the callback whenever an event is
fully incorporated into the partial order. The callback method invoked is callback(EventRef&).
If the eventType is specified, it will only be invoked for the specified event type. Note that
specifying EventRef:: Type::minimum or maximum will never match on a store, and will result in
the callback automatically being deregistered. In all of the remaining instances, if the eventType
is specified then the invocation will only occur if the event matches the specified event type. If
the TracelD parameter is set, the callback will be invoked whenever an event on that trace is fully
incorporated into the partial order. Likewise, if the EventID parameter is set, the callback will be
invoked when the event corresponding to that EventlD is fully incorporated into the partial order.
Since that callback can only occur once, after it has happened the callback will automatically be
deregistered. If the SliceRef or CutRef parameters are set, the callback will be invoked when any
event in the slice or cut is fully incorporated into the partial order. If more than one parameter
is set then the behaviour will be the union of the behaviours, with the exclusion of the automatic
deregistration.

The rawStoreEvent callback is identical to the store callback, except that it is invoked imme-
diately after the store() method has completed, whether or not that partner event is fully incorpo-
rated into the partial order. This is created as a separate callback rather than a parameter to the
store callback because it is invoked at a different time from the store callback.

The remove callback behaves in a similar manner to the store callback, though it is invoked
on the occurrence of event removal. If no parameters are set it will invoke callback() when one or
more events are removed by the remove() method. If the eventType is specified, it will only be in-
voked if an event of the given event type is removed. This remains true for all of the remaining in-
stances. If the TracelD is set it will invoke callback(TracelD&) when one or more events are to be
removed from the given trace. If the EventlD is set it will invoke callback(EventRef&) just prior
to the removal of that event. Likewise, if the SliceRef is set it will invoke callback(EventRef&)
for any event in that slice just prior to the removal of that event. If the CutRef is set it will invoke
callback(CutRef&) when one or more events within the cut are to be removed. In all cases the
removal operation will occur after the callback.

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 68

The retrieve callback is invoked on the occurrence of event retrieval. As with store, it can
be parameterless, or take an EventRef::Type::eType, EventID, TracelD, SliceRef, and/or CutRef.
With parameters it will invoke the callback only if the event retrieved is an element of one of the
parameters, matching the appropriate type. A possible use would be to keep track of which events
have EventRefs passed to client code. The callback method invoked is callback(EventRef&).

The newPartner callback is invoked whenever an event has a new partner fully incorporated
into the partial order. It takes the same optional parameters as the store callback, and treats them
in essentially the same manner. Note that the parameters specify details about the event whose
partners are sought, not details about the partners. If the eventType specified is unary, the callback
will automatically be deregistered.

The newPartnerStored callback is identical to the newPartner callback, except that it is in-
voked immediately after the store() method has completed for the new partner event, whether or
not that partner event is fully incorporated into the partial order. The covered callback is simi-
lar, being invoked when an event (possibly partially specified by the parameters passed) is fully
covered by events that are fully incorporated into the partial order.

The eventCount callback requires a single integer parameter, eventCount. When the number
of events fully incorporated into the partial order reaches that count the callback method call-
back(count) will be invoked. The callback will remain registered and enabled as event removal
may cause the callback to be invoked subsequently. However, if the user knows that this will
not be the case, then the callback should be deregistered. A simple rollover technique would be
to register eventCount callback, with the maximum number of desirable events, and have that
Callback object invoke remove() with the desired reduction in events.

The spaceConsumption callback is similar in intent, but operates on physical memory con-
sumption, either bytes (given the integer parameter) or percentage of system physical memory
(given the float parameter). At such time, if ever, that the space consumption is estimated to
exceed that specified by the spaceConsumption threshold the callback() method is invoked with
either an integer or float parameter that specifies what threshold was exceeded.

The remaining two callbacks, structuralPattern and predicate, are beyond the scope of this
dissertation to fully specify. Their intent is enable a callback on the occurrence of a pattern match,
either of the predicate or structural variety. We hope to explore mechanisms to incorporate these
into the partial order in future work.

Finally, we observe that multiple callbacks caused by a given trigger do not have a clear order
of invocation. Further, the order in which two callback method are invoked is not guaranteed to
remain the same the next time they are triggered simultaneously. In a multi-threaded environ-
ment, they may probably be invoked concurrently in separate threads. Deadlock prevention is not
guaranteed if a callback object invokes a method on the partial order, though if the method does
not alter the partial order, it should not cause a deadlock.

4.5 SATISFYING THE REQUIREMENTS

We now demonstrate how the data structure we have defined satisfies the requirements as enu-
merated in Section 3.11. For many of those requirements, the solution in the interface is either

CHAPTER 4. PARTIAL-ORDER-DATA-STRUCTURE INTERFACE 69

explicit or obvious, and we will not belabour the point. A few requirements, however, appear to
be absent, and so we indicate how this interface makes provision for them.

The most clearly missing data is the real-time and line-of-code information. The reason for
its absence is that it is placed within the extended buffer. The justification for this is as follows.
First, such information is not relevant to the maintenance of the data structure, and therefore is not
strictly essential. Further, it is not relevant for all applications, and polluting the basic information
with non-essential requirements will only add space-consumption costs to those who do not need
it. This can be considered a variant of the end-to-end argument [129]. Second, the treatment of
such information will be application-specific. For example, if we wish to compute the longest
chain using the real time as the edge weight, it is not clear which real-time would be used for
synchronous events that have more than one real-time associated with their operation. Likewise,
a breakpoint on a synchronous event could not know which line of code to display. However, the
event could trigger an application-specific callback that would know. Third, the neither real-time
nor line-of-code information is fixed-size. In the case of the latter, it is clear that it requires file
identification, and thus will be variable. In the case of real-time information, it is not fixed-size
because synchronous events are not atomic in time.

Next, there are no (anti-)chain determination methods in the interface. This is deliberate be-
cause, as we noted, modeling computations as partial orders does not yield a one-to-one mapping
between traces and processes or threads. Rather, a given process or thread is often represented in
multiple traces. Chain and anti-chain computation must take into account what process or thread
a given trace belongs to. This is application-specific. That said, the data structure does provide
sufficient information for any client code to determine chains or anti-chains as required by its
application.

Third, there is no explicit statistics information provided. This can be gathered instead by
callback functions associated with the desired entity. Thus, event statistics for a given trace can
be computed by a callback that is triggered as events are stored in that trace. Any desired level of
statistical information can be collected, according to the needs of a given application.

Finally, we note that there are some elements of the interface whose existence is not pred-
icated on the requirements. In particular, the least- and greatest-concurrent sets have no corre-
sponding requirement. They are provided to enable one of our scalable-timestamp solutions.

PART ||

CURRENT TECHNIQUES

70

5 EVENT STORAGE AND ACCESS

Having defined the formal requirements, we now explore both current solutions for satisfying
those requirements and the application of existing data-structure techniques where solutions
do not currently exist. The requirements can be broken down into event storage and access,
and precedence determination. Precedence determination largely revolves around algorithms for
implementing the comparison and precedence-related-event-set methods of the EventRef class.
Event storage and access is that part of the structure that provides all facilities other than event-
precedence operations. Thus it provides the algorithms and data structures for the implementation
of the remaining methods of the EventRef class, and the methods of all other classes. In this chap-
ter we will present solutions for event storage and access.

The three basic classes, EventPosition, TracelD, and EventID, together with many methods
of the remaining classes, are sufficiently straightforward that little comment is needed. A couple
of minor, but significant, details do need to be dealt with correctly.

First, the specification has identified EventPosition objects as being able to compare posi-
tions with unsigned integers. This requires an architectural limitation of the structure, which is
dependent on the word size of the machine for which it is implemented. We believe this to be
an acceptable tradeoff as infinite-precision integers would be undesirable for such a lightweight
class. A 64-bit machine can operate at a high event-data rate (one billion events per trace per sec-
ond) for more than a century. Since this is far in excess of current capacity, this is an acceptable
implementation approach.

Second, EventPosition, TracelD, and EventID are lightweight classes. For example, the
increment-by-one of EventPosition(0) will always result in EventPosition(1), whether or not that
particular event is currently in the data structure (assuming the EventPosition in question is part
of an EventID). However, the EventRef class does not ignore event removal. Thus, the increment
of an EventRef object with EventPosition(0) will be dependent on which events, if any, have been
removed from the trace.

We now deal with the non-trivial aspects of event storage and access, starting first with the
way events are received from instrumented processes and integrated into the data structure.

5.1 RAW-EVENT PROCESSING

The storage of raw events requires four things:

1. trace identification

2. positional information within the trace
3. type information

4. partner information, if any.

In addition, event storage must deal correctly with the storage of non-maximal events. We now
describe existing solutions to these issues.

71

CHAPTER 5. EVENT STORAGE AND ACCESS 72

Trace identification is usually made by the monitoring code and can be passed to the moni-
toring entity once, if communication is through a persistent channel, such as a TCP stream, or on
a per-event basis, if communication is datagram based. We make no comment on the advantages
or disadvantages of either technique, as it is outside the scope of this dissertation. Suffice it to
say, trace identification is part of the RawEvent structure.

Positional and type information are likewise the responsibility of the monitoring code, and
it is expected that these are part of the RawEvent structure. By way of examplegintke
EVENT struct contains integer memberdrace and eevent, as well as EMYPE eetype and
short eflag. The etrace value uniquely identifies the trace. Thewent likewise identifies the
event’s position within the trace, where the first event has position 0. The event’s type may be
determined from the_gype and eflag together with the global event-description table, which is
required by PET to maintain target-system independence. The type is inferred as follows

bool unary(EVENT& e) {
return event tab[e.e_etype].numpartner == 0;

}

bool transm t(EVENT& e) {
return (e.e flag & E_ ASYNC &&
event _tab[e.e_etype].numpartner < 0);

}

bool receive(EVENT& e) {
return (e.e flag & E_ ASYNC &&
event _tab[e.e_etype].numpartner > 0);

}

bool synchronous(EVENT& e) {
return (!(e.e_flag & E_ASYNC) && 'unary());

}

whereevent _t ab is the event-description table, ASYNC s that bit in an €flag that identifies

an event as asynchronous, angm par t ner s identifies the number of partners. WithiroBT

the number of partners is specified as -1, @00, where -1 indicates that a partner is expected,

but the instrumentation cannot be expected to know what the partner is at the point the event
occurs. It is therefore used when instrumenting transmit events, which cannot know the trace
identifiers or positions of the receiving events.

Partner information is somewhat more difficult to deal with. There are four instances that
we distinguish: transmit-event partners, receive-event partners, synchronous events, and special
cases for each of the previous three. We describe first the special cases, where the only current
significant special case is when the number of partners is limited to one. This is the only case
permitted by PET, Object-Level Trace, and the EMU/ATEMPT/PARASIT tool suite.

CHAPTER 5. EVENT STORAGE AND ACCESS 73

A unicast transmit event may know the trace to which it transmits, but it cannot know the
EventPosition of the receiving event. Likewise, the receive event may know the trace of its
corresponding transmit event, but cannot know the EventPosition. This information can be gained
in several ways, though in practice only one technique is used. Each trace is required to keep
track of its current EventPosition. When a message is transmitted, the current EventPosition of
the transmitting trace is appended to the message. If the system is such that a receiver cannot
know the transmitting trace, then the TracelD of that trace is also appended to the message. The
receiver then records the transmitting EventlD and forwards this, along with its own EventID,
to the the monitoring entity. The stored transmit event then has no partner information recorded
until its matching receive event is stored. At that time the transmit event is updated to include the
partner information.

An alternate solution can be employed if the instrumented system is known to have FIFO
channels and the sender can identify the receiving traceiaadersa. In this case the receiving
and transmitting events identify in the RawEvent structure the partner trace. When the receive
event is stored, it then seeks the first unmatched transmit event with the appropriate receiver spec-
ified on the identified partner trace. Likewise, the transmit event seeks the first unmatched receive
event with the appropriate transmitter specified on the identified partner trace. The primary ad-
vantage of this technique is that it requires no alteration to the actual message transmitted. In
certain instances, such alteration may not be possible.

Synchronous events are handled in a like manner to transmit/receive eveasTintRough
it is possible to perform matching within the monitoring code. The synchronous call will append
its EventPosition to the message. The synchronous receive will then be able to record its partner’s
EventID, which it forwards, along with its own EventID, to the monitoring entity. A synchronous-
call event is then partially stored, but precedence information will not be determinable until its
partner is also stored.

The alternate solution is to take advantage of the fact that synchronous partners must all
communicate with each other. It is therefore quite possible for the synchronous receive to append
its EventPosition to its reply. The synchronous call is then able to record the partner information,
and the storage of one of the synchronous partners would be strictly redundant, as the partial order
treats a synchronous event as single, multi-homed event. The primary advantage of this solution
is that it can more easily handle partial failure within the distributed system or monitoring code.
Specifically, once the first synchronous event is recorded, the system will not deadlock if the
partner is never received. The drawback is that it delays the availability of the synchronous-call
event to the monitoring entity. More exploration of handling partial failure in such monitoring
systems is required.

We now turn to the general case of multiple partners. For multicast transmit events, it is
sufficient to append the EventPosition of the transmitting event to the message. It may also be
desirable, insofar as it is possible, to record the number of receivers, so that the partial order
can more easily determine when the transmit event is fully covered. If the partial order does not
know this information, then it must assume that the event is not covered until such time, if ever,
as the event has a successor in every trace. Receivers of such multicast messages must record

CHAPTER 5. EVENT STORAGE AND ACCESS 74

the transmit EventID and forward it, along with their own EventID, to the monitoring entity for
storage.

A multi-receive event is mildly more complex. If each corresponding transmit event appends
its EventlDs, then the receiver must be instrumented to capture each of these EventlDs and for-
ward them, along with its own, to the monitoring entity for storage. Note that the EventPosition
may be insufficient, since it may not be possible to distinguish the trace for which each EventPo-
sition corresponds.

For synchronous events that have more than two homes, the two-home alternate solution can
be naturally extended by including all EventIDs of all constituent homes that are known at the
time. Each RawEvent would then record the entire set of homes. The drawback with this is that
an N-way synchronous event will now require messages of 6ig&’), which is undesirable.

More efficient extensions of this method are probably possible, though it would depend on the
specific implementation aV-way synchronous events to determine exactly how they worked.

The RoET solution would require a slightly more complex approach. One of the synchronous
homes, we will identify it as the initiator, must identify the total number of homes, and forward
this, along with its EventID, to the monitoring entity for storage. A transmitted message from
the initiator, either directly or one that is forwarded, includes the EventID of the initiator. Thus
a binary-tree implementation of a synchronous event would forward the initiator EventID along
each edge of the tree. This EventID, along with the EventID of the receiver, is forwarded to
the monitoring entity for storage. The store() method then matches the constituents as follows.
Any synchronous-event store() either identifies the initiator and the total number of traces, or it
identifies a receiver and the initiator. The store() is complete when all the homes, as specified by
the initiator, have been stored and matched.

The coverage methods, being almost synonymous with the partner methods, are handled in
essentially the same manner. As such, we do not comment further.

Finally, we must correctly deal with out-of-order storage. Some systemsthe network
monitoring system of Parulkaat al [116]) avoid this problem by using causal message ordering
within the system, including the monitoring station. In this way events are never received, and
hence stored, out of causal order. Such an approach is not practical because of the high overhead
of ensuring causal message ordering.

A simpler approach, adopted byoPT, is to maintain event priority queues, one per trace.
Events within these queues are stored in EventRef format, and they may be sought using the
event-retrieval mechanisms, per the specification of the previous chapter. When store() is invoked
for an event, it is first determined if this is the next expected event for its trace. Note that this
is not generally an issue, as raw events are typically forwarded to the monitoring entity in FIFO
order. This is only required if events can be forwarded in non-FIFO order. In this instance, the
processing of the event is delayed at least until its EventPosition is the next expected.

We now deal with events that are the next expected event within their trace. For unary and
transmit events, full incorporation into the partial order takes place immediately, though the part-
ner information for a transmit event may not yet be complete. This is possible because such events
are maximal at the time of their storage. For receive and synchronous events, some delay may be

CHAPTER 5. EVENT STORAGE AND ACCESS 75

b1

pn

oty

@é

owX
O,

Figure 5.1: Not Quite Transitive Reduction

incurred. Specifically, a receive event cannot be fully incorporated until its corresponding trans-
mit events have been incorporated. Its queue will therefore block, pending the storage of those
transmit partners. Synchronous events will likewise block pending the arrival of information from
each home (assuming that ther approach is used for collecting the event information). Either

of these cases will deadlock if the required information is not forthcoming, possibly because of
partial failure within the system. The correct solution to such a deadlock is beyond the scope of
this dissertation.

The specific implementation of the described storage approach can be single-threaded, though
there is no reason why there cannot be up to one thread per queue for RawEvent addition to the
gueue, and up to one thread per queue to incorporate the queued events into the data structure.
Neither approach is beyond the straightforward application of current techniques, and so we do
not describe it further.

5.2 EBEVENT-ACCESSDATA STRUCTURE

We now address the core data structure within which events are stored. All systems we are aware
of store, approximately, the transitive reduction of the partial order. The qualifier is required
because they will continue to maintain the full sequential-trace information, which is sometimes
slightly more than a transitive reduction. This can be seen in Figure 5.1, whergtthe? edge

is not in the transitive reduction, but will be stored implicitly. It is the storage of this approximate
transitive reduction with which we are now concerned.

To determine the appropriate structure we must know something of the data that is being
stored. The following observations can be made based on dfsg Bxperience. First, while
in some target-environments traces contain similar numbers of events, in others the number of
events varies by substantial orders of magnitude. Second, traces may appear or disappear (that
is, cease to be active) at any time. Third, traces may disappear after many or very few events.
Fourth, events are stored in strictly linear order within a trace. Finally, rollover happens.

Given this behaviour, event data for each trace is stored in a variant on the B-tree structure,
and an extensible array is used to access each trace. Our only comment on the extensible array is
to observe that it must contain pointers to the roots of each trace structure, and various information
about that structure that is fixed on a per-trace basis.

The variant B-tree structure is illustrated in Figure 5.2. It maintains fixed-size blocks of
pointers, with the bottom level containing the fixed-size portion of the event data and pointers
to any variable-size component of event data. It is possible to have the bottom level point to
individual events, rather than contain a block of events, though it is unclear if this provides an

CHAPTER 5. EVENT STORAGE AND ACCESS 76

Figure 5.2: Trace Data Structure

advantage. The presumption behind our approach is that a significant fraction of event retrievals
will only wish to access the fixed-size data. This reduces the number of dereference operations
required by one, which is significant given that an expected blocksize of 256 will require only
one or two dereference operations to access the data.

The differences from a B-tree structure are as follows. First, events are always appended,
rather than inserted between other events. Second, events that are removed are always removed
from the front, and never in the middle. As a result there is never a need to split or merge index
blocks, as is the case with B-trees. However, as the number of events stored within a trace grows,
it is possible that a new level is needed in the tree. Likewise, the removal of events may cause the
tree to shrink by one or more levels.

The basic operations are retrieval, insertion, and deletion. Event retrieval starts at the root and
recursively computes the pointer to follow, thus.

retrieve(position, block) {
if (block.level > 0) {
of fset = pow(bl ocksi ze, bl ock.level);
retrieve(position % offset, block[position/offset]);
}
el se
return(bl ock[position]);

}

Note thatposi t i on is the position of the event within the leaves of the structure not the Event-
Position. These positions are numbered from zero, where the zero position is not the position of
the least event recorded, but the position of the least event recordable. That is, it is that position
that would be reached if the least pointer in each block, at each level, were followed, whether or
not that block is in fact still present. This is illustrated in Figure 5.3. Note that the event with
EventPosition(1) is the least recordable event in that figure, even though the least recorded event
is that with EventPosition(12). This value pbsi ti on is determined by subtracting from the
EventPosition the current value of the least recordable event. This subtraction is performed prior

CHAPTER 5. EVENT STORAGE AND ACCESS 77

Figure 5.3: Least Recordable Event (Dotted Lines Indicate Deleted Data)

to the initial invocation of retrieve(). In the initial instance, the least recordable event is that with
EventPosition(1). After deletions, this will likely change.

It is also apparent from the retrieve() code that it is desirable for the blocksize to be a power
of two, allowing the division to be computed using a bitshift operation and the remainder by a
bitmask operation. With a blocksize of 256 most current trace data will retrieve events with two
lookups, and certainly within three.

Event insertion requires identifying the pointer to follow, while adding new pointer blocks as
needed.

Bl ock* insert(event, position, block) {
if (block.level > 0) {

of fset = pow(bl ocksi ze, bl ock.!level);

if (position >= offset) {
Bl ock* newBl ock = new bl ock][bl ocksi ze] ;
newBl ock[0] = bl ock;
newBl ock. | evel = bl ock.level + 1;
return insert(event, position, newBl ock);

}

if (block[position/offset] == 0) {
bl ock[positi on/ of fset] = new bl ock[bl ocksi ze] ;

}

return
i nsert(event, position % offset, block[position/offset]);

}

el se {
bl ock[positi on] = event;
return bl ock;
}
}

CHAPTER 5. EVENT STORAGE AND ACCESS 78

The algorithm returns a pointer to a block so that the originally invoking method can adjust its
pointer to a new root block if one was created. At miost 1 new pointer blocks will be created,
whereh is the initial height of the tree. A new pointer block at levelill only be needed after

the insertion o/ events, wher# is the blocksize. It therefore only adds an amortized constant
to the cost of insertion.

Event removal is somewhat more complex, as it may also cause the removal of levels in the
tree and alter the value of the least recordable event. The functions of event removal and tree
rebalancing are easily separable, and so we describe them as distinct operations, though this is
probably not the most efficient approach in practice.

renove(position, block) {
if (block.level > 0) {
of fset = pow(bl ocksize, bl ock.!level);
for (i =0 ; i < position/offset ; ++i)
del ete bl ock[i];
renmove(position % offset, block[position/offset]);
}
el se
for (i =0 ; i <= position ; ++i)
del ete bl ock[i];
}

Note that the destructor for the block class, as invoked by delete, must delete anything that the
block is currently pointing to. This is standard practice, but is also a common source of errors,
and so we emphasize the point.

rebal ance(bl ock) {
if (block.level > 0) {
i f (bl ock[bl ocksize - 2] == 0 &&
bl ock[bl ocksize - 1] '=0) {
root = bl ock[bl ocksize - 1];
| east Recor dabl eEvent += pow bl ocksi ze, bl ock.|evel);
bl ock[bl ocksi ze - 1] = 0;
del et e bl ock;
r ebal ance(root);

}
}
}

First, observe that the test for whether or not a pointer block can be deleted is not strictly as
shown. That test simply determines that there are events stored below the last pointer, but not
below the penultimate pointer. It is not strictly guaranteed that this means there are no active
pointers earlier in the block. However, it would require out-of-order event insertion within the

CHAPTER 5. EVENT STORAGE AND ACCESS 79

trace itself, which is generally unlikely as monitoring code tends to forward RawEvent data in
FIFO order. Further, it would require a gap in the insertion order of at least blocksize events,
which is doubtful when the blocksize is 256. Second, note that we are implicitly assuming that
ther oot andl east Recor dabl eEvent variables are global. This is simply for convenience
of description, and would not be the approach taken in the actual code. We leave it to the reader
to verify the correctness of these algorithms.

We must now turn very briefly to the data structure required for the EventRef class. The
requirements specified in the previous chapter lead naturally to a structure that consists of the
following.

cl ass Event Ref {

privat e:

class Data {

publi c:
Dat a() ;
Dat a(Event Bl ock&) ;
Event | D _event | D
Type _type;
bool _covered;
Sl i ceRef _partners;
Buf ferPtr _ext ended;
unsi gned int _count;

Event Bl ock* const _ bl ock;
}

Dat a* _event;

}

In the case where we are limited to a single partner, {har t ner s member data is replaced

with _part ner of type EventID. Note that this structure is fixed-size, as thar t ner s and

_ext ended member data are single pointers. For the single-partner case the size of an EventRef
together with the EventRef:.:Data will be approximately 9 words, or 36 bytes for a 32-bit machine.
For the multi-partner case, the fixed size will be approximately 32 bytes, with additional variable
space required for SliceRef data. The amount of space required for this will be dependent on
the number of partners. Note also that the data stored will be augmented to enable precedence
determination. This will require an additional pointer, and a variable amount of space according to
the specific precedence technique adopted. We may therefore observe that the fixed-size storage
requirement per event is approximately 44 bytes, allowing 4 bytes for the block-lookup pointer.
Note that we could reduce this by 8 bytes per event by not recording the TracelD, since it is the
same for every event on the trace, and the EventPosition, since it is known in order to perform
the event lookup. However, this would require a more complex, and probably slower, retrieval

CHAPTER 5. EVENT STORAGE AND ACCESS 80

process, since any EventRef returned to the client code must contain the EventID. Further, this
space saving is negligible relative to the space required for precedence determination. Additional
storage may be required for serialization in a multi-threaded environment, though this will depend
on the degree of concurrency expected. If it is expected to be small, a lock on the associated
EventBlock object may be sufficient. The use of tli# ock and_count member data will be
discussed in Section 5.3.

Finally, we address the SliceRef structure. This is essentially an array of event positions,
indexed by trace. However, the specific implementation is dependent on the number of traces
for which event positions exist. For many uses, in particular when specifying the greatest pre-
decessor and least successor of most events, a dense-array representation is probably the correct
approach. On the other hand, there are cases where it is likely that the SliceRef data will be
sparse. Specifically, partner information is unlikely to be dense, since most communication is
unicast even where multicast is possible. For such cases, an associative array is preferred. Un-
fortunately, we know of no general data structure that adequately covers the entire range, though
hashing techniques may be applicable. This issue requires further study.

5.3 FREESTOREMANAGEMENT

Freestore management is required at three levels within the data structure. First, as indicated by
the requirements, the SliceRef, Slice::lterator, and CutRef objects must be correctly disposed of
after client code no longer references them. This also extends to EventRef objects which have
been removed from the data structure, but for which client code still has references. Second, the
data pointer and fixed-size component of EventRef objects must be placed in a specific location
in the trace-tree structure. This complicates the reference-counting technique for these objects.
Finally, various objects are likely to be created and deleted frequently, but are not automatics.
For example, slices, slice iterators, and cuts returned to client code usually will have a short life,
but are heap-allocated. In such instances the default new and delete operators are undesirable, as
their general-purpose nature tends to impede performance.

As we have already indicated in Section 4.2, we solve the first of these problems by adopting
a variant technique from the C++ FAQ Lite[23]. There are two differences from the method
specified in that FAQ. First, we do not provide copy-on-write semantics. Rather, we reseat the
reference. Thus methods that mutate the data are not altered, unlike the approach of that FAQ.
Second, if the data structure exists in a multi-threaded environment, then serialization of the
__count member is required. The reference-counting technigue is otherwise unaltered.

The extension of this technique to EventRef objects is more complex. EventRef::Data objects
are created within a block of the trace structure. As such they cannot simply be deleted using the
described reference-counting technique. First, we show the structure of event blocks, and then
we provide an extension to the reference-counting mechanism for such blocks.

A block of events, as required by the trace structure, can be created as a just a block of
EventRef objects. The problem with this approach is that EventRef objects are fundamentally just
pointers to EventRef::Data objects. Little advantage is accrued by placing these pointers together

CHAPTER 5. EVENT STORAGE AND ACCESS 81

while allowing the associated EventRef::Data objects to be in essentially random locations in
memory.

Alternately, we could create just a block of EventRef::Data objects, together with various
block-level data, such as a count of how many of the objects are currently referenced. This
would save the cost of a pointer per event stored. The problem with this approach is that the
EventRef::Data objects are of no value in and of themselves. To be used they must be accessed
though an EventRef object. While the various partial-order objects could evade this through
friendship, this would probably be poor for data-structure maintenance, and would certainly not
solve the problem for returning EventRef objects to client code. This second problem could
be solved by returning copies of EventRef objects, rather than references, as specified in the
requirements. However, as noted in the previous chapter, returning a copy requires the constructor
and destructor to be invoked in quick succession. This is particularly poor in this circumstance
where a count must be kept, possibly requiring a lock.

The third approach, and the one we adopt, is to keep both EventRef and EventRef::Data
objects in block structures within the trace structure, returning a reference to the EventRef as re-
quired. The issue then becomes one of where the respective blocks of objects should be located.
We could maintain two separate blocks, one for EventRef objects and one for EventRef::Data
objects. However, this is probably not wise. Whenever an EventRef object is accessed, its asso-
ciated EventRef::Data object will be accessed immediately afterward. It therefore makes sense
from a cache-performance perspective to locate the EventRef object immediately prior in mem-
ory to the EventRef::Data object to which it refers. While EventRef objects in client code cannot
be so located, they can be for the blocks of events stored in the trace structure. We therefore
define the EventBlock class as follows.

cl ass Event Bl ock {
friend Event Ref: : Dat a;
public:
Event Bl ock() : _count(1),
_events(this) {};
“Event Bl ock() {
if (--_count <= 0)
del ete this;
}
const Event Ref & operator(const int i) const {
return _events[i]. _er;

b

private:
class ER {
publi c:
ER(Event Bl ock* b) : _erd(b), _er(_erd) {};
Event Ref _er;

CHAPTER 5. EVENT STORAGE AND ACCESS 82

Event Ref:: Data _erd,;
b

unsigned int _count;
ER _event s[bl ocksi ze] ;

}s

Note that this creates a block with a sequence of EventRef, EventRef::Data objects, where the
_dat a pointer of the EventRef object will point to the EventRef::Data object that immediately
follows it. The EventRef::Data will be set to default values, with the exception of teock
member, which will be set to point to the EventBlock in which the EventRef and EventRef::Data
objects reside. Note that the line of code that achieves this is not actually syntactically correct C++
code. There is no syntactically correct way to invoke any constructor other than the default on
array member data. The effect of this can be achieved by other, more complex, means, however,
and so we leave itas it is.

We then perform freestore management on this structure as follows. ddwent member
data in the EventBlock class contains a sum of two separate numbers. The first number is an
indication of the liveness of the EventBlock object as far as the trace-tree structure is concerned.
Initially this will be one, since the EventBlock object has been created, presumably to be used to
store data. At such time, if ever, that the EventBlock object is to be removed, this number will
be decremented to zero. Thus the value obunt will be decremented by one. This will only
cause the deletion of the EventBlock if the resulting value@bunt is then zero. If not, it will
defer the deletion untilcount does reach zero.

The second component of theount data is a count of how many of the contained events
have references outstanding in the client code. Note that it is not a count of the number of out-
standing references, either to the events or to the EventBlock class itself. This then requires that
the_count member of the EventBlock object is changed whenever the correspondmgnt
members of EventRef::Data objects within the EventBlock are incremented to two, or decre-
mented to one. The EventBlockcount member is incremented or decremented by one respec-
tively in these circumstances. The rationale is that the EventRef::aiant must always be
at least one, since the EventBlock contains an EventRef element, and will only exceed one when
a reference is outstanding in the client code.

Note that this design is based on an assumption that the environment is multi-threaded, and
that the concurrency level will be sufficiently high that it is undesirable to have multiple Event-
Ref::Data objects simultaneously accessing a single count variable. If this is not the case, then
a simpler design may be made. Each EventRef::Data object would not maintain its own count
variable, but would use the EventBlock object count variable. This would have the added advan-
tage of requiring four fewer bytes per event stored. The difference is analogous to the difference
between row-level and page-level locking in databases [50].

We deal with the third problem using a standard technique, for which, unfortunately, we have
no reference. We overload the new and delete operators for each class for which we desire very
rapid allocation and deallocation. We then maintain a stack of deleted objects. Whenever new is

CHAPTER 5. EVENT STORAGE AND ACCESS 83

invoked, the stack is checked and, if it not empty, the top object is returned. If the stack is empty,
then a new object is created in the freestore. The delete operator in turn adds deleted objects to
the stack, rather than freeing the space.

This technique can cause a large amount of freestore to be tied up in an otherwise unused
stack. There are two approaches to dealing with this. One is to keep track of the number of
objects contained in the stack. If it grows too large, many of them may be freed. Alternately, we
may wait until we are unable to allocate further memory, and then invoke a cleanup operation on
these stacks. Since most systems will not run out of memory until they run out of virtual memory,
it is probably wise to keep track of the total allocated freestore, and invoke a cleanup when that
amount exceeds some threshold.

5.4 CALLBACK IMPLEMENTATION

Finally, we present the callback implementation details. There are two things that must be dealt
with for correct callback operation: registration and trigger determination. We deal with the
second problem first, as the solving of it determines what is required of event registration.

We wish to ensure low cost in determining that a callback has been triggered. To do so, we
first divide the callbacks into four groups, according to how we determine when a callback has
been triggered.

1. iterator

2. firstEvent, newTrace

3. eventCount, spaceConsumption

4. store, rawStore, newPartner, newPartnerStored, covered, retrieve, remove.

The first group, containing only the iterator callback, is not really a trigger-driven callback.
Rather, it is an alternate method for iterating over events. As such, any method invocation on
the partial order will simply check to see if an iterator callback is currently enabled and not op-
erative. If there is such, an appropriate iterator will be created, and the callback will be invoked
for each iteration, unless the callback returns false. At such time as all iterations are completed,
or the callback has returned false, the iterator will be cleaned up, per the semantics of the iterator
callback.

The second group is invoked when a new trace is required by the storage of some RawEvent.
Neither of the callbacks in this group have significant parameters. As such, it is sufficient to have
two stacks of such callbacks, one for each type. When a new trace is created, the newTrace stack
is iterated through and the callback(TracelD&) is invoked. For firstEvent callbacks it is slightly
more complex, as they may have an associated type and the event must be fully incorporated
before the callback is invoked. When the event is fully incorporated, we iterate through the stack
and determine if there is a type match, invoking the callback if there is. This is reasonable as
there are only four event types and these callbacks are only invoked on new-trace creation.

The third group has simple numerical parameters. It is therefore very easy to perform numer-
ical computations to determine when these callbacks will be invoked. For an eventCount callback

CHAPTER 5. EVENT STORAGE AND ACCESS 84

we record the number of events required to be stored to trigger it. For every full incorporation
we decrement that count by one. For event removal, we increment the count by the number of
events removed. When the count reaches zero, we invoke the callback. For spaceConsumption
callbacks, we convert the parameter to an estimated number of events to be stored. We then treat
it in the same manner as an eventCount callback. It is not unreasonable to expect that multiple
callbacks of these varieties will be registered with different parameter values. For this, we adopt
the timeout data structure described by Tanenbaum [141]. The callbacks are ordered according to
the number of events that need to be stored to trigger the callback, from least to greatest. In this
way only a single computation and a single comparison is heeded per store() invocation to check
these callbacks.

The callbacks of the final group take a significant number of parameters, each of which has a
significant domain. They must, therefore, be treated carefully to ensure efficient invocation. We
first observe that all of the parameters are optional, and it is expected that for any given callback
registered, most of the parameters will be unaltered from their default value. In particular, of the
five possible parameters that each of these callbacks can be registered with, it is expected that
the vast majority of registrations will specify an event type and/or only one of the four other pa-
rameters (EventID, TracelD, CutRef, and SliceRef). Second, we observe that a SliceRef can be
broken down into a collection of EventlDs and EventIDs, in turn, may be broken down to Trace-
IDs and EventPositions. The CutRef likewise has an EventPosition for each TracelD, beyond
which it will not be triggered. Finally, we observe that all but two (retrieve and remove) of these
callbacks occur on the invocation of the store() method. We know that events are received and
stored approximately in a linearization of the partial order. Further, we can assume that for some
target environments or tools, events will not be stored out of EventPosition sequence, though we
have not made that a strict requirement hitherto.

We therefore adopt the following structure. All callbacks in this group are first divided into
those that only specify an event-type, and those that make additional or other specifications. Each
of the event-type callbacks is placed in a stack associated with its type. On the occurrence of a
trigger, we index into the appropriate stack, according to the event type of the triggering event,
and invoke any callbacks in that stack.

Any remaining callbacks in this group must have at least one of the other parameters set.
Those parameters, as we have observed, all specify at least a TracelD. We therefore index by
the TracelD of the triggering event. Any callbacks that are specified based on TracelD, possibly
with an event type, are recorded at this level of the structure in one of five stacks, according to
the event-type specification of the callback object. We then invoke all callbacks in the undefined
event-type stack, and all those in the event-type stack that matches the event-type of the triggering
event.

This now leaves only callbacks that specify an EventID, SliceRef (which is an EventID, now
that we have indexed by TracelD), or CutRef (which is an upper-bound on EventID). We deal
first with the EventID and SliceRef callbacks, since these are discrete references. We sort these
callbacks (without distinguishing between them) by EventPosition, from least to greatest. Since
events are stored in EventPosition sequence, we can check in one step if any of these are triggered.

CHAPTER 5. EVENT STORAGE AND ACCESS 85

Even if events are not stored in strict EventPosition sequence, they will be close to it. As such, we
can check if the particular event is in sequence, and if so determine if it has triggered a callback.
If it is not in sequence, we can perform a simple linked-list search, which is likely to be efficient
given the near-sequentiality of the incoming data. Since it is doubtful that there will be more than
one or two callbacks on a given event, we simply check the event type for a match against that
specified by the callback, rather than maintaining five stacks.

For event removal, we work up the sorted list of callbacks, invoking them in turn, until we
reach a callback with an EventPosition that exceeds the greatest event removed for the given trace.
Again, as these callback types specify discrete events, it is doubtful that there will be multiple
such for a given event, so we simple check the event type for a match against that specified by the
callback.

For event retrieval we cannot take advantage of any ordering technique. There are three
approaches that might be used. First, we can perform a search on the sorted list of EventPositions.
This will presumably be no better tha@(log ¢), wherec is the number of positions in the sorted
list, which is the number of discrete callbacks registered over that trace. This is undesirable,
since the retrieval method is highly optimized for efficient operation. However, if only a few
EventIDs were specified for a retrieval callback, this might be acceptable. Second, we might add
callback member data to the EventRef or EventRef::Data classes, or possibly to an object that
is collocated with those objects in the trace structure. This would allow very efficient callback
operation, though at the expense of extra storage. Such an approach could also be used for the
other callback types of this group, though it would somewhat slow down the retrieval operation,
since it would increase the likelihood that the callback variable referenced a non-retrieval callback
method. Third, we might simply advise or require that the retrieve callback be limited to event-
type and TracelD parameters. We are currently agnostic as to the preferred alternative.

For CutRef callbacks we similarly sort the callbacks registered by EventPosition. However,
in this instance when a given trigger-event occurs, we must invoke every callback that has a
CutRef with an EventPosition equal or greater than that of the trigger event. We therefore link
the callback methods in the same sequence as the EventPositions, though separated into five lists,
one for each event type specifiable. For event removal we likewise follow these lists, invoking
each callback in turn. Event retrieval has similar problems to those of the EventID and SliceRef
cases, and so we do not reiterate those arguments here.

Having resolved the issue of efficient callback invocation, we can now see the requirements
imposed on the registration methods. We have already indicated that the registration of a callback
object does not directly accept the parameters, if any, for that callback object. However, the
registration method must create an associated Parameters object for the callback object registered,
and return a reference to that Parameters object. Any parameters are then filled in by invocation
of methods on that Parameters object.

Clearly, the parameters cannot be used in raw form. The registerCallback() method must
therefore identify a pending registration. This is achieved by pushing the registration information
on a stack. Any partial-order method invocation is required to check the state of this stack and,
if it is not null, parse the Parameters and set up the appropriate callback. The parsing process

CHAPTER 5. EVENT STORAGE AND ACCESS 86

also determines any duplication in the specification, and removes it accordingly. For example, if
both an EventID and a TracelD are specified, and the TracelD is the same as that contained in the
EventID, we ignore the EventID. This prevents the multiple invocation of a callback object that
was registered only once.

Since parsing and incorporation into the trigger-determination structure is not likely to be a
fast operation, we can optimize slightly. When a callback is registered, its type is specified in
the registerCallback() method. We therefore know where it can possibly be invoked from in the
partial order code. This allows us to adopt a lazy incorporation approach, in similar vein to lazy
evaluation in functional programming [47, 63]. For example, if the method invoked is a retrieve
operation, the only pending callback operations that would need their parameters parsed and to
be incorporated into the callback trigger-determination structure, would be retrieve callbacks.
The activate() method of the Parameters class overrides this lazy parsing, and forces immediate
parsing and incorporation into the callback trigger-determination structure.

The deregisterCallback() method must likewise parse its arguments and then remove the as-
sociated callback from the trigger-determination structure. This is a more complex process. In
particular, the defined structure has so carved up the original parameters that it is not possible to
determine from that structure what the various original parameters were to the callbacks that have
been registered. Two approaches may be taken to this issue. We may choose to simply parse the
deregister parameters, seek them in the trigger-determination structure and remove them accord-
ingly. After all, deregistering something that is not there is largely harmless. If, on the other hand,
it is desirable to maintain a consistency between objects registered and deregistered, then we can
maintain a simple structure of raw callbacks registered, together with their specified Parameters
object. Any deregister operation is first verified against this structure to determine if, indeed, the
relevant callback has been registered. If it has, then the deregistration can proceed, per the first
approach. If it has not, then the deregistration is halted and, if activate() were called, an error
returned.

Given the proposed trigger-determination implementation, it is unclear if the enableCall-
back() and disableCallback() methods are operationally distinguishable from the registerCall-
back() and deregisterCallback() methods, respectively. We therefore choose to implement these
methods as aliases of one another. In an alternate trigger-determination structure, this might not
be the case.

6 A BRIEFHISTORY OF TIMESTAMPS!

We now present current techniques for implementing the comparison and precedence-related-
event-set methods of the EventRef class. We have termed this a brief history of timestamps as
this is what the work has largely revolved around. In particular, little work has been applied from
directed-graph data structures, though this is perhaps a consequence of the more specialized na-
ture of the distributed-computation partial orders. This is evident, for example, in the work of
Han [60] on execution differences. We will not remedy this deficiency in this chapter, concentrat-
ing instead on techniques that have found wider applicability. In Chapter 7 we will present, albeit
briefly, a fuller range of previous approaches, together with justification for their inapplicability

to our problem.

The approaches for the precedence-sets methods will build on, and depend on, the specific
technigues used for the comparison operators. We therefore first present current solutions for
those comparison operators. In dealing with this problem, it is sufficient to solve the single
operatoroper at or <() . Equality can be determined by comparison of EventIDs. This in turn
allowsoper at or <=() to be computed. The operatarper at or >() andoper at or >=()
are the reverse of the previous two operators, respectively. Finally, concurrency is the negation
of oper at or <=() andoper at or >=() . For the remainder of this dissertation, the phrases
precedence deter mination andprecedence test will be synonymous wittoper at or <() .

The simplest method for precedence determination would be to store the partial order as a
directed acyclic graph. In such a case precedence determination is a constant-time operation
because the partial order is transitively closed and so there is an edge between any two events
that are ordered. However, the space consumption for this method is likely to be unacceptably
high. A naive implementation would requif®n?) space to store the matrix of edges, wheiie
the number of events in the computation. We are not aware of any work that has approached the
problem starting from this point and attempting to improve the space consumption. The primary
problem, from our perspective, is that it ignores the optimizations available from the sequentiality
of the traces.

As we have noted in the previous chapter, all systems we are aware of, including our own,
store, approximately, the transitive reduction of the partial order. This approach is the least space-
consumptive possible. Precedence determination then requires computing whether there is a
directed path between the two events. There are standard methods for such graph-searching
operations available in most algorithm texéxy([26]). Unfortunately, such techniques tend to
be slow and space-consumptive. A depth-first approach would take'time+ m), wheren is
the number of events and the number of messages, and spéxéd), whered is the depth at
which either precedence is determined or backtracking takes place. While there is ho bound on
this depth in an online environment, we have required that events cannot be fully incorporated

Iwith apologies to Stephen Hawking.

87

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 88

until all of their predecessors are so incorporated. As such, the algorithm can treat the partial
order as fixed. Even so, there is no guarantee that it would not require examination of all events
currently stored. In particular, this is likely if the precedence test fails, either because the events
are concurrent or because they precede in the opposite sense of that being tested. The breadth-first
alternative is no better, with a time-cost ©{n + m) and space-consumption 6f(b%) where

b is the average number of message transmissions per event (the branching factor of the graph),
though in this casd is the depth of the shortest path.

6.1 LoGICcAL TIME

To compensate for this deficiency some additional information is added to allow for a more-
efficient precedence test. The most common form this additional information takes is a logical
timestamp, which receives its name from the fact that it determines the logical-time ordering of
events. In the directed-graph view of a partial order, timestamps amount to the addition of some
edges, beyond the transitive reduction of the partial order, to reduce the search time. There are
several logical timestamps which can be categorized based on five features.

Distributed v. centralized creation: A distributed timestamp-creation algorithm is one in which
the timestamp can be generated within the distributed computation of interest. By contrast,
a centralized-creation algorithm requires the gathering of event information by the obser-
vation tool to enable timestamp creation.
Examples of distributed creation algorithms include the Fidge/Mattern [43, 100], Fowler/-
Zwaenepoel [45], and Jard/Jourdan [70] timestamps. Examples of centralized creation
include the Ore timestamp [114, 140], Summers cluster algorithm [140], and our own
dimension-bounded [166] and centralized-cluster [168, 169] algorithms.
For the purpose of distributed-system observation, either technique will suffice, as the time-
stamps are typically generated in the monitoring entity, and any distributed-creation algo-
rithm can be implemented centrally.
To our knowledge, we are the first to recognize this distinction. Hitherto, all logical-time
algorithms presumed that they were to be created in a distributed environment. The value
of centralized creation proved crucial to the solutions we will present in Part III.

Distributed v. centralized precedence-testing: Distributed precedence-testing is the property
of being able to determine the precedence relationship between two events using just the
timestamps of those events. Centralized precedence-testing requires additional informa-
tion, typically timestamps for additional events, to determine the precedence relationship
between two events.
Examples of algorithms that enable distributed precedence-testing include the Fidge/Matt-
ern and Ore timestamps. Examples of algorithms requiring centralized precedence-testing
include the Fowler/Zwaenepoel, Jard/Jourdan and Summers cluster timestamps.
For the purpose of distributed-system observation, distributed precedence-testing is pre-
ferred, though not essential. Specifically, it enables a more flexible architecture. While our
interface buries the actual querying of other events’ timestamps behiogérat or <()

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 89

method, the various effects (performance, architectetal) of having to perform those
additional queries cannot be buried.

As with the previous item, we are the first, to our knowledge, to recognize this distinction
between distributed and centralized precedence-testing. A similar, though distinct, concept
was recognized by Meldal, Sankar, and Vera [105]. They observed that in a distributed
environment a process is likely only interested in determining the precedence relationship
between messages that arrive at that process, rather than between arbitrary messages.

Static v. dynamic: Static timestamp algorithms are those in which all events must be processed

before the timestamps can be generated. Dynamic algorithms can timestamp events either
as they occur or as they are received by the monitoring entity. Typically the ordering of the
processing of events is restricted to being a linearization of the partial-order if the creation
algorithm is centralized. This is equivalent to the (implicit) requirement of distributed-
creation algorithms that the events must occur in a valid state of the computation.
Examples of static algorithms include the Ore and Summers cluster timestamps. Examples
of dynamic algorithms include Fidge/Mattern, Fowler/Zwaenepoel, and Jard/Jourdan.
For the purpose of distributed-system observation, dynamic algorithms are preferred and
sometimes essential. For example, both monitoring and control require dynamic algo-
rithms. Most users of distributed debugging systems prefer dynamic tools. Exceptions to
this include computation replay, which by its very nature, admits static algorithms.

Time-bounds. There are several time-bounds of interest in logical timestamps, which can be
broadly reduced to two: creation time-bound and usage time-bound. The creation time-
bound varies from constant in the case of Fowler/Zwaenepoel to linear in the number of
traces in the Fidge/Mattern case. In other cases, such as the Ore timestamp, it is indetermi-
nate, since the algorithm does not fully specify the creation method.

Usage time-bounds depend on the specific query. Although the time-bound to compute
event precedence, greatest predecessor set and least successor set varies from constant-time
to linear in the number of messages in the computation, no single timestamp algorithm
achieves the constant time-bound for all three queries. Further, no dynamic algorithm
achieves a constant time-bound for the least-successor set. Note that to actually use the
greatest-predecessor or least-successor set would require algorithms of loweG§aund
where N is the number of traces, and so @) algorithm for either of these queries
would be acceptable.

For the same reason that dynamic-timestamp algorithms are preferred and sometimes es-
sential, lower time-bounds are preferred and sometimes essential. Specifically, precedence-
test algorithms that have a cost that is proportional to the number of events, messages, or
traces are likely unacceptable. It is doubtful that such algorithms will scale.

Space consumption: The space consumption of a timestamp varies from constant size to linear
in the number of traces. Since each event stored in the partial-order data structure includes
the timestamp of the event, timestamps that have size linear in the number of traces will
not scale. We comment on this issue in detail in Chapter 7.

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 90

We now present some of the more-significant timestamp algorithms, indicating where they are
lacking in the required features, as identified above. The descriptions that follow are strict math-
ematical representations of how the given timestamp is computed, together with a formal prece-
dence test for that timestamp. They do not indicate how the computation is to be performed.
In particular, they do not indicate how the data necessary to the computation is acquired. This
is distinct from the usual manner in which timestamps are described, typically in terms of their
creation within a distributed environment. Our description is directly applicable to the central-
ized creation that the PartialOrder class would be required to compute for the store() method.
The extensions in the following for synchronous events are our own, as we are almost unigue in
modeling a synchronous event as a single event that occurs in multiple traces.

6.1.1 THE LAMPORT TIMESTAMP

The Lamport timestamp [96] is designed as follows. Each ewesitassigned an integer time-
stamp, £(e), in terms of the events it covers (Definition 10, page 11). First, dgfif) as
follows:

L) =L(e) +1 (6.1)
Then the Lamport timestamp efis:
£(e) = max (£ (¢°)) (6:2)

wheremax is the maximum of a set of integers. The first event in a trace is timestamped by
creating a virtual event in the trace at EventPosition(0), which is thus covered by the first event.
This virtual event is assigned a timestamp set to 0. Equation 6.2 is then used to determine the
timestamp of the first event in the trace. As can readily be seen, both the creation time-bound and
space consumption of this algorithm a&pé1). It is dynamic, since the timestamp for any event
depends only on the immediate predecessors.

The Lamport timestamp cannot completely determine precedence. Given two €vants
el with £(e’) < £(e?) the only thing that can be concluded is that4¢ ¢'. We cannot determine
with Lamport time whethee’ ||¢ ¢/ ore’ <¢ e/. The reason is that Lamport time is imposing a
total order on the partial order. From a directed-graph viewpoint, what is going on with Lamport
time is that the edges being added to the graph are not simply reducing the precedence-test search
time by adding edges implied by the transitive closure of the partial order. Rather, Lamport time
is extending the partial order, adding edges to the graph not implied by the partial order.

An example of Lamport timestamps is shown in Figure 6.1. Notedhdt e3 even though
L(e3) < £(e3). Since this timestamp is not capable of complete precedence determination, we
do not discuss it further.

6.1.2 THE FIDGE/MATTERN TIMESTAMP

The Fidge/Mattern timestamp [42, 43, 100, 131] augments the transitive-reduction graph with a
set of edges to every event from its greatest predecessor in each trace. It is designed as follows.

CHAPTER 6. A BRIEF HISTORY OF TIMESTAMPS 91
e1 1) e
i i C]i
5(3) e3(5)
P2 O

Figure 6.1: Lamport Timestamps

Each event is assigned a vector timestafM (e) of size N, indexed by TracelD, in terms of
the events it covers. First, defiteM’ (e°) as follows:

1o | FMe)i]+ 1 if i€ ¢(ef)
FMU()] = { FM (e°)]i] otherwise 6.3)
(Recall thatp(e®) maps event© to its traces.) Then the Fidge/Mattern timestamp f:
FM (e) = max (FM' (%)) (6.4)

ec<:e

wheremax is the element-wise maximum of a set of vectors. The first event in a trace is times-
tamped by creating a virtual event in the trace at EventPosition(0), which is thus covered by the
first event. This virtual event is assigned a timestamp with all elements set to 0. Equation 6.4
is then used to determine the timestamp of the first event in the trace. As can readily be seen,
both the creation time-bound and space consumption of this algoritht(&¥¢, whereN is the
number of traces. Itis dynamic, since the timestamp for any event depends only on the immediate
predecessors.

Precedence testing between two evedtande’, can be determined by the equivalence:

¢ <e & = Jyeph(er) FM()[p] < FM(e?)[p] (6.5)
Itis a relatively easy matter to demonstrate that
Fpes(ery FM(E)p] < FM(eN)[p] <= Ypey(ery FM(e')lp] < FM(e)[p] (6.6)

As such, only a single test is needed, whether or not the event is synchronous. Thus, the prece-
dence test is constant time.

While it is possible to implement the vector as an associative array, storing only the non-
zero values, we have found that in practice this does not save space. The reason is that the
timestamp captures transitive causality. As such most elements of the vector for most events for
typical computations are non-zero. Alternate encodings for the Fidge/Mattern timestamp will be
discussed in Chapter 7.

An example of Fidge/Mattern timestamps is shown in Figure 6.2. The reader can easily verify
that the precedence test is correct for the timestamps shown.

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 92

3,0)

1 2 3
. e;(1,0,0) 61%,0,0) elg
b2 W O/j\)
e}(2,1,0) | €2(2, We%(?y, 3,3)
p3 O

e5(3,0,1) €3(3,0,2) €3(3,0,3)

Figure 6.2: Fidge/Mattern Timestamps

6.1.3 FOWLER/ZWAENEPOEL TIMESTAMPS

The Fowler/Zwaenepoel timestamp [45] augments the transitive-reduction graph with a set of
edges to every evertfrom the greatest event in any trace that has communicated directly with
the trace that is in. Note that these greatest events may not be the greatest predecegsors of
as this timestamp does not capture transitive dependency. The Fowler/Zwaenepoel timestamp is
designed as follows. Each evenis assigned a vector timestarfiZ (¢), indexed by TracelD, in

terms of the events it covers. For all eveatscovered by event, we defineFZ'(e¢) thus:

If ¢(e) N p(e®) # 0 then:

= { T R
Otherwise:
= (7O G
Then the Fowler/Zwaenepoel timestamp:as:
FZ(e) = max (F2' (e°)) (6.9)

ec<:e

As with Fidge/Mattern, there is a virtual event prior to the first event in a trace to enable the
timestamping of the first event. Again, as with Fidge/Mattern, it is dynamic, since the timestamp
for any event depends only on the immediate predecessors. Unlike the Fidge/Mattern algorithm,
though, the time and space complexity is not clear. While the Fowler/Zwaenepoel timestamp
is, in the worst cas®(NV), where N is the number of traces, this presumes that every trace
communicateslirectly with every other trace at some point in the computation. While it is true
that some computations exhibit this property, most do not. Indeed, many parallel computations
are structured such that — 1 of the traces will only communicate with their “neighbours” and a
master trace. In such computations the time and space complexity will be amortized constant.
There is no specific precedence test for Fowler/Zwaenepoel timestamps as their intended
application was causal distributed breakpoints. In that application, what is determined is the set
of greatest predecessors within each trace. This is done by recursive search through the events

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 93

. 1(1,0,0) el;goo €3(3,2,0)
b2 1\ O
1(1,1,0) e 63(1,3,2)
D3) O
12,0.1) 2(2,0,2) G2.0,3)

Figure 6.3: Fowler/Zwaenepoel Timestamps

referenced in the timestamp. Each branch of the search is terminated if its timestamp does not
indicate a greater predecessor than is currently known. Thus, in Figure 6.3, which shows an
example of Fowler/Zwaenepoel timestamps, if we wished to determine the greatest predecessors
of evente3 in each trace, we would tentatively identify evedtse3 ande2. We would visit these

events in turn. The first two would turn up no additional information, but visiting exgwbuld

identify evente? as being a greater predecessor in the first trace than elvele would then

visit evente? at which point the search would terminate.

Given the ability to determine greatest predecessors by trace we can answer the precedence
guestion. However, if we only wished to answer a precedence question we may be able to termi-
nate the search earlier. For example, we can deterajing e3 just by the Fowler/Zwaenepoel
timestamp ok3. The cost of determining precedence is in the worst case linear in the number of
messages, and in the best case constant time.

As with the Fidge/Mattern timestamp, we may implement the algorithm using either an as-
sociative array or a vector of size equal to the number of traces. In this case it is probably better
to use the associative array, as the size of the array is proportional to the number of traces that
directly communicate with the trace in which the event being timestamped occurs. The reason is
that the Fowler/Zwaenepoel timestamp is only tracking direct dependencies

6.1.4 ARD/JOURDAN TIMESTAMPS

Jard/Jourdan timestamps [70] are an extension of Fowler/Zwaenepoel timestamps that introduce
the concepts of observability and pseudo-direct dependence. Not all events are considered to be
worth observing, and so they are divided into observable and unobservable ones. However, the
model of distributed computation is such that any event (unary events excepted, but then their
existence is predicated on their usefulness), whether observable or not, can cause a transitive
dependency that needs to be captured. For this reason, Jard/Jourdan timestamps introduce the
notion of pseudo-direct dependency. An everi$ pseudo-dependent on an evehtwritten

e’ <« e)if there is a path from to e with no observable events on that path. Jard/Jourdan time-
stamps then create Fowler/Zwaenepoel-like timestamps for just the observable events. The only
additional difference is that the Fowler/Zwaenepoel timestamp maintains information in its vector
about dependencies in other traces even after intervening (observable) events. The Jard/Jourdan
timestamp only maintains information about immediate pseudo-direct dependencies.

CHAPTER 6. A BRIEF HISTORY OF TIMESTAMPS 94
J4!
b2 @), ./;
2

Figure 6.4: Jard/Jourdan Timestamps

As with the previous cases, each evens$ assigned a vector timestaigipe), indexed by
TracelD, in terms of the events it covers. For eveéntve define7’'(e¢) as follows. Ife€ is
observable then:

e NNpl+1 if pe (e
sem={ I o e
Otherwise:
J'(e) = T (e) (6.11)
Then the Jard/Jourdan timestampeas$:
J(e) = max (7' (¢)) (6.12)

An observable virtual event, with vector timestamp 0, prior to the first event in each trace enables
the correct timestamping of that first event. The algorithm is dynamic, since the timestamp for
any event depends only on its immediate predecessors. The time and space complexity is similar
to that of Fowler/Zwaenepoel, though it will generally be somewhat lower, as this method drops
vector elements that are not pseudo-direct predecessors.

As with Fowler/Zwaenepoel, a recursive search is needed for the precedence test. Since only
pseudo-direct dependency information is kept by the timestamp, the length of this search is likely
to be notably longer that that of the Fowler/Zwaenepoel. This is especially true for computing the
greatest predecessor set. There is no precedence test for unobservable events, nor is it clear what
would be needed to create such a test. In the absence of such a test, this technique could not be
used for our partial-order data structure.

We may implement the algorithm using either an associative array or a vector of size equal
to the number of traces. As with Fowler/Zwaenepoel, it is probably better to use the associative
array, for essentially the same reason.

An example of Jard/Jourdan timestamps is shown in Figure 6.4. The unshaded events are the
observable events.

The Jard/Jourdan timestamp is then Fowler/Zwaenepoel-like with respect to the observable
events. If all events are observable it degenerates to the Fowler/Zwaenepoel timestamp with
one exception. The difference is that the Fowler/Zwaenepoel timestamp maintains information
in its vector about dependencies in other traces even after intervening events. The Jard/Jourdan

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 95

1 2 3
- el(l,i e\({l, 2) elé’), 9)
b2 W u//m
3(2,6) &e%(&?) 23(8,8)
pr) M\
4 L / / N\

ivar— o1 o1 .2 2 3 1 2 3 3 1,2 1 .2 .3 .1 .2 3 .3
Realizer:< ey, 65,65, €7, €67, €3,63,€5, 3 >< €1,e7,€3,€3,€3,65,65,€5,e] >
Figure 6.5: Ore Timestamps

timestamp only maintains information about immediate direct dependencies. As a result, the
Jard/Jourdan timestamp is likely to have a notably longer search time in determining precedence
if all events are observable.

From the directed-graph viewpoint, the Jard/Jourdan timestamp represents a set of edges
connecting each eveato the greatest observable event in a trace that has communicated pseudo-
directly with the event. As with Fowler/Zwaenepoel, these greatest events may not be the
greatest predecessors @f both because this timestamp technique does not capture transitive
dependency and because it ignores unobservable events.

6.1.5 THE ORE TIMESTAMP

The Ore timestamp [114, 140] is unique among vector timestamps in that it does not take a
trace view. Rather, it is based on having a realizer for the partial order. The linear extensions
are arbitrarily ordered from 1 td, whered is the number of extensions. Each evenh each
extension/; is assigned an integéeid(/;, e) to indicate its position within that extension. The
following equivalence must hold for this assignment:

el <y, ef = leid(l;, ¢7) < leid(l;, e¥) (6.13)
The Ore timestamp (e) for evente is then defined as:
Vio<i<a O(e)[i] = leid(l;,) (6.14)
Precedence testing between two evetitande®, can be determined by the equivalence:
¢! < e <= Vincica O(¢)[i] < O(e")]i] (6.15)

An example of Ore timestamps is shown in Figure 6.5. Note that the vector size is egljal to
while the precedence testd¥d). The value ofl can be as large &3(n!), wheren is the number

of events in the computation. For any reasonable implementation of a realizer it would be no
larger than the width, which can be no larger than the number of traces. It can be as small as the

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 96

Process Cluster

pr— O ;
1 2 3
Pr——=0 -

Figure 6.6: Summers Cluster Example

dimension of the partial order. While any algorithm that produces a realizer can be used for this
timestamp, one that produced a large realizer (that is, one with a large vadlyevotild be of

little value. Unfortunately, computing a minimal realizer is NP-hard [177]. Although, we know
of no dynamic algorithm to build a realizer, we were able to adapt this timestamp technique as
our first scalability solution, presented in Chapter 8.

6.1.6 THE SUMMERS CLUSTER TIMESTAMP

The Summers cluster timestamp [140] was an attempt to increase the efficiency of timestamp
generation for user-defined abstract trace clusters. The essence of the idea is the recognition that
events within a cluster can only be causally dependent on events outside the cluster through re-
ceive events from transmissions that occurred outside the duBitieh events are called “cluster
receives.” For example, in Figure 6.6 evestis a cluster receive. By identifying such cluster-
receive events, it is possible to shorten the timestamp of all other events within the cluster to
twice the number of traces in the cluster. Half of this timestamp determines precedence within
the cluster. The other half identifies the greatest cluster-receive events in each trace in the cluster
that precede the given event. The Summers algorithm is a two-step method for achieving this.

First, all events are timestamped using the Fidge/Mattern technique described in Section 6.1.2.
During this process all cluster-receive events are identified and their timestamps recorded. The
second step computes the cluster timestamp for all events within the cluster as follows. If the
event is a cluster receive, the first half of the timestamp is set to the projection over the cluster
traces of the Fidge/Mattern timestamp recorded for that event. Otherwise, the first half of the
timestamp is computed using the Fidge/Mattern technique, but constrained to the cluster traces.
To compute the second half of the timestamp the algorithm maintains a cluster-receive vector
that is analogous to a Fidge/Mattern vector. The difference is that it is incremented only on the
occurrence of a cluster receive. The second half of the timestamp is first set to the maximum of
the second half of the timestamps of all events covered. If the event is a cluster receive, then the
position corresponding to the trace in which the cluster receive occurred is incremented.

2This is not strictly true. Events within a cluster can also be causally dependent on events outside the cluster
through synchronous events which have homes both within and without the cluster. However, Summers developed the
concept in an asynchronous context, and thus did not have to deal with synchronous events.

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 97

The precedence test for Summers cluster timestamps depends on whether or not both events
being compared are within the cluster. If they are, then the test is identical to the Fidge/Mattern
test of Equation 6.5. Summers does not give a test for one event within the cluster and one outside,
since his purpose was the timestamping of cluster events. However, he does give a mechanism
for the generation of a Fidge/Mattern timestamp from the cluster timestamp, since he wanted the
ability to alter the set of traces within a cluster. This mechanism is to take the maximum of all
cluster-receive-event timestamps referenced in the second half of the cluster timestamp and then
add in the cluster timestamp values in the vector locations where the cluster exists. Precedence
testing then uses the Fidge/Mattern technique.

The precedence test is constant time for events within the cluster. For comparison to events
outside the cluster, it is linear in the product of the number of traces and the cluster size, because
of the need to recreate the Fidge/Mattern timestamp. The precedence test is also centralized,
though as we have noted, this is not a significant issue. In addition, it is a static algorithm, which
substantially limits its applicability to our application. While the space reduction is potentially
useful, prior to our work we were not aware of any measurements that quantify that reduction.
We were able to adapt this timestamp technique as our second scalability solution, presented in
Chapter 9.

6.2 PRECEDENCERELATED EVENT SETS

The quick summary of our timestamp survey is that only the Fidge/Mattern timestamp is ap-
plicable to our problem. Specifically, it is the only timestamp that is dynamic and has an ef-
ficient precedence test. As such, this is the timestamp of choice in all existing distributed-
system-observation tools of which we are aware. We can therefore turn to the second half of
the precedence problem, determining precedence-related event sets, on the assumption that the
Fidge/Mattern timestamp is used to compafpeer at or <() . We first deal with predecessors

and successors.

6.2.1 HREDECESSORS ANIBUCCESSORS

There are four methods that fall under this banner, the predecessor, successor, greatest-predecessor,
and least-successor sets. In terms of implementation, however, there are in effect only two. The
predecessor set is simply the cut corresponding to the greatest-predecessor slice. Likewise, the
least-successor slice marks the boundary of the successor set. We therefore only compute those
slices.

The computation of the greatest-predecessor slice is particularly easy when Fidge/Mattern
timestamps are employed. Specifically, the Fidge/Mattern timestamp directly encodes the slice of
greatest-predecessor events. As such, the response to this query is simply to return a reference to
this slice, which is constant time. That said, use of this slice will have a cost at least proportional
to the number of elements used, reflecting the information-theoretic lower bound of the query of
O(N), whereN is the number of traces.

The Fidge/Mattern timestamp does not, however, encode the least-successor slice. The typical

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 98

manner in which this slice is computed is by searching along each trace from the event identified
by the greatest-predecessor slice, since the least successor on a trace cannot be less than the
greatest predecessor. As the traces are totally ordered, and the data structure keeps track of the
current maximum event stored, we can perform a binary search. We propose optimizing this
slightly, given that events exist in blocks. Rather than performing the usual divide-and-conquer
binary search, we advocate a galloping search, that doubles the number of events skipped on each
check, starting with one. Thus, if the greatest predecessor were at pestieexamine position

1+ 1,71+ 2,7+4, ¢+ 8 and so forth, until we either reach the maximum event, or discover a
successor. If we discover a successor, we perform a binary search in the, presumably reduced,
range. While in either approach, the worst-case search ti@élig; n;), wheren; is the number

of events on the trace between the greatest-predecessor event and the maximum event, we believe
the galloping search is better in practice when the traces have large numbers of events. This issue
requires experimental investigation.

Since the greatest predecessor may be the minimum eyes#n be as large as the number
of events on the trace. Thus, the worst case time required for the complete slice computation
is O(Xplogn,), wheren,, is the number of events currently stored in tracelf events are
evenly distributed among traces (not, in general, a reasonable assumption, but convenient for
these purposes), then that worst-case coék(i§ log(n/N)), whereN is the number of traces
andn is the total number of events currently stored. We do not believe this worst case tends to
occur in practice.

A static variation on Fidge/Mattern timestamps, called reverse vector time [7], achieves a con-
stant time-bound for the least-successor computation. It does so by pretending the computation is
run backwards, treating receive events as transmitsyiaadersa, and computing Fidge/Mattern
timestamps accordingly. Given its clearly static nature, it is not clear that this is useful in our
application. It is conceivable that we might compute a variant of this, that would speed up the
least-successor computations, though we have not investigated this possibility. In particular, such
an approach would exacerbate the current scalability problems.

6.2.2 THINGS CONCURRENT

The least- and greatest-concurrent sets appear somewhat more expensive to compute, as the el-
ements they contain must be mutually concurrent. Our initial, naive, algorithm [164] starts with
the greatest-predecessor set and increments the elements. This results in a slice whose elements
are either concurrent with, or successors of, the event. The algorithm then iterates through the
elements of the slice, removing any that are successors of the event. This leaves only concur-
rent elements. The algorithm then performs a nested loop to remove any elements that are not
mutually concurrent. The total execution cost is therefo(é2). This is unacceptably high.

We now present a novel algorithm for computing the least-concurrent set iltjiNg where
the number of partner events is limited to one. To do so, we prove the following theorem.

Theorem 2 (Least Concurrent) An event ¢’ is least concurrent to an event e if-and-only-if the

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 99

two events are concurrent and the events covered by e/ are predecessors of e.
e/ € leastConcurrente (e) < <€j le e A Ve ¥ <e e)

Proof:
(=) Sincee! € leastConcurrentg (e) then, by the definition of the least-concurrent set (Equa-
tion 4.4), Ao .. €* ||¢ e. Therefored i_..; ¥ ||¢ e. Thereforev i ; ¥ <c e V e <¢ e”.
If e <¢ €*, thene <¢ €/, sincee® <: e/, This contradicts: ||¢ e’, which is true because
e/ € leastConcurrentg (e). Thereforev,x_..; e <¢ e.
(<) Sincee’ |¢ e, it suffices to show thaB,: (¢* |l e A e* <¢ e7). Suppose there did; let
that event be!. Then we have' ||¢ e ande! <¢ e’. Sincee! <¢ ¢/, then there exists some event
ek <: e such thate! <¢ e*. SinceV,i_..; ef < e, ! <¢ e by transitivity. This contradicts
e lge O

The algorithm is then a straightforward application of this theorem. We first compute the
greatest-predecessor slice of the event, and increment it by one. Each element in that slice is then
either concurrent with or a successor to the event. We then iterate over the slice, removing any
element which is a successor to the event, or whose non-trace covered events are not predecessors
to the event. What remains are the least-concurrent events. Note that we do not need to examine
the covered event on the same trace, as it must be a predecessor.

This algorithm works correctly whether or not the data structure is limited to a single partner.
However, observe that when we are limited to a single partner the algorithm is no©¢my,
but it has a very low constant. Its performs only one iteration over the traces, and the contents
of that iteration are only one event retrieval and two invocatiorspaT at or <() . In addition,
note that this execution cost remains the same even if the environment allows multicast. That is,
if transmit events can have multiple partners, but receive and synchronous events cannot, then
no event will cover more than two events. Further, even in environments in which receive and
synchronous events can have multiple partners, most events will have only one or no partners. As
such, this is likely to be amortized (V) for those environments.

The greatest-concurrent set is computed in an analogous fashion, though starting with the
least-successor set and decrementing it. The naive algorithm will likewise have an execution cost
of O(N?). The more-sophisticated algorithm is based on the corresponding theorem.

Theorem 3 (Greatest Concurrent) Anevent ¢’ isgreatest concurrent to an event e if-and-only-
if the two events are concurrent and the events that cover e’ are successors of e.

e/ € greatestConcurrentg (e) <= (ej lee N Vyicor € =g ek>

Proof: The proof is analogous to that of the previous theorem, and so we dmit it.

The algorithm is likewise similar to the previous one, though starting with the least-successor
set and decrementing it. The cost of the algorithm is, however, less attractive. The least-successor-
set computation will dominate, and thus it@ N log(n/N)) for the single-partner case. If
multicast is allowed, the cost will be higher, as any multicast transmit will have multiple covering

CHAPTER 6. ABRIEF HISTORY OF TIMESTAMPS 100

events. Note, however, that if multicast is the only form of multiple partners possible, then
the amortized cost will remain the same, as for evefyway multicast transmit, there will be

M receivers that will have only a single covering event. Multi-receive will not increase the cost,
as such events likewise have only one covering event.

Finally, we note that when computing the greatest-concurrent set for maximal events, a useful
optimization is possible. In this case, we do not need to compute the least-successor set. Rather,
we can just use the current slice of maximum events stored. The events in this slice cannot be
successors, since the event we are computing the set for is maximal. This allows the computation
to execute with the same efficiency as does the least-concurrent computation. This case is not
artificial. In particular, it occurs when processing events in a linearization of the partial order.

The naive algorithms were initially developed for our offline dimension-bound-analysis algo-
rithm [164]. We subsequently developed alternate techniques [165] that allowed us to avoid these
sets. However, we found it sufficiently useful as a mode of thinking about partial-order algo-
rithms as to include them within our structure, and to apply those techniques to the more-efficient
computation of these sets.

We close this section with a general observation about the usage of precedence-related event
sets. It is sometimes the case that the entire set is not examined. For example, when least-
successor sets of different events are compared to determine if the events have partially, com-
pletely or non-overlapping causal futures (see Basten [7]), if the futures are only partially over-
lapping, then the determination may be made without examining all of the elements. In such a
case it would not be necessary to compute all of the least-successor sets. Rather, a lazy-evaluation
approach might be adopted, wherein elements are computed on demand. We are not aware of any
work that has been done in this regard.

[SCALABILITY PROBLEMS

Having described the current state-of-the-art techniques for implementing our proposed patrtial-
order data structure, we now wish to look at what breaks as the system under observation gets
larger. There are two, non-orthogonal, ways in which distributed systems can grow under our
model: an increased number of events and an increased number of traces. An increase in the
number of events is not, by and large, problematic. More precisely, it does not present novel
problems that are not actively addressed in any data structure containing large numbers of el-
ements. An increase in the number of traces, on the other hand, can be troublesome. As we
observed in the previous chapter, precedence testing is dependent on Fidge/Mattern timestamps,
which grow linearly with the number of traces. The cost of computing such timestamps is, in turn,
proportional to their size. In this chapter we will demonstrate that the size of these timestamps
is a fundamental scalability limitation. We will then show the theoretical foundation for the size

of these timestamps, and indicate why this basis is not relevant in our circumstance. Finally, we
close by quickly surveying various techniques that have been applied to reduce the timestamp
size.

7.1 THE VECTORCLOCK-SIZE PROBLEM

Given that the only timestamp that currently satisfies the requirements for precedence determi-

nation in our data structure is the Fidge/Mattern, let us assume that we use it and observe the
problems that occur as the number of traces grows. For this thought experiment it is not unrea-

sonable to imagine something like a thousand traces, with an average of a thousand events on
each trace. Thus we have about a million events, with around 40 bytes per event in fixed-size

data, or about 40 megabytes in the data structure, prior to dealing with precedence. This is core
data structure, and cannot be removed, to be recalculated as needed. This is in contrast with
Fidge/Mattern data which can either be stored with the data structure, or computed as needed.

7.1.1 ONE BIG STRUCTURE

We now deal with the first of these possibilities. We will compute the Fidge/Mattern timestamps
as events are stored, and include that timestamp with the event stored. A minor, but significant
issue, is that we will augment the EventRef::Data class with a pointer to the Fidge/Mattern vector,
rather than with the vector itself. While this does incur an additional indirection, various appli-
cations will have no need of the timestamp, and their caching performance would suffer in the
presence of such a large vector.

Since there are a million events, each storing a thousand-element vector, the memory con-
sumption for the data structure goes up by two or four gigabytes, depending on whether the
elements are encoded as shorts or integers. Most machines do not have that much physical mem-
ory, and so the data structure will reside, in part, in virtual memory. Note that the Moore’s Law

101

CHAPTER 7. SCALABILITY PROBLEMS 102

growth of memory [108] will not rescue us, since Parkinson’s Law of Data [121] indicates that
memory usage grows by an equal amount in the given time. Simply put, if we have more memory,
we will want to tackle bigger problems.

We now determine the implications of such a sizable data structure. To do so, we enumerate
the uses of the timestamp. They are

precedence testing
greatest-predecessor determination
causal-history comparison
computing new timestamps.

PwnNpE

For the last three of these items, the entire timestamp vector will be used. They therefore, po-
tentially, operate well with respect to both virtual memory and cache, since spatial locality is
good. Note, however, that the last two items in the list are somewhat fictitious. We only need
to compute new Fidge/Mattern timestamps because we use Fidge/Mattern timestamps. Further,
our assumption at this stage is that the timestamps are computed and stored. There is, thus, little
value in this advantage. As for causal-history comparison, we know of no tool that provides or
uses this technique.

With regard to greatest-predecessor determination, while it is true that the entire timestamp
is used, if the computation that uses the individual elements of the greatest-predecessor is suffi-
ciently involved, the benefit of proximity between the elements may be lost. In that instance, we
would lose nothing by computing the greatest-predecessor components as they are required.

The most significant issues, however, occur when dealing with precedence testing. Of the
thousand elements in the vector, only one is used, or two if concurrency is being determined.
Assuming we used integers to encode the vector elements, weeah&\KB \ector, which is the
page size in a typical virtual memory. (Linux on Alpha AXP systems uses 8 KB pages and on
Intel x86 systems it uses 4 KB pages [126]. AlX uses 4 KB pages [66]. Windows NT, like Linux,
uses 4 KB on x86 processors and 8 KB on Alpha processors [127]. In all instances this is driven
by the memory management unit which is now part of the processor.) Therefore, for precedence
testing, the virtual-memory subsystem will bring in a page for one or two values. Worse, it will
evict some other page, which may still be of value, for just this purpose. We do not believe this
will work well because there is no spatial locality.

To make this more concrete, consider computing the greatest-concurrent set for a non-maximal
event. To do this, we must first compute the least successor. This will require, in the worst case,
precedence tests agaiist, 1000 events per trace. This corresponds to about ten-thousand pages
of virtual memory. However, we are not done yet. This has simply computed the least successor.
We must now examine the preceding events of this slice. We must compare those events, and
their non-trace covering events, to our given event. Assuming the one-partner environment, this
will require another two-thousand pages of virtual memory. In other words, we require about 48
megabytes of memory just to compute the greatest-concurrent elements of an event.

We now consider the cache implications of the Fidge/Mattern precedence test. Processor
cache, like virtual memory, presumes spatial and temporal locality. The cache’s existence is

CHAPTER 7. SCALABILITY PROBLEMS 103

predicated on temporal locality. Spatial locality is supported by bringing into the cache a line
of up to 32 words, rather than just the word requested. Some specific examples are the Pentium
Il with a level-one cache size of 1000 lines, each of 32 bytes [102], the Athlon with a level-one
cache size of 2000 lines, each of 64 bytes [102], and the Pentium IV with a level-two cache of
2000 lines, each of 128 bytes [103]. In no case does the entire timestamp vector fit into a cache
line, nor do we advocate that it should. However, this means that even when we are determining
concurrency, and so need two elements of the vector, there is less than a 3% (32/1000) chance
that the other element would have been brought in by spatial locality.

Consider again the computation of the greatest-concurrent set for a given nhon-maximal event
e. The vector elementM]e.eventID.TracelD()] will experience good temporal locality, being
used up to ten-thousand times to compute the least-successor set. However, none of the events
being compared with will experience any spatial or temporal locality at all. The entire data cache
will in effect be flushed between five and ten times, with the resulting cache containing data of no
value whatsoever. The effect will be as if this entire computation were run from main memory.
We now require about a thousand tests against the remaining eleméiitd(ef interleaved with
an equal number of tests with non-trace events covering the potentially greatest-concurrent events.
Here we will achieve some spatial and temporal locality. Specifically, the vector timestamp of our
given event should have good spatial locality. Any covering events that are concurrent appear to
have some temporal locality, since they may also be tested elsewhere in the loop for precedence
against our given event. However, that locality appears to be illusory. The reason is that the two
tests require different vector elements. Thus, as above, there is only about a 3% chance that the
correct vector element is present.

All of this analysis of course ignores the fact that we cannot really dedicate the entire cache to
vector timestamps. Indeed, the fixed-size portion of any event must first be examined to acquire
the timestamp, and that portion will require (and nicely fitin) a cache line. Therefore the effective
cache size, as regards the vector timestamps, is really half the actual size.

The cost estimation for a given precedence test depends on where the relevant vector elements
are located. We believe we have fairly thoroughly demonstrated that locality in the cache is very
limited, and this is likely the case for main memory for essentially the same reasons. The cost
is then going to be a function of the size of main memory. If we assume that our main memory
is even half the size of our data structure (observe that this implies one to two gigabytes of
main memory, dedicated just to the vector timestamps), and we assume precedence tests between
random events, then there is a 75% chance that one of the timestamps will currently be swapped
out. Whenever we need to read in a page of virtual memory, we can assume about six orders-of-
magnitude delay over main-memory operation. This implies that the cost of precedence testing
will be about 75,000 times worse amortized than if the data structure fitted in main memory. Even
if we assume a 95% hit rate on the main memory portion of the data structure, we will still be
nearly 10,000 times slower amortized than running entirely out of main memory.

In summary, virtual memory and processor caching do not appear to work well with Fidge-
Mattern timestamps when they are used in this mode. We note in passing that Ore timestamps
would appear to have very good spatial locality for precedence testing. In particular, if the Ore

CHAPTER 7. SCALABILITY PROBLEMS 104

timestamp is no bigger than the cache-line size (in the case of the Pentium IV, that implies a
realizer with up to 32 extensions), then the entire precedence-test can take place in cache. Since
loading the cache is a significant portion of the cost, this implies that the test would not in practice
be d-times as slow as the Fidge/Mattern test, whérns the size of the timestamp. We will
elaborate on this point in Chapter 8. The Summers cluster timestamp can likewise benefit from
this locality. We will explore this point further in Chapter 9.

Finally, we note that we have provided a thought experiment, but no actual data. This is, at
least in part, because we know of no system that uses this technique and is capable of processing
the size of data suggested in our experiment. However, it would useful to record the use of
tools such as €eT to see the sequence of operations, and determine the implications of those
operations. This is currently a hard problem, as the code is not set up per our partial-order data
structure. It is therefore non-trivial to discern what high-level operations are performed at any
given point. Such records might be useful to explore the concept of a data-trace cache, analogous
to an instruction-trace cache [117].

7.1.2 (QLCULATE ON DEMAND

We now turn to the alternate possibility of calculating the Fidge/Mattern timestamp on demand.
Clearly we would not wish to calculate the entire set of timestamps from the beginning of the
computation up to the required timestamps on every occasion that a timestamp was required.
This implies that we would develop our own caching scheme. There are at least three ways in
which this might be done. We could record evéf{ timestamp, we could strategically record

key timestamps, or we could simply cache timestamps as they are required, on the assumption of
temporal locality.

Recording every;"* timestamps on each trace provides a clear time/space tradeoff, reducing
the required space by a factor/af However, the larger the value 6f the greater the number of
timestamps that must be computed to determine our required timestamp. For the single-partner
environment, witht > 2, the worst-case is unbounded. That is, we may have to compute a
timestamp for every event that is causally prior to our given event, other than those for which
timestamps are recorded. The probability of this worst case occurring is a function of the size
of k. The larger the value df, the greater the likelihood of its happening. We have no data, and
are aware of no study, as to what these probabilities are for a given vakudta$ possible that
such data can be gleaned from work on distributed checkpointing, which, for certain algorithms,
faces a similar problem [111].

The average number of timestamps that must be computed for a computation consisting en-
tirely of unary events ig/2. Since each timestamp computation cas{sV), whereN is the
number of traces in the computation, the cost of a precedence test would then legaige
While we recognize that if we have a sequence of unary events we could compute the precedence
test in constant time, as only one vector element will differ between the recorded and the com-
puted timestamps, the scenario is clearly artificial, and intended to provide an approximate lower
bound on the average behaviour. Specifically, no such optimization would be available when
receive and synchronous events were present. Further, the average number of timestamps that

CHAPTER 7. SCALABILITY PROBLEMS 105

would need to be computed would only increase from this unary-only scenario.

If we wish to avoid an unbounded timestamp computation, we must strategically record key
timestamps. This is difficult if we wish to significantly reduce the number of cached timestamps.
The obvious strategy of caching every receive- and synchronous-event timestamp will only pro-
duce a factor of two or three in space saving. This is based on the observation that for every
receive there must be a corresponding transmit, and unary events are unlikely to dominate. This
would reduce the space-consumption of our thought experiment to something like a gigabyte.
While useful, it is hardly going to solve the problem.

A more-sophisticated strategy requires recording timestamps for consistent cuts of the partial
order in which no messages are outstanding. This is the same requirement as is imposed on no-
message-logging checkpointing (Section 3.6). Unfortunately, there is no guarantee that such cuts
exist in the partial order. We know of no tool that has taken this approach, possibly in part because
of the difficulty of detecting the requisite cuts and the lack of guarantee of their existence. This
approach has the same lower-bound c68% N), on average cases as the previous example. It
should have better average cost, if the appropriate cuts are present in the partial order.

The ROET system takes a somewhat different approach, that merges these two techniques.
Rather than caching the timestamps themselves, it caches the state of the timestamper. This state
is written to disk at regular intervals (defined by the CHKINITVL parameter). When an event
needs to be timestamped for which no appropriate information is currently available in memaory,

a checkpoint of the timestamp state near, but prior, to the event is read from disk. Timestamping
then continues from that state until the required event is reached and timestamped. This prevents
the unbounded-computation problem, though at the expense of various disk accesses to seek the
requisite timestamper state. Note that this is not strictly a cache, since is written to disk. However,
such an approach could be used as a caching strategy.

The third approach is to cache on use. While this suffers from the same potential unbounded-
timestamp computation problem as recording the timestamp of é/eeyent, it has the possible
advantage of temporal locality. Based on our thought experiments, we are unconvinced that sig-
nificant temporal locality exists. This may then become a liability rather than an advantage, as
cache entries are flushed to make way for new timestamps that may well not be used more than
once. That said, some temporal locality does exist, particularly when calculating precedence-
related event sets. It is useful to exploit that locality when building a system that does not in-
corporate such capabilities, but rather operates at the event-level with Fidge/Mattern timestamps.
The cost of precedence tests under the cache-on-use polityN3, since it too must calculate
the requisite timestamps. As is always the case with caching, the size of the constant will depend
on the size of the cache and the previous behaviour.

7.1.2.1 QSESTUDY: POET

Having examined the behaviour of Fidge/Mattern timestamps through thought experiments, we
now study some actual cases in theeR system. We first describe theBT caching mechanism.
We then detail the experiments we ran. Finally, we provide results and analysis.

The PoET dbg session process has a cache-on-use policy, resorting to reading timestamp state

CHAPTER 7. SCALABILITY PROBLEMS 106

from disk only when the cache information is insufficient. It maintains NGMCHE caches (de-

fault, five), each containing a timestamp state and the last NEYMENTS timestamped. A time-

stamp state is a set of Fidge/Mattern timestamped events, with at least one in each trace, such that
any successors to those events may have Fidge/Mattern timestamps copgolEgdation 6.4.
Whenever a timestamp state is restored from disk, it will clear the least-recently-used cache and
use that cache for timestamps generated thereafter. This means that no single timestamp state
dominates the cache, as would be likely with a single cache. This in turn allows temporal local-
ity to exist across a larger interval. The number of caches is akin to the associativity level of a
processor cache. The events stored within the cache are the lastBNENTS timestamped,
accessed first by TracelD, and then in a linked list within each trace.

When a request is made for a timestamped event, each cache is first checked. This takes
O(NUM_CACHE) steps. If the event is present in one of the caches, it will then be found in
time proportional to the number of events cached for that particular trace. If events are evenly
spread over the traces, this will be O(NUBVENTS/numproc), where nunproc is the number
of active traces in the computation. The default value for NEMENTS is 250, and for such a
small cache, linked-lists are probably reasonable. If the event is not present in any cache, then the
cached timestamp-state that is closest, and prior, to the event is selected for use in computing the
timestamp of the event. However, if the timestamper can skip more than one event per process,
on average, it will not use this selected state, but will restore one from disk. Likewise, if all
cached states of the timestamper are beyond the sought event, state must be restored from disk.
The timestamper is then allowed to run until the required event is timestamped. The expected
execution time is the® (V) amortized.

The purpose of this case study is then to provide some idea of the constants that are involved
in the caching operations and to demonstrate the proportionality between execution time and
timestamp size. Two different machines were used for the experiments, both running RedHat
Linux 7.1, with the 2.4.2-2 kernel. The first machine was a ThinkPad 390E, with a 333 MHz
Mobile Pentium Il processor, 64 MB of memory and a 6.4 GB fixed disk, of which about 3.9 GB
were dedicated to the ext2 file-system and 128 MB were used for swap space. The second ma-
chine was a ThinkPad A22m with an 800 MHz Pentium Il (Coppermine) processor, 256 kB of
cache, 192 MB of memory, and a 10 GB fixed disk, of which about 3.5 GB were dedicated to the
ext2 file-system and 256 MB were used for swap space.

For the experiments three different execution histories were examined: a PVM implementa-
tion of Life, a Java Dither program, and a Java web server. The implementation of Life was over a
torus, which was divided equally in fixed bands to the various processes. Each process was given
initial information from the master process. They then communicated with their neighbouring-
band processes in each round of Life. After all rounds were executed the results were returned to
the master. There were a total of 39 rounds, executed by 128 processes, resulting in 31,098 events,
all asynchronous or unary. The Java language was instrumented such that each object was rep-
resented by its own trace. The Dither program, from the Java sample suite, required 297 objects
(thus, traces) and produced 102,371 events, all synchronous or unary. The web server required
175 objects and produced 9,157 events, mostly synchronous, but some asynchronous.

CHAPTER 7. SCALABILITY PROBLEMS 107

The experiments performed were the following. The execution history was loadeddato P
and the system was allowed to quiesce. This is important, as, especially for the larger histories,
the system would take some time (on the order of minutes) to finish timestamping the history and
writing checkpoints to disk. After this, the statistics were printed. ThePstatistics give an
indication of the number of timestamped and raw events requested, and how many are satisfied
by cache. The first event on the last trace displayed was then left-clicked (in the case of Life
there was no first event shown, so the chevron was left-clicked). This input caosastd
initiate a scrolling operation, dragging as many events as can be displayed on that last trace as
possible, subject to the constraints of the partial order [143]. The purpose of this particular choice
of operation is that it requires a significant number of precedence tests and the computation of
various greatest-predecessor and least-successor sets. It thus represents the closest thing that
POET has to a plausible sequence of partial-order operations. After the operation was completed,
the statistics were printed again.

The following parameters were then varied. First, we varied NBRDC, the maximum
number of traces ®eT will accept, from 300 to 1000, and measured the wall-clock execution
time of the scrolling operation. We note at this point thateP uses a fixed-size vector, of
size NUMLPROC, though with caveats. Most code on that vector will operate only over the
range of active traces, define by niproc. A very small fraction, however, must use the entire
vector. In particular, timestamping events has to operate over the entire vector, if only to zero out
those portions that are not used. This experiment is then intended to capture some of the effects
of larger timestamps, though clearly without capturing the full effects. The parameter changes
were performed under the compilation options -g, -pg, -O1, and -O2. When capturing profiling
information, our null operation was to load the execution history and then exit. This allows us to
look at the execution profile of just the scrolling operation.

We then varied NUMEVENTS from 10 to 10,000, running only under the -pg option. We
were primarily interested in the change in the statistics and profile for such operations. This was
performed with NUMPROC set to 300 for Dither and 150 for Life. We then examined the effect
of raising NUM.PROC in this case.

We now present the results for these various experiments. We start with a graphical display
of the execution time versus vector size, shown in Figure 7.1. The graphs on the left are for the
333 MHz machine, while those on the right are for the 800 MHz machine. The horizontal axis
is vector size, while the vertical axis is wall-clock execution time (measured with an accuracy
of around 200 ms). Note that the scales vary by graph. The particular results shown are based
on using the -g compilation option. Use of different compilation options varied the numbers on
the vertical axis, but not the essential shape of the graph. While we would not wish to argue
that these graphs display a strictly linear relationship, a linear regression analysis does yield
correlation coefficients of between 0.97 and 1.00. We can therefore reasonably assert that the
proportionality of execution time to vector size holds in real systems.

To put the execution times in context, we ran the timestamper over all events. This provides
some form of estimation of the total execution time if the events could be timestamped and held
in memory. These experiments were performed only on the 800 MHz machine, and only for

CHAPTER 7. SCALABILITY PROBLEMS

160 (— T T T T T T T
140 |-
& 1201
]
2
5
8
3
A
3 100
£
E
<
S
3 sof
8
2
&
60 [
a0 |
|
300 400 500 600 700 800 900 1000
Timestamp Size
Conway's Life: Average Execution Time for Scroll Operation
T T T T T T T T
160 g
140 1
7
]
2
5
8
& 120 g
@
£
E
<
S
3 100 q
8
2
&
80 g
60 g
.
200 300 400 500 600 700 800 900 1000
Timestamp Size
WebServer 3: Average Execution Time for Scroll Operation
T T T T T
12
10 -
7
O]
2
g 8
]
&
@
E
£
< 6r
s
E
3
g
g
G 40
2k

Dither 2: Average Execution Time for Scroll Operation

.
300 400 600 700 800 900 1000
Timestamp Size

L
500

(e) Web 333

Execution Time (seconds)

Execution Time (seconds)

Execution Time (seconds)

18

14

12

50

40

30

20

10

108

Dither 2: Average Execution Time for Scroll Operation

L
400 500 600 700 1000

Timestamp Size

800 900

(b) Dither 800

Conway's Life: Average Execution Time for Scroll Operation

.
200 300 400 500 600 700 800 1000
Timestamp Size

900

(d) Life 800

WebServer 3: Average Execution Time for Scroll Operation

.
600 700 800 900 1000
Timestamp Size

L L L L
200 300 400 500

(f) Web 800

Figure 7.1: Execution Time v. Vector Size (Note: Scales Differ)

CHAPTER 7. SCALABILITY PROBLEMS 109

NUM_PROC Dither Time (s) Life Time (s)

300 1.28 0.213
600 1.43 0.293
900 1.56 0.392

Table 7.1: Cost of Linear Timestamping

Dither and Life. The results are shown in the Table 7.1. Note that there appears to be little
correlation between these execution times and the scrolling time. That is, while both increase as
the vector size increases, the time required to timestamp Life’s thirty-thousand events is around a
fifth of that required to timestamp Dither’s one-hundred-thousand events, while the scrolling time
required for Life can be more than twice that of Dither. This is because the scrolling operation
for Life requires more timestamps than does that for Dither, and since those timestamps have to
be computed by B€eT if they are not in cache, it takes longer.

Note also that the time per event timestamped is between 20% and 80% higher for Dither
than Life. This is in part because the maximum in the Fidge/Mattern operation is only over actual
traces, of which there are 128 in Life and 297 in Dither. It is also partly a result of a different
mixture of event types, which will require somewhat different execution time to timestamp (for
example, the unary is simply a copy of an existing timestamp with one entry incremented).

The most significant aspect of this table, however, is that all of the numbers are one or two
orders-of-magnitude smaller than the scrolling time. Profile analysis of the scrolling experi-
ments confirms that the majority of their execution time (greater than 90%) was taking place in
timestamping-related functions. This shows why it would be desirable to maintain the entire data
structure in memory, and how significant the cost is of not being able to do so.

These experiments alone demonstrate that Fidge/Mattern timestamps, at least as they are used
in POET have a scalability problem as the number of traces increases. Further, they demonstrate
that that scalability problem is not simply a size issue, but that it affects the execution perfor-
mance of the BET system. It is also reasonable to believe, based on these results and the fact
that FOET can handle a larger partial order than any other extant system, that this problem ex-
tends to the Fidge/Mattern timestamps themselves, and is not an artifact cbHtedBsign or
implementation.

The question then arises as to whether larger caches will help and, if so, to what degree. The
quick summary is that our caching experiments indicated that it can help, and in some cases it can
help significantly. However, it cannot remove the proportionality and, as the timestamp becomes
larger, the effective cache size shrinks. Our experiments were as follows. First, we varied the
value of NUMLEVENTS from 10 to 45,000, holding NUNPROC at 300 (150 for Life). The
execution times for the scrolling operations are shown in Table 7.2 and Figure 7.2. The Dither
tests were performed on the 800 MHz machine and the Life ones on the 333 MHz machine.

Both the table and the graph illustrate that the cache size is very significant, but that there is
a point beyond which no further benefit accrues, and things can actually get worse. This is not
remarkable. First, no system can cache what it does not yet have. In the casetoédehing,
some timestamps must be computed. Second, at some point the memory consumption of the

CHAPTER 7. SCALABILITY PROBLEMS 110

NUM_EVENTS Dither Time (s) Life Time (s)

10 16.63 122.6
50 11.59 112.3
250 10.43 27.23
500 10.71 19.12
1000 10.18 18.19
1500 11.21
2000 7.53
2500 9.47 6.68
3000 6.58
5000 7.27 6.21
6000 4.21
10000 7.14 2.52
15000 8.29
25000 11.85 1.84
35000 1.67
45000 2.45

Table 7.2: Benefits of Caching

cache begin to conflict with the memory requirements of the remainder of the system, and paging
begins to happen. This is where the problems now occur. As the vector size increases, for a given
size of memory, the number of events that can be stored productively in the cache decreases.
More simply put, the reason the Life results are so good at a vector size of 10,000 is that the
value of NUMLPROC is 150. It thus consumes only 30 MB of memory. When we increase that

to the default 300, the execution time increases to 4.61 seconds, and at 500 it is 28.35 seconds
(with significant disk activity for the duration). Again, this is not surprising, as what is supposed

to be cache is now executing in virtual memory. The cache alone consumes about 100 MB, on a
64 MB machine.

Examination of the statistics information allows us to estimate the number of additional time-
stamps that must be computed per event timestamped. This can be determined as essentially all
raw-event requests will be made by the timestamper. We can then compute two different numbers.
First, we can determine the average number of events that must be timestamped to timestamp an
event that is not in the cache. This varies in Life from 250 with a cache size of 10, to 238 with
a cache size of 1,000, to 320, with a cache size of 10,000, and 640 with a cache size of 45,000.
At the higher end of the range the numbers are invalid, as the raw events are being requested for
other purposes. In that range, few (less than 100) events are being timestamped, as opposed to
being found in cache, and so the results are skewed. This then corresponds to about 2 events per
trace that need to be timestamped. For Dither, it varied from 1643 at cache-size 10 to 1302 at
cache-size 1,000. This corresponds to 4 to 5 events per trace that need to be timestamped.

The alternate, and perhaps more meaningful calculation, is to determine the average number
of events that need to be timestamped per timestamp-event request, whether or not the timestamp

CHAPTER 7. SCALABILITY PROBLEMS 111

Dither: Average Execution Time for Scroll Operation Conway's Life: Average Execution Time for Scroll Operation

L L L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 0 5000 10000 15000 20000
Cache Size Cache Size

(a) Dither 800 (b) Life 333

Figure 7.2: Execution Time v. Cache Size (Note: Scales Differ)

is found in the cache. This gives us an amortized cost for timestamp computations. In this case,
Life varies from 227 with a cache size of 10, to 19 with a cache size of 1,000, to 5.8 with a cache
size of 10,000 (though we suspect that it is actually lower, per the point above regarding raw-event
requests). For Dither, the results varied from 1,439, at cache-size 10 to 668 at cache-size 1,000
to 464 at cache-size 10,000. The cache hit-rate reached 97% for Life but only 61% for Dither,
both at a cache-size of 10,000. This, in large part, explains the substantially better performance
produced by the cache-size increase for the Life results versus the Dither results.

Finally, we looked briefly at the effect of changing the checkpoint interval from the default
of 200 to 1,000 and then to 10,000. The primary effect was to substantially reduce the size of the
checkpoint file, and thus substantially speed up the point at which quiescence was reached. This
is not surprising. The significant effect from the caching perspective, is that it should, and did,
resultin a greater number of timestamps that must be computed to timestamp a given event. Thus,
for example, when the checkpoint interval and cache-size were 10,000, Life required an average
of 415 events to be timestamped per timestamp request, where it was only 320 at the default
checkpoint interval of 200. The execution time increased to 3.2 seconds as a result. Similar
results occurred across the range of options that we evaluated.

7.2 THEORETICAL OBJECTIONS

Having provided both theoretical and empirical justification that Fidge/Mattern timestamps do
not scale well as the number of traces increases, we now consider their theoretical justification.
Specifically, it has been argued that these timestamps are optimal [16], and therefore, whatever
their scalability properties, we cannot achieve better. We now address these points in turn.

There are two justifications for vectors of size equal to the number of traces. First, to char-
acterize causality in a partial order it is necessary to have a vector (or equivalent) of size equal
to the dimension of that partial order [114]. Further, the dimension of a partial order can be as

CHAPTER 7. SCALABILITY PROBLEMS 112

e ef
6% €
el e2
e e;

(a) CrownSg (b) Shifted Crowrs; (c) Broadcast

Figure 7.3: Crowr8)and broadcast partial orders

large as the width [155]. Crow8Y, is the standard example of such a partial order, and is shown
for N = 4 in Figure 7.3(a). By rotationally shifting the rightmost elemeigY) of this partial

order up by one position, we create the distributed computation shown in Figure 7.3(b). Such a
computation has dimension equal to its width, and thus requires vectors of size equal to its width
to capture causality.

This is an unusual computation in that it requires both multicast and multi-receive. While
this computation does not violate our model of distributed computation, and both of these oper-
ations do have real systems counterparts, it is important to emphasize that neither are necessary.
Charron-Bost [16] translated crov@y; into a point-to-point distributed computation, and demon-
strated that this computation also has dimeng¥orGiven this, Fidge/Mattern timestamps appear
to be optimal.

There is, however, a very significant limitation in this proof. The fact that some distributed
computation exists with dimension equal to the number of traces, does not imply that all, or
even most, distributed computations will have such a dimension. Indeed, both Stoamd the
Charron-Bost computation correspond to all processes sending a message to all other processes,
with the exception of their left neighbour. This is not a realistic distributed computation. The
more likely computation is for each process to broadcast a message to all other processes, as
shown in Figure 7.3(c). Indeed, even if it were desired that each process send a message to all
other processes except their left neighbour, it is likely that broadcast would be used, together with
a note that the left neighbour should ignore the message, since that is likely more efficient. The
dimension of such a broadcast is two, regardless the number of traces. As we shall show in the
next chapter, and have demonstrated elsewhere [164, 165], a significant number of distributed
computations, with up to 300 traces, have a dimension much smaller than the number of traces.
We thus exploited this limitation in our first solution.

The second justification is more fundamental. Garg and Skawratananond have recently shown
that to compare consistent cuts you need vector clocks of8iZer all distributed computa-
tions [52]. This then begs an important question: what does it mean to compare cuts? More
fundamentally: what does it mean to characterize causality? What it appears to mean is that

CHAPTER 7. SCALABILITY PROBLEMS 113

there is some entity associated with an event (respectively, cut) that can be compared with that
same entity associated with another event (cut) to determine the causal relationship between the
two. No intermediary needs to be involved in the calculation. This is an important property in

a distributed computation, where no intermediary would be accessible without additional com-
munication. However, our data structure does not exist within the distributed computation. It

is centralized in the monitoring entity. It is therefore not unreasonable to access other events
as required to determine causality. Indeed, the most-primitive precedence algorithm that we dis-
cussed was the graph searching, which must access every event on the path between the two being
compared, and likely several others. We exploited this capability in both of our solutions.

7.3 QURRENTTECHNIQUES FORSPACE-REDUCTION

We close this chapter with a brief survey of various techniques for reducing the space-consumption
required by vector timestamps, and a short justification of their inapplicability to our problem. It
should be recollected that much of this work on logical-time algorithms presupposed their use in
distributed computations, and as such they are either not directly applicable or inefficient in our
environment. In particular, while many information-compression techniques are applicable, or at
least worth studying, in that distributed-timestamp context, they will not in general be applicable
to the creation of a partial-order data structure.

The most obvious approach, and much studied, is to perform differential encoding of the
timestamps. In the case of a unary or a transmit event, the Fidge/Mattern algorithm changes only
a single vector element. Itis clearly possible to look at storing just that change, rather than the en-
tire vector. Singhal and Kshemkalyani [123, 136] have a solution for the distributed environment,
but it is not directly applicable as it requires @N?) matrix at each process to determine what
has changed since the last communication, and thus what to transmit. Demaine performed a num-
ber of experiments on execution histories, exploring a variety of differential encoding techniques
for the POET data structure, including storing the difference between timestamps, and the differ-
ence of the difference [32]. His conclusion was that it would achieve at most a factor of two or
three in space saving. This is consistent with the observation that for every transmit, there must
be a receive, and receive events will not experience significant space-saving under differential
encoding. Indeed, if associative arrays are used, their space-consumption may increase.

Most of the remaining work that focuses on timestamps tends to be more specialized. Golden
studied the problem of dealing with dynamic process creation and termination [124]. In the
Fidge/Mattern approach, processes that cease to exist will maintain their vector location in-
definitely. This is undesirable, especially when we move from processes to traces, and model
languages such as Java with one trace per object. In these cases, many traces will exist over
the course of a computation, but most will be short-lived. Unfortunately, Golden’s solution is
premised on using the timestamps within the system, and it is not clear how, or if, his solution
might be adapted.

In very recent work, Christiaens and De Bosschere also address this issue by developing
accordion clocks [22], which grow or shrink as required. However, their domain was data-race
detection in multi-threaded Java applications. Their algorithm removes timestamp locations asso-

CHAPTER 7. SCALABILITY PROBLEMS 114

ciated with terminated threads when it is determined that no events in the thread can be involved
in a data race. More precisely, once the last event in a terminated thread is causally prior to all
future events, the vector location for that thread is no longer necessary. The results for their par-
ticular application show a reduction in size to a constant for two of their three target programs,
and a substantial reduction in the third.

The formal condition for accordion clocks can, in principle, be readily adapted todke P
data structure. Any trace which has terminated, and this must be recognized as more than simple
silence on the part of the trace, can have its vector location used by a new trace at such time, if
ever, as the last event is causally prior to all extant maximal events. Unfortunately, the “if ever”
is likely to be never. The ®eT target environment that would most benefit from this is Java, and
it has an asynchronous garbage collection thread. As instrumented, this thread contains events
that are concurrent to all other threads. The condition could therefore never hold. Further, it must
be emphasized that even if we are able to create a solution that more efficiently handles trace
termination, we still require a system that can scale to large numbers of traces, since there are
environments for which the traces are both large in number and long-lived.

A number of approaches have been developed that, like Lamport time, are space-conserving,
but cannot completely determine precedence. These include plausible clocks [152, 153], and
statistical or formulaic encoding of the data [174]. While useful for their chosen domains, they are
inapplicable in our environment as it is not currently clear what the implications are of distributed-
system-observation tools that did not completely capture precedence. We believe, however, that
this might be an area worth exploring, as it is clear that no monitoring system can capture all
precedence channels [19].

Frumkin, Hood, and Yan claim that entropy-efficient encoding of program traces can result in
a significant reduction of trace sizes [48] (a factor of five), though this appears to be a theoretical
analysis, rather than an actual tool, and is focused on the disk-storage requirement, not the in-
memory data structure. Yan, Sarukkai, and Mehra also looked at trace-file size reduction [175].

Meldal, Sankar, and Vera developed a mechanism for determining temporal ordering of mes-
sages arriving at the same process, where the process interconnection is static and known ahead
of time [105]. This is sufficiently restrictive that it is doubtful that it would be of value in our
work.

Finally, the graph-theory community has developed various algorithms for maintaining the
dynamic transitive closure of digraphs [1, 77, 78, 178]. There are several differences from our
work. The primary difference is that they wish to be able to insert or delete edges in arbitrary lo-
cations in the digraph. For our purpose, it is sufficient to limit edge insertions to sink-only vertices
and deletions to source-only vertices. This corresponds to inserting only maximal elements in the
partial order and deleting only minimal elements. In other words, we can restrict the processing
order to be a linearization of the partial order. A second important difference is that they wish to
be able to answer the precedence query in constant time. We are willing to accept a tradeoff on
this if it enables scalability. As a result of these differences, their best algorithms require space
equal to that of the Fidge/Mattern timestamp, and insertion time proportional to the number of
elements in the partial order. This insertion-time alone is unacceptable for our purpose.

PART |11

SOLUTIONS

115

8 DIMENSION-BOUND TIMESTAMPS

We have demonstrated that Fidge/Mattern timestamps do not scale well for our application, and
that there is no theoretical requirement that demands their use. We have not yet, however, offered
an alternative. We now provide two possible alternatives, significant variants of the Ore and Sum-
mers cluster timestamps respectively. Both satisfy our requirements, as identified in Chapter 6.
Both require centralized creation and a somewhat centralized precedence test. By “somewhat
centralized” we means that there are instances when the partial-order data structure will have to
be consulted, and other instances in which comparison between the timestamps alone is sufficient.

We start with the Ore-variant, which we have termed dimension-bound timestamps as their
size will depend not on the number of traces, but on the dimension-bound that the algorithm is
able to achieve, which can be as low as the dimension of the partial order. To justify a dynamic
variant on the Ore timestamp, we must first demonstrate that it will be of value. Specifically, we
must show that a significant number of distributed computations have a low dimension relative to
their width (that is, their number of traces). If this were not the case there would be no value in an
Ore timestamp. We provide such evidence in Section 8.1. We then present a three-phase dynamic-
Ore algorithm, where the phases are interleaved. We provide solutions for each phase, though we
have not implemented the complete scheme. Finally, we analyse the resulting timestamp.

8.1 BOUNDING THE DIMENSION

In this section we will describe the algorithms we have developed to compute an upper-bound
on the dimension of the partial order. This is done in a two-phase process. We first compute the
critical pairs of the partial order, and then we create a set of extensions that reverses those pairs.
We will first describe the formal justification for this approach, and then describe the two phases.
Finally we will provide some analysis of the algorithm. This work comes from our offline and
online dimension-bound-analysis papers [164, 165].

Computing the exact dimension of a partial order is known to be NP-hard for any partial
order of dimension greater than two [177]. We therefore approached the problem by attempting
to simply bound the dimension. For our purposes, an order-of-magnitude difference between the
dimension bound and the number of processes would be sufficient to justify proceeding. It was
then necessary to develop an algorithm to achieve a reasonable bound in a reasonable amount of
time. Rather than take the direct approach of generating linear extensions and then determining
if they formed a realizer we chose an indirect route based on critical pairs (Definition 9, page 11).
As we know from Theorem 1, the dimension of a partial order is equal to the least number of
subextensions of that partial order required to reverse all of its critical pairs.

Three observations must be made about this. First, itis sufficient to simply reverse the critical-
pair events. Specifically, all events that are not part of a critical pair may be ignored. Second, not
every subextension need contain all critical pairs. Third, it is not necessary for the subextensions

116

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 117

1.V, el €& {

2. ¢ + leastConcurrentg (e)

3 Vaeelo{

4 gc + greatestConcurrent (e?)
S5: if (e/ € go) {

6: (e',e/) € CP

7 }

8

9:

Cod
}
Figure 8.1: Critical-Pair Computation
to be linear. They merely have to reverse the critical pairs. Given this, the approach we have

taken is to first compute all of the critical pairs of the partial order (a polynomial-time problem)
and then create extensions that reverse these critical pairs (an NP-hard problem).

8.1.1 OMPUTING CRITICAL PAIRS

While it is possible to use the given definition of critical pairs to compute the set of all crit-
ical pairs, any such algorithm would likely be very inefficient. To achieve reasonable perfor-
mance in the computation it is necessary to develop an association of critical pairs with the
relations that hold for the partial order. To this end, we defined thelsefSConcurrentg (e)

and greatestConcurrentg(e) (see Equations 4.4 and 4.5 in Section 4.3) and discovered their
relationship to critical pairs, as expressed in the following theorem.

Theorem 4 (¢!, e’) forma critical pair if-and-only-if
e’ € leastConcurrentg (/) A e/ € greatestConcurrent, (')

Proof: Necessary: Assum@’, e’) € CPg. If ¢* ¢ leastConcurrents (/) then, becausé ||¢ €7,
Jpr €F <g et A eF || /. This implies tha3,. e <g ¢! A eF £e e/ which contradicts
(¢',e’) € CPg¢. Likewise, ife/ ¢ greatestConcurrentg(e’) thend,x e/ <¢ eF A ¥ ||¢ €', This
then implies thaB,: e/ <¢ e¥ A e’ £¢ e which again contradictg?, e/) € CPeg.

Sufficient: Assumee’ € leastConcurrentg(e/) A e/ € greatestConcurrentg(e’). Show
Vi eF <g e = b <¢ e, If eF <¢ el thenek |Jo e/ because’ € leastConcurrentg(e’).
Also, if e¥ <¢ €' thenel £¢ €F since if it did, by transitivitye! <¢ e* which contradicts
¢! € leastConcurrentg(e/). ThereforeV . e <g e = €& <¢ e/. Likewise we may show
el <g ef = e <¢ eF. If e/ <¢ €F thene' |Jo eF because’ € greatestConcurrentg (e?).
Also, if e/ <¢ eF thene® £¢ ¢ since if it did, by transitivitye? <g e which contradicts
e/ € greatestConcurrentg (e). Thereforev,. e/ <¢ ef = ¢! <¢ k. O

This theorem, in turn, enabled the development of the critical-pair computation algorithm
shown in Figure 8.1. Some comments should be made about this algorithm. First, it is not obvious
from the above why we perform the computation in what appears to be the reverse order. That is,

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 118

we take each event as a possible second element of a critical pair, rather than a first element. The
reason has to do with the relative cheapness with which we can computedh@oncurrent

set versus the comparative expense of computingittwetestConcurrent set. We implemented

our algorithm as a client of thed®T server using the algorithms described in Section 6.2.2. The
offline paper [164] used the naive algorithm, while the online paper [165] developed the technique
that led to the improved algorithm described in that section. Per those algorithms, when an event
is non-maximal it is cheaper to compute the leastConcurrent set.

This algorithm is still not ideal, however, as we have to compute the entire greatest-concurrent
set for each element of the least-concurrent set. This makes the computations of the critical
pairsO(N3), even under the improved least- and greatest-concurrent algorithms. However, the
theorem used to create the optimal greatest-concurrent algorithm has a suitable corollary.

Corollary 1 (Critical-Pair Calculation:) If two events, e’ and e/, are concurrent then ¢/ is an
element of the greatest concurrent set of ¢ if-and-only-if ¢ precedes some immediate successor
of e’.

e e e = (ej € greatestConcurrentg (e') < Vo ¢/ <: e¥ = el <¢ ek>

Proof. Follows directly from Theorem 81

Since the algorithm does not compyeatestConcurrent (e?) until it has already computed
leastConcurrentg (e/) and concluded tha# € leastConcurrentg(e’), and thuse? ||g e it
becomes unnecessary to compgiteatest Concurrent, (e*). Rather, a simple check of whether
¢! is a predecessor of all immediate successoes &f sufficient. If it is, then(e?, ¢7) is a critical
pair. Thus lines 4 and 5 of the algorithm change to

4: ls+ {eF|el <:ef}
S5: if (V,x ek € ls = e’ <& ek) {

In the single-partner case, the set of events that are immediate successors to an event has cardi-
nality less than 3. This means that the cost to compute the critical p&is\s).

8.1.2 ReEVERSINGCRITICAL PAIRS

Building the minimum number of extensions that reverses the critical pairs of a partial order is
NP-hard for dimension greater than two [177]. Instead we propose a reasonably efficient algo-
rithm that will not give an optimal solution, but will provide an upper bound on the minimum
number of extensions necessary (that is, the dimension). Insofar as the dimension-bound we
compute is small relative to the number of traces, it is a satisfactory tradeoff. To achieve this we
developed a two-step algorithm. First we select the desired extension in which we will reverse
the current critical pair and then we insert it into that extension.

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 119

In accordance with Theorem 1, it is sufficient to develop subextensions that reverse the critical
pairs of the partial order. We do not have to insert all critical pairs in all subextensions. We
merely have to find one subextension that will reverse the critical pair. Each subextension then
is composed of some reversed critical pair events and nothing else. Note that this approach is
not sufficient for generating Ore timestamps. It is insufficient as each subextension contains just
a subset of the events of the partial order, not all of the events. Further, Ore timestamps require
that the extensions be linear. Note also that using subextensions, rather than extensions, has
implications on how we can insert critical pairs into the subextension.

To understand the algorithm we must define what it means to insert a critical pair into an
subextension. It means that we can add the events of the critical pair, such that they are reversed,
and that it violates neither the partial order, nor the additional constraints that the reversal requires.
It may also be the case, if the insertion algorithm is not optimal, that a subextension rejects the
critical pair even though it did not violate these conditions, but rather violated some aspect of the
structure in which the extension was kept.

It is, perhaps, helpful to consider a simple example. Suppose we have a partial order con-
sisting solely of two concurrent events,ande’. It has critical pairge’, /) and(e/, ¢*). Once
(ei,ej) has been inserted into a subextensionthat subextension must reflect the constraint
el <, e'. As such(e’, e) cannot be inserted into that subextension, since it would require the
subextension to refleet <, 7.

We say that a subextensiaacepts a critical pair if the critical pair may be inserted into that
subextension. A subextensiogects a critical pair if it does not accept it. Since a subextension
may reject a critical pair, insertion into a subextension may fail. Therefore the first step of the
algorithm must have a strategy for selecting an alternate subextension in which to place the critical
pair. We can now describe the specific algorithms used for the two steps.

The algorithm we used for the extension-selection step is a simple greedy one. We insert the
current critical-pair events into the first extension that will accept the pair. In the case that all
current extensions reject the critical pair, we create a new extension, containing no events, that
must, by definition, accept the critical pair. The critical pair is inserted into the new extension.
Thus, the first-step algorithm is shown in Figure 8.2.

8.1.2.1 SBEXTENSIONINSERTION

For the second step of the algorithm, we had to define a method for inserting critical pairs into
a subextension. The initial algorithm that we developed was a greedy one that worked on the
principle “place the event before the first event it must precede.” While this approach produces
some promising results, it also produces some spectacularly bad ones.

We therefore decided to develop an optimal solution to this second step. We maintain a
directed acyclic graph for each subextension. To add a critical pair we add the two events in turn
and then determine if the graph is still acyclic. If it is acyclic we have accepted and inserted the
critical pair. If it is not, we reject the critical pair, and remove the evidence of the addition. This
method proved to be acceptable, as we can see in Section 8.1.3.

The data structure for a given node of the DAG representing everaintains the following

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 120

1: insert¢’) {

2: for (i=0; i < numberExtensions; ++i)
3 if (insert(extension[il¢, e/)) {

4 return

5: }

6: }

7. create(extension[numberExtensions])
8: insert(extension[numberExtensiong],e’)
9: ++numberExtensions

10: return;

11:}

Figure 8.2: Extension Insertion

information: the vector timestamp ef the sets{\ | (\,e) € CPs} and{p | (e,p) € CPg}
(whereCPg C CP is the subset of the critical pairs that this subextendidras reversed), and
a set of pointers to some of the successorsitothe DAG. The actual successors pointed to will
depend on the order in which events are inserted. It is not typically the minimum set of successors
needed, but neither is it the full transitive closure.

We now define event precedence between two DAG events as follows.

e <yl = e <ged v (e,e)) € CP,

whereCP,, is the set of critical pairs that are reversed by subextensjas defined above. Event
¢’ precedes’ in subextension: if-and-only-if e’ precedes in the partial order ore’, ef)
is a critical pair that is reversed by this subextension. Note that if evérdad e’ are in a
subextension: and (¢!, ¢/) form a critical pair this does not necessarily imply thiet /) €
CP,. The pair(e’, ¢/) is only in CP, if the subextension has accepted, that is, reversed, it. A
simple example of this case is if the subextensiaiready contains the critical paf#/, e*).
A second significant aspect of this definition is that it does not capture transitivity. Thus if
¥ is an immediate successordoand both are concurrent td, with (e?, ¢/) forming a critical
pair, thene/ <, e’ ande’ <, e* butel £, e*. Appropriate transitivity can only be captured by
traversing the DAG.
We designate a special nodeot with the property thav,: r oot <, e’. The root node
enables us to enter the DAG at a single point, rather than, potentially, multiple concurrent points.
The insertion algorithm is then as follows. We traverse the DAG in a depth-first search order,
starting at the root, comparing the event being inserted with the current node. We determine if
the event equals, succeeds, precedes or is concurrent with the current node. Only one of these
must be the case, and if more than one has occurred, we abort the insertion. It has failed. If the
event precedes or equals the current node, then it must not succeed or equal any successors to
the current node. We therefore satiasst Not SucceedOr Equal variable to this effect. If this
variable has been set before, and the event succeeds or equals the current node we will abort the
insertion.

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 121

If the event succeeds the current node, then we may have to add successor pointers to the
event from the current node. We have to add a successor pointer from the current node to the
event if it precedes any of the successors to the current node, or if it is concurrent with all of the
successors. In the former case we will also add a pointer from the event to the successor node
that it precedes, and remove the pointer from the current node to the successor node, since there
is a path through the event.

We repeat these operations for the successor nodes of the current node, in depth-first order.
Therrust Not SucceedOr Equal variable is kept in the depth-first search stack.

To traverse the DAG there israr k integer associated with each node. Before each traversal
we increment the mark value in the root. As we visit a node we set the value of mark at that node
to value of the mark at the root. We only visit a node if the mark is less than the root mark value.
Since we simply use an integer for this mark, if we ever reach about half-a-billion critical pairs
this value will wrap. This defect can be easily fixed when the need arises.

To enable us to undo any changes we make, before we make any change we create a copy
of the DAG node. We only do this if we do not yet have a copy. After successful insertion of
both events of the critical pair we traverse the DAG completely to commit the changes. That is,
we traverse the DAG and delete the copy at any node that has one. If the insertion of the events
is unsuccessful, we traverse the DAG and abort the changes. That is, we traverse the DAG and,
wherever there was a copy made we restore that copy over the existing node.

This algorithm requires a complete DAG traversal for each critical pair reversed. We there-
fore subsequently developed a more efficient subextension-insertion algorithm for our online pa-
per [164]. The approach we took is to maintain vector clocks in the subextension, and update
them after every critical-pair reversal. The value in this is that we can use the vector clocks to
determine if the insertion of the reversal of a critical pair would cause a cycle in the extension,
and thus must be rejected. Specifically, if we wish to add critical (@aie’), we first determine
if the extension implies’ <, e*. This may be done using the standard Fidge/Mattern precedence
test in constant time. As such, before we change anything, we know whether or not the critical
pair will be accepted.

In the case that the critical-pair reversal is accepted, we update the vector clocks of any
events affected by this new edge in the DAG. The vector-clock update is performed according to
the standard Fidge/Mattern algorithm. (i, ¢7) is the critical pair that is being reversed, then
the set of events that need to have their vector clock updatpd ise’ <, e A el £, eF}.

The justification for this set should be clear, since these are precisely those events for which the
existence o’/ was not known in their vector clocks.

Some observations should be made regarding the size of this set. For a given critical-pair
reversal, it can be as large as- 1, wheren is the number of events in the extension. This would
be the case when the partial order consisted of a chain and one additional event, concurrent to all
events in the chain. If the events in the chain are processed first, they will form a single extension,
since they will have no critical pairs. The processing of the concurrent event will then require a
vector clock update for all of these events. Note that in this case, althougt vector clock
updates are required for that final event insertion, the previcus insertions required no update

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 122

Number of Number of Number of Dimension

Events Processes Critical Pairs Bound
15 7 38 2
2687 59 2360 4
3252 66 3044 4
2612 66 2032 3
49791 95 6622 3
3272 96 5906 4
7426 109 10019 6
4028 110 8439 6
7928 112 6969 3
35266 112 6675 4
30048 120 7999 3
9826 178 18464 6

Table 8.1: Dimension bounds for Java

at all, implying anO(1) amortized cost for this case. It is our experience that this type of effect

is typical. While the set size can be large for some patrticular critical-pair reversal, it is small over
all events, and can be approximated by a constant. Since acceptance is determined in constant
time, critical-pair reversal, and thus sub-extension insertion, witDb&) amortized.

8.1.3 RESULTS AND OBSERVATIONS

We now examine the output of the algorithm, which is our primary interest in it. There are two
significant aspects. We wish to look at the dimension bounds produced, and we would like to
know how tight those bounds are, given that the algorithm does not produce the optimal bound.

We have executed our dimension-bound algorithm over several dozen distributed compu-
tations covering over half-a-dozen different parallel, concurrent and distributed environments
and a range of 3 to 300 traces. The environment types are the Open Software Foundation
Distributed Computing Environment [44], theC++ shared-memory concurrent programming
language [14], the Hermes distributed programming language [139], the Parallel Virtual Ma-
chine [53] and the Java programming language [55]. The PVM programs were a subset Cowichan
problem set[171, 172], which conveniently represent many common communication patterns that
are seen in scientific computations. They frequently exhibited close-neighbour communication
and scatter-gather patterns. The Java programs were a variety of web-like applications, includ-
ing various web-server executions. The DCE programs were sample business application code.
The programs for the remaining environments consisted of a mixture of student-written and sam-
ple code with no particular common theme. Various of the raw results are shown in Tables 8.2
through 8.5.

The initial results, as reported in our offline and online analysis papers [164, 165], were very
promising. The quick summary is that the dimension bound that we discovered over this range
of computations and environments was always 10 or less. For computations with a trace-count

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS

Number of Number of Number of Dimension

Events Processes Critical Pairs Bound
45 5 12 3
90 19 27 2

121 20 61 4
249 40 124 3
291 42 164 3
467 42 183 4
297 44 237 4
499 70 443 5
501 72 496 6
833 110 1490 9
817 112 1378 8
928 114 1738 7
902 115 1402 8
1560 159 3579 10

Table 8.2: Dimension bounds for OSF DCE

Number of Number of Number of Dimension

Events Processes Critical Pairs Bound
360 12 156 2
1750 12 853 5

Table 8.3: Dimension bounds faIC++

Number of Number of Number of Dimension

Events Processes Critical Pairs Bound
1888 125 1323 5
1944 127 1429 5
4164 267 4403 7

14086 297 21401 6

Table 8.4: Dimension bounds for Hermes

Number of Number of Number of Dimension

Events Processes Critical Pairs Bound
138 16 270 3
1338 64 4782 5
2682 128 17759 5
16122 256 93102 9

Table 8.5: Dimension bounds for PVM

123

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 124

+
@
3

1 1 1 1 o lefibee) e w1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces

Figure 8.3: Dimension-Bound v. Number of Traces (Note: Scales Differ)

greater than 20 there is a minimum of an order-of-magnitude difference between the dimension
and the number of traces. When the number of traces is greater than 100, it is usually a factor of
15 or greater. To help visualize what these results imply, we created a graph, shown in Figure 8.3,
which plots dimension-bound as a function of the number of traces. The two graphs shown are
the same, though with with differing scales. The horizontal axis is the number of traces, while
the vertical axis is the dimension bound. We also plot two additional lines. First we show the
“dimension = 10" line, as all results were less than or equal to that value. Second, we show the
“dimension = width” line, which illustrates the increase in Fidge/Mattern vector-clock size as the
number of traces increases.

In addition to testing with distributed computations, we created a series of broadcast patterns
of varying sizes and crown patterns. The results from our program for these patterns was dimen-
sion boundV for the crown patterns and 3 for the broadcasts, regardless the number of processes
involved in the broadcast. The dimension of all of these cases is optimal.

However, it should by no means be inferred that the algorithm is in general producing optimal
results. All we can infer from the current data is that the dimension bounds achieved for a rea-
sonable number and variety of distributed computations are substantially better than the assumed
default value of the number of traces involved.

Our experimental results showed little difference in the dimension bound produced when
using either the offline or online algorithms [164]. In some instances the bound was higher by
one, in others lower by one, in most it was the same.

Then we analysed Life. More precisely, we observed some anomalies in the dimension
bounds produced for the execution history of the PVM implementation of Conway'’s Life (see
Section 7.1.2.1 for a description of the PVM implementation of Life). As a result we did a more
detailed investigation, determining the dimension bound as a function of the number of iterations
in the Life program. We examined executions running on 128 processes, with the number of
iterations varying from 9 to 69. Two things became immediately apparent. First, as is shown in
Figure 8.4, the dimension bound produced can and does exceed 10 for real programs. While we

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 125

Dimension of Life
60 T T T T T T

50

40 -

30

Dimension Bound

20

10

0 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Number of Iterations

Figure 8.4: The Dimension-Bound of Life

knew this was possible, it was not comforting that this should be the case with such a basic com-
munication paradigm. Second, the online algorithm produced both significantly worse results
than the offline algorithm, and for a non-trivial number of cases those results exceeded the num-
ber of traces in the computation. Prior to this we did not believe that this was possible. In spite
of these issues, we still do not know what the dimension of Life is. Specifically, the algorithm
produces a bound, not the actual dimension, as that is NP-hard.

This brings us to the second aspect of the bounding algorithm that we wished to examine:
the tightness of the bound. We do not currently have a bound, and had not felt that this was a
significant issue, since the results were sufficiently low that it was not relevant to whether or not
a dynamic Ore timestamp would be a good idea, if feasible. Based on the results for the Life
execution history, however, it is now clear that such bounds would be desirable. In particular,
we are not yet convinced that Life does have a high dimension, or that it is inherently impossible
to achieve a lower bound should it have a lower dimension. What is clear, however, is that
the problem with the algorithm, assuming Life does indeed have a lower dimension than that
reported by our algorithm, occurs in the subextension-selection phase of the algorithm, since all
other portions of the algorithm are optimal. Dealing with such a problem is hard, since we have
no clear basis for deciding which subextension to select for any particular critical-pair insertion.

Further to this problem, it is apparent that we have no clear characterization of low dimension-
bound programs. As such, we cannot easily determine when a dimension-bound timestamp would
be applicable and when it would not. That said, we still feel that the evidence strongly supports
investigating such a timestamp. It was never believed that it would be applicable for all com-
putations, and it never will be applicable for those with high dimension. However, we have
demonstrated that a significant number of programs do produce execution histories with a low
dimension bound, and for those cases, such a timestamp would be beneficial.

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 126

1: timestamp) {

2. C, « criticalPairsé);
3. inserte, Ce, R);

4: assignVectol, R);
5:

}

Figure 8.5: Dynamic-Ore Timestamp Algorithm
8.2 DYNAMIC-ORE TIMESTAMP ALGORITHM

In this section we present our dynamic variant of the Ore timestamp. A preliminary version of
this work was presented in our framework-algorithm paper [166].

Before we begin, we must deal with a fairly fundamental problem. All of the terminology and
theory of partial orders that we have thus far discussed, and that we have found in the literature,
pertains to static entities. That is, the partial order exists in entirety. There is no notion of
dynamic partial orders. Our solution to this problem was to treat the set of events and their
interaction at any given instant as the complete partial order. The arrival of a hew event (that
is, information pertaining to a previously unknown event) then creates a new partial order. To
deal with this dynamic nature, we develop theorems regarding the relationship between these two
distinct partial orders. It is at this point that it becomes clear why it has been necessary to make
explicit which partial order various relations refer to.

Our high-level algorithm is as shown in Figure 8.5. For each new event, the algorithm de-
termines the critical pairs implied by that event, and uses those as a constraint when adding the
new event to the pseudo-realizer. After the event is added to the pseudo-realizer, its position in
the various extensions is used to determine its vector timestamp. Note that it is a pseudo-realizer,
and not a realizer, because the extensions that form it are not linear. It is, however, sufficient per
Theorem 1 (page 11). We will now describe our algorithms for each of these steps.

8.2.1 INCREMENTAL COMPUTATION OF CRITICAL PAIRS

The requirements for the incremental computation of critical pairs are as follows. First, we need
a time-efficient algorithm. Specifically, we must have an algorithm théx(is) with respect to
the number of events in the computation, or the algorithm could not be considered to be dynamic.
Also, we prefer that it is no more than(V) with respect to the number of traces, as this is the
cost of the Fidge/Mattern algorithm. In addition to these time requirements, we also constrain
the space consumption per event to be no more @l amortized, wherée is the number of
extensions in the pseudo-realizer. Without the space saving, the algorithm would be of no value.
Finally, the critical pairs must be computed dynamically. Only the first of these requirements is
satisfied by the algorithm of Figure 8.1. Further, the theorem that algorithm rests on does not
satisfy the dynamic requirement.

To compute the set of critical pairs dynamically, we first recall Theorert¢4e’) form a
critical pair if-and-only-ifé € leastConcurrentg (e/) ande/ € greatestConcurrentg(e). In

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 127

this dynamic algorithm, the set of events that are least or greatest concurrent to a given event may
change as new events arrive. As a result, we require two additional theorems: one to indicate
which critical pairs are no longer valid in the presence of a new event, and one to indicate which
new critical pairs are present as a result of the new event.

In order to be able to efficiently determine the change in the critical-pair set, we must put
a restriction on the order in which new events are processed. We require that the events be
processed in some linear extension of the partial order. The effect of this condition is that we are
now dealing with additions to the partial order of new maximal elements, and of no other kind.
This enables the development of our required theorems. We start with a lemma that determines
the effect of a new maximal event on the least concurrent set of existing events.

Lemma 1 (Consistency of Least Concurrent Sets) Elements in the least-concurrent set of an
event remain in that set under the addition of new maximal elements to the partial order.

e',e) € £ = (' € leastConcurrentg(e’) & €' € leastConcurrenth{e}(ej))

Proof: Suppose € leastConcurrentg(e’). Thene! |, ¢/ and A b <. e A eF || €.
Sincee is maximal,e A, e/ ande 4 e'. Thereforee’ || e’. For the same reason,

:] EUfe} EU{e} .
Arek i € N ek leue, € Thereforee’ € leastConcurrente .y (€’). On the other hand,

suppose’ € leastConcurrenth{e}(ej). Thene’ lewies el N Aurek =euier el A ¥ lewge, €
Since bothe! ande’ are in€ ande is maximal,e’ |, e/ A Axef <. et A eF || e/. Therefore

e’ € leastConcurrentg (e/). O

u{e}

We now state and prove the theorem that determines which critical pairs are no longer valid under
the addition to sef of maximal element.

Theorem 5 (Remaining Critical Pairs) The critical pair (¢, e’) of the partial order (£, <¢) is

not in the set of critical pairs of the partial order (£ U {e}, <¢uy}) if and only if e/ is covered

by e and ¢’ is concurrent with e.

(e',¢!) € CPe = (& <:e A €| & (e, el) ¢ CPeuge)

Eu{e} e)

Proof: (Necessary:) Suppoge’ <:e A ¢' ||, e). Thuse’ ¢ greatestConcurrentw{e}(ei).
Therefore(e’, e’) ¢ CPeufey _ ‘
(Sufficient:) Suppose thdt’,e’) ¢ CPgy). Then eithere’ ¢ leastConcurrent, . (e/) or
e ¢ greatestConcurrenth{e}(e’). Since(e’,e’) € CPg thene’ € leastConcurrentg(e)
ande’ € greatestConcurrentg(e'). By Lemma 1" € leastConcurrent,, ., (¢’). Therefore
(¢'). Therefore3,ie® |, ¢ A e/ <. ., €. Since there is
e N el < e. Now we have

J
e/ ¢ greatestConcurrent, e}

no suche® € &, the only suche” is e. Thereforee || oo
C . L C

to show thate/ <: e. Suppose not. TheB.e/ <, e Ae <., e Sincee' [,

ande’ ||, ¢/, thene’ |, .., ¢'. Alsoel € &£ Therefored e’ || ¢’ Ael < €. Therefore

¢/ ¢ greatestConcurrentg(e') which is a contradiction™

Eu{e}
(&

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 128

Sincee is maximale _ﬁgu{e} e!. Therefore the concurrency dfwith e can be verified or refuted
by merely checking’ <¢y¢.; e.

Our second theorem defines the entire set of additional critical pairs that may result from the
addition ofe.

Theorem 6 (Additional Critical Pairs) The only new critical pairs formed by the presence of a
new event e are those of the form (¢,) or (e, e’) that satisfy Theorem 4.

(e',el) € CPgugey — CPg <= (ef=eVel =e)Nel € leastConcurrentgu{e}(ej) A

e/ € greatestConcurrentg, (e} (e?)

Proof:

(=) (¢ =eVel =e) Ne' € leastConcurrentg gy (e/)Ae € greatestConcurrentgu{e}(ei).
Then(e', e7) € CPgyyey- Sincee ¢ & by definition ande’ = e V e/ = ¢), then(e’, ¢7) ¢ CPg.
Therefore(e’, e’) € CPg(ey — CPe. o o

(=) (e',¢’) € CPgyyey — CPg. Therefore(e’,e’) € CPgyy,y and(e',e’) ¢ CPe. This
then implies thae® € leastConcurrente .y (e’) ande’ € greatestConcurrente ¢ (e’) and
¢! ¢ leastConcurrentg(e/) V ¢/ ¢ greatestConcurrentg(e’). We now have to show that
this implies that(e! = e V e/ = e). Assumee’ # e A e/ # e. Therefore, by Lemma 1,
¢’ € leastConcurrentg(e/). Thuse’ ¢ greatestConcurrentg(e’). This then implies that
Jor eF |l €8 A el <. eF. Sinceel,e/ € £ ande is maximale el A e =euter ek
This contradicts’ € greatestConcurrentgu{e}(ei). O

The only new critical pairs are those that are formed with the evastone of the elements of
the pair. Furthermore, the combination of these two theorems clearly indicates(tati is a
critical pair but ceases to be after the additior,ahen(e’, e) will be a critical pair. We can also
observe that in such a case any extension of the partial order that ref«érsgsvill also reverse
(¢!, e’) sincee’ <eufey € We therefore do not need to concern ourselves with the computation
of which critical pairs cease to be critical pairs on the addition of a new event. Rather, we solely
calculate the new pairs implied by the new event, and use those pairs, in conjunction with the
partial-order relationships, as our constraints on inserting the event into the pseudo-realizer.

Using these theorems, Corollary 1, and the optimization for computing the greatest-concurrent
set for maximal events described in Section 6.2.2, we developed a complete incremental critical-
pair algorithm that satisfies our requirements. It is shown in Figure 8.6.

The algorithm must perform four things for each new event arrival. First, it calculates the
Fidge/Mattern timestamp for the event (line 3). The Fidge/Mattern timestamp is necessary to
determine various precedence relationships between the new event and existing events. Given
that it is needed, it is also needed to compute further Fidge/Mattern timestamps.

Second, the algorithm removes Fidge/Mattern timestamps for any events for which the new
event is the last covering event. Although we require Fidge/Mattern timestamps, we must remove
them at the first opportunity to satisfy our size-bound requirement. Per Equations 6.3 and 6.4,

k
||€U{e}

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 129

1: criticalPairs¢) {
2. C.«+0;
3: FM(e) <+ fidgematterry);
4: V(e <:e){
5: if (e is last covering event of’)
6: deleteFM(e');
(G
8. V,i(ef € FM(e)) {
9: if (3¢t <:el A ¢p(e') = ¢(e))
10: if (Vo e <:ef A ¢(eF) # ¢(e/) A EventPosition(e*) < FM(e)[p(e)])
11: C, + C, U (e, e);
12: }
13: V(A el < ej)
14: if (V.1 e* <: e A EventPosition(e*) < FM(e!)[p(e*)])
15: C, < C, U (e, €);
16: return(;);
17:}

Figure 8.6: Dynamic Critical-Pair Computation

the value of this timestamp for an eventdlepends on the timestamps of the events dletvers.
Therefore, we must maintain a copy of the Fidge/Mattern timestamp for any event for which we
have not seen all the events that cover it. After that time we may delete it. This is the function of
lines4to7.

Under our general restriction of processing events in some linearization of the partial order,
the number of events that are not completely covered at any given time can be arbitrarily large.
While it is not possible to further restrict this linear ordering to guarantee a bounded number of
events that are not completely covered, in practice a (small) bound does exist. There are three
reasons for this. In the case of systems with only synchronous communication, there can never be
more thanV events that have not been covered. For systems with asynchronous communication,
the number of events not yet covered is bounded by the resources of the distributed system. Since
these resources are finite, the number of such events is bounded. Finally, in practice we do not
observe systems that have significant numbers of uncovered events outstanding. This is probably
because the correctness of such systems would be subject to system resources, which is not a
robust basis for guaranteeing system behaviour.

Third, we must consider all events that are least-concurrent to the new event (lines 8 to 10).
The algorithm uses a small variant on the least-concurrent method defined in Section 6.2.2. First,
it does not need to check if the potentially least-concurrent event is a successaincee
is maximal. Second, it cannot use a simple precedence test, as there is no guarantee that the
potentially least-concurrent event still has a Fidge/Mattern timestamp. We could alter the al-
gorithm to ensure that such events did still have a Fidge/Mattern timestamp. We would do so

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 130

by keeping track of the intersection of the predecessor sets of new events, and only removing
the Fidge/Mattern timestamps of events covered by the slice corresponding to that intersection
cut. Such an approach should only c64tV), and would still reasonably bound the number of
Fidge/Mattern timestamps that were kept. However, there is a better way. The Fidge/Mattern
timestamp of event corresponds to the predecessor set of that event. To determine prece-
dence with respect te, it is then sufficient to determine membership in that set. This can be
accomplished merely by looking at the EventID, and comparing with the relevant entty of
Fidge/Mattern timestamp. This is the function of line 10. Siacemaximal, it must be greatest-
concurrent to anything that is least-concurrent to it, and thus the critical pairs of thédgemn

are identified.

Fourth, we must consider all events that are greatest-concurrent to the new event (lines 13
and 14). If the new event is least-concurrent to such events, they too would form a tentative
critical pair. Per the optimization of the greatest-concurrent method (Section 6.2.2) esgice
maximal, the greatest-concurrent seteofs precisely the set of maximal events, excluding
(line 13). Note that the maximal events are not simply the maximum events in each trace. For
all such maximal events, the algorithm determines if there is an event causally peitinaois
also concurrent. The algorithm applies the same precedence-testing technique as was used for the
least-concurrent precedence test. It can do so because all maximal events still have Fidge/Mattern
timestamps, as they will be needed to compute successor Fidge/Mattern timestamps. If there is
no causally prior concurrent event, then we have identified a critical pair of the (faref)

(line 15).

For the single-partner case, this algorithm requ¢#/) time. The reason is as follows. The
Fidge/Mattern computation (line 3) requir€g§ N) steps. The first loop (lines 4-7) will have at
most two iterations, since an event can only cover two other events in the single-partner case. The
second loop (lines 8-12) will requir®-iterations. However, each statement within itl$l1).
Specifically, thaf statements of lines 9 and 10 will each examine at most two events, due to the
single-partner restriction. The final loop (lines 13-15) will also reqNréerations, but again
the statements within it al@(1).

When multiple partners are permitted line 10 beco®¢d/) if ¢/ is a multi-receive event,
turning lines 8 to 11 intcO(NZ) cost. Likewise, ife is a multi-receive, the line 14 becomes
O(N), turning lines 13 to 15 int@(N?). If multi-receive is permitted, without multicast, then
the cost would be amortize@(N), since although a multi-receive would b N 2), there would
have to beD (V) corresponding unicasts. Since a multicast event only covers one event, and that
in the same trace, they do not change the cost from the single-partner case. However, if both
multicast and multi-receive were permitted, then the cost coutd(9é*) amortized. This would
amount to most or all communication events being multicast or multi-receive, which only occurs
in highly fault-tolerant systems.

Synchronous events occurring @ N) traces would have an effect similar to multi-receive
events in the presence of multicast. They would ca¥eV) events, and thus increase the cost to
O(N?) for the particular event. Their amortized cost cannot be reducéq), since they also
act in a like manner to multicast events, being coveredky) events. While we do not have

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 131

evidence to support the assertion th¥tV)-home synchronous events would be rare (since no
tool supports more than single partners), it is our belief that they would not represent a problem
in practice.

The space consumption of the output of the algorithr@{$V) since that is the number of
critical pairs that will be produced. This number is supported empirically. However, there is
no need to store the critical pairs after the event has been inserted into the pseudo-realizer. The
only space that must be maintained between critical-pair calculations is that required to store the
raw events and the Fidge/Mattern timestamps for events that are not yet fully covered. Thus, the
amortized space-consumption costigl) per event.

8.2.2 BUILDING PSEUDO-REALIZERS

The requirements for the incremental building of a pseudo-realizer are as follows. First, it must
reverse the critical pairs discovered for the new event. This is the sense in which itis a realizer for
the partial order. It need not be a true realizer, however, in that we do not require the extensions
we form to be linear. Second, it must be possible to determine efficiently the precedence relation
between any two events stored in the pseudo-realizer. That is, we must be able to build vectors
using the extensions. The Ore timestamp requires linear extensions to build vectors. We have
discovered, and will describe in Section 8.2.3, that this requirement can be relaxed somewhat.
Third, the insertion of an event into the pseudo-realizer must have an amortized cogt)of
with respect to the number of events, and we prefer that it be no morext@dn with respect
to the number of processes. The first of these constraints is necessary for it to be considered a
dynamic algorithm; the second requires that we are no less efficient in building the timestamps
than is the Fidge/Mattern algorithm. The fourth requirement is that the space consumption per
event must be no more than(d). Reduced space consumption is a primary benefit that we are
seeking. Finallyd must be reasonably small, or at least a reasonably close approximation to the
dimension of the partial order of computation. This final requirement is based on the fact that
building the minimum number of extensions that reverses the critical pairs of a partial order is
NP-hard for dimension greater than two [177]. Any dynamic algorithm we develop will be non-
optimal. However, it must be sufficiently good in practice to produce pseudo-realizers with only a
small number of extensions where the dimension is low. There would be no value in an algorithm
that produced a number of extensions similar to the number of processes in the computation.
Given these requirements, we have defined a high-level event-insertion algorithm, shown in
Figure 8.7. In brief, we must place the new event in every extension such that the set of extensions
reverses all critical pairs associated with that event (recall Theorem 1, page 11). Note that while
line 2 should not be construed as implying any particular placement order, or even an ordered
placement approach at all, tpé ace function of line 3 is required to remove any critical pairs
reversed by that placement from the set of critical pairs, and return the resulting set for use
in the remainingpl ace operations. In this way it is small matter to determine if all critical
pairs have been reversed (line 4), and it also means that later placements are not constrained by
requirements that have already been satisfied. If all critical pairs have not been reversed in the
existing extensions, we must create new extensions that will allow us to reverse the critical pairs

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 132

1: inserte, Ce, R) {

20 Vier

3 C. < placeg, I, C,);

4: while C. # 0) {

5: [+ createExtension();
6 R+ RUI;

7 C, + placee, I, C,);
8 }
9:}

Figure 8.7: Event-Insertion Algorithm

that have not yet been reversed. This is the function of lines 4 to 8. Any reasonable placement
algorithm should require only one new extension, and then only because the existing extension
cannot reverse some critical pair, not because the choice of placement means thdb thaty
reverse it.

The cost of this algorithm i©(|R| k |C|), wherek is the number of events a given event can
cover. TheR| factor comes from the number of iterations of the loop in line 2. Ft¢ factor is
the cost of event placement in line 3, and will be justified in the following section. New-extension
creation (lines 4-8) is expected to be extremely infrequent, and thus not a significant cost (if it is
not, then this would not be a good timestamp for reasons other than the cost of pseudo-realizer
creation).

This high-level algorithm identifies the requirement for two sub-algorithms, for event place-
ment and new-extension creation, respectively. The algorithms used for the dimension-bound
analysis work do not adequately address either of these problems for several reasons. First, they
processed critical pairs, rather than events. Second, they store Fidge/Mattern timestamps with
every event for later use in the algorithm, which violates the fourth requirement. Third, they built
subextensions, rather than full extensions, which are insufficient for a pseudo-realizer.

8.2.2.1 BENT PLACEMENT

We address the problem of event placement by first dividing the critical pairs into those of the
form (¢!, e) and those of the fornfe, ¢9). The reversal of those in the latter category is trivial
to satisfy since: is maximal. We can simply placeat the end of some extension. Note that
this neither violates the partial order nor alters existing critical-pair reversals. In this regard, it
is not strictly necessary to calculate critical pairs of this form. On the other hand, if we wish to
minimally commit our extensions (that is, we do not wish to establish orderings that are implied
neither by the partial order nor by the requirement to reverse critical pairs), then we may choose
to be more selective.

However, there is an alternate solution that allows us to neither over-commit our extensions
nor require us to compute the, e?) critical pairs. Since placing the event at the end of some
extension will satisfy the constraints imposed by &ay?) critical pair, we maintain a virtual

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 133

extension that simply records the order in which events are processed. That is, we maintain an
index (referred to as the virtual-extension index), initially 0, that is incremented for each event
stored in the partial order. The value of the index at the time of storage is used as the first
element of our dynamic-Ore vector timestamp. This virtual extension thus costs constant space,
as opposed to the actual extensions which will require space proportional to the number of events.
However, it does require one additional integer storage per event for the timestamp.

Critical pairs of the form(e, ¢) are more difficult to reverse. If a new extension is required,
the reversal of these pairs is what will force it, as they require dia placed earlier in some
extension thar!. We can easily determine if an extension will allow the reversal ofcare)
critical pair by determining whether the events thabvers occur afte in the extension. These
events and! will have been processed, and thus we have vector timestamps for them. As such
we can check the relevant timestamp entry. We can thus place a range on the location of
the extension: after the events it covers and beforeettevents with which it formge!, e)
critical pairs. We have not yet investigated this notion of giving a range to a new event, rather
than a specific location, though we have examined the idea of using arbitrary DAGs rather than
(near-)linear extensions. We describe the results of that below.

A heuristic that satisfies the above requirement is to ptaaethe earliest location possible
in each extension. This location is immediately after the last event in the extensi@cthadrs.

This is computable ik steps per extension, whekeis the number of events thatcovers. We

then assign an index to the event, to be described in Section 8.2.3. We can then check, in one step
per critical pair, whether or not the critical pair has been reversed. If the index assigned to the
event is less than that of the element of the critical pair, then th{e', e) critical pair has been
reversed. Any critical pair that has been reversed is removed from the set of critical pairs. Any
critical pair that has not been reversed, cannot be reversed in this extension, since we have placed
evente at its first possible location that still satisfies the partial-order constraints.

The resulting extension is linear which may cause an over-commitment problem. However,
we can think of no way that avoids this problem that is computationally reasonable. Consider the
alternative of using an arbitrary DAG to represent an extension. If we built such extensions, how
would we assign indices? This problem is solvable. Any valid linearization of the DAG order
would suffice. Indeed, a complete linearization is not necessary. What is required is that any
event that precedes another event in the DAG have a lower index. Suppose we had an extension
containing events’, e/ ande®, such thate’ preceded:’, while both were concurrent t& in
the extension. I&* is assigned the same index @sthen it will have a lower index thad .

How will we determine that® lle eJ? The answer is, we do not have to. More precisely, no
single extension is required to fully determine the partial-order relationships. Indeed, no single
extension can, since their very purpose is to reverse critical pairs. The faef thate/ means

that there will be critical pairs that force an ordering between these two events in two different
extensions. In those extensions, the indices would yield the required ordering to apply the Ore
precedence test.

Now consider event insertion into the DAG. We will assume that the nodes of our extensions
will contain pointers to successor events, and an integer index for the event. We refer to any such

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 134

node as the location node of the event within the DAG. Rather than store a vector timestamp in
the event structure, we will assume that we store a sequence of pointers to the event’s location
node within each DAG of the pseudo-realizer. To insert a new event, we would seek the events it
covers and add pointers from those events’ location nodes within the DAG to the new event.

Now the problem arises. We wish to reverse critical pairs in the extension. For this we must
efficiently determine if the extension will accept the reversal of a critical pair. Recall that all such
pairs will be of the form(e, e), wheree is the new event being inserted into the extension. The
extension can only reverse this critical paireffdoes not precede in the DAG the events that
e covers. Recursion has occurred. Determining precedence in DAGs is precisely the problem
we are trying to solve with our timestamp. It may be the case that the properties of this DAG
extension are simpler than those of the original partial order, and such a precedence determination
is feasible. However, we do not have any method for this.

We have explored this concept of DAG extensions so as to demonstrate precisely where the
problem lies in their usage. If this problem can be surmounted, then they can be used, and
would probably be more effective than linear extensions. In the meantime, we propose using the
heuristic with linear extensions, as described above.

8.2.2.2 ETENSION CREATION

The main requirement of good extension creation is, as with event placement, to avoid over-
commitment. If we were building a realizer rather than a pseudo-realizer, we would have to
make any new extension linear. This would force premature commitment to a specific ordering
that might well be poor. Prior experience shows this to be the case [163]. However, at the point
where we need to create a new extension, precedence can already be determined between all prior
events without this extension. In other words, the only precedence-testing ability that this new
extension will give us is with the current and subsequent events. We can take advantage of this
as follows. Rather than force an ordering on existing events, for each event we keep track of
how many extensions were in use at the time it was inserted into the pseudo-realizer. This can be
achieved inD(1) space-consumption cost over all events because of the virtual extension. Since
the first element of every event’s timestamp will record the virtual-extension index at the time of
storage, we merely need to record the value of the index at the time a new extension is created.
We can then easily determine the number of extensions at the time an event was timestamped by
the value of its first vector element.

This allows us to test for precedence using only a subset of the extensions. This in turn
means we merely have to order existing events with respect to the new event, and subsequent new
events, that required the new extension. Since the new event is maximal, and we still have its
Fidge/Mattern timestamp at this point, we can readily determine which events precede the new
event and which are concurrent. We then do the following. All events that are concurrent with
the event being inserted are assigned the same index as the event being inserted. This must be
done explicitly, by iterating forward on each trace from the greatest-predecessor events to the
maximum event currently recorded for that trace. The upper bound on the number of events that
must be given this additional timestamp vector entry.isHowever, this implies that events

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 135

have been inserted, which means the amortized ca@stli$ per event. All events causally prior
to the event being inserted are simply given a 0 index value for this extension. This may be done
implicitly by simply not placing the events in the extension.

How then do we deal with critical-pair reversal in such an extension, given the problem de-
scribed in the previous section? The problem, as described in that section, is to detemhine if
does not precede in the DAG the events thabvers, where the critical pair (&', ¢). The prob-
lem occurs ife! or one of the events thatcovers are in that collection of events that were stored
prior to this extension’s creation. Our solution is as follows. Per the above reasoning, all events
prior to the event that caused the extension’s creation, can be placed in arbitrary locations in the
extension with respect to one another. This includes violating the partial order relationship. We
therefore relocate’ and any events thatcovers as required to accept the critical pair. In relo-
cating an event in the extension, we assign a new index to that event. Thereafter, it would have
neither the 0 index nor the same index as the event that caused the extension’s creation. We thus
determine relocatability by whether or not an event has such an index. The relocation of an event
is then in accord with the previous rules of placement, insofar as that is possible. Thus, we create
a new extension that satisfies the precedence requirements with minimal over-commitment.

One final comment must be made about this creation mechanism. Given that it requires an
alteration to existing timestamped events, it can be argued that it is not, therefore, dynamic. How-
ever, it should be noted that this augmentation does not invalidate prior timestamp relationships.
The additions are for the use of the current and future events. There is nothing in this timestamp
algorithm that precludes its use in an online-monitoring situation.

8.2.3 VECTORASSIGNMENT

The vector-assignment problem is how to assign a value to an event to indicate its position within
the extension. In the case of the Ore timestamp an integer was used. This is possible because
the realizer is computed in entirety before positional integers are assigned. In our case, we must
assign values as new events arrive, and those new events are not, in general, located at the end of
the extension. We cannot simply adjust the position information for all events after the new event
in the extension. An unbounded number of events would need to have their relevant vector-entry
updated. Rather than do this, we first solve the problem in theory. Instead of using an integer to
represent a position, we use a real number. Since the real numbers are infinitely divisible, we can
always assign a new real number to a new event to correctly identify its place within an extension.
Since real numbers do not exist in computers, we emulate their effect by leaving substantial gaps
between the position integers. Whenever we can no longer subdivide the integer space to insert
new events, we perform a vector update on all events in the extension after the new event. This is
no more expensive than if we did it with each new event, and is amortized over a large number of
events.

Given the need to rapidly locate events within an extension, and the occasional vector-update
sweep, rather than store the indices in the EventRef::Data object, we store them in the extension,
and have the EventRef::Data object timestamp vector elements point to the event'’s location within
the various extensions. If an EventRef object is exported to another process, the current state of

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 136

its vector indices can be extracted and exported in lieu of the pointers. Such a remote EventRef
object would require a back-reference to the data structure in the case that a comparison operation
required a more up-to-date copy of the timestamp.

8.2.4 HRECEDENCETESTS

Finally, we can specify the precedence test. This is essentially the Ore test, though only up to the
greater number of extensions that existed at the time the two events were timestamped. Thus, the
code is as follows.

bool operator<(EventRRef & el, EventRef& e2) {
i nt range = max(el. extensi onCount (), e2. ext ensi onCount ());
int index = 0;
whil e((el.tinmestanp(index) < e2.timestanp(index)) &&
(++i ndex < range));
return (index == range);

}

The extensionCount() method returns the number of extensions at the time the event was times-
tamped. The timestamp() method returns the element of the timestamp at the given index. For a
partial order with a pseudo-realizer containih@xtensions, the cost of the test(d). While

this is superficially worse than the Fidge/Mattern test, as we have seen in Chapter 7, the effective
cost of that test, due to the need for cachind?{$V). This does, however, presume that this the
size ofd is sufficiently small that the entire structure can fit in main memory.

Note that this is a somewhat distributed precedence test, depending on how the vector indices
are maintained. Specifically, while no other events need to be examined, the extensionCount()
method would need to consult the partial-order data structure to determine the number of exten-
sions present at the time the event was stored. If this proved to be a problem, that value can be
stored directly in the EventRef::Data object itself, albeit at the cost of some space. Presuming the
number of extensions to be small, it should easily fit within a byte. Likewise, as noted in the pre-
vious section, the vector indices can be copied for use in a remote process, but some precedence
tests would require a centralizing update of the timestamp.

Second, since this timestamp is not trace-based, we no longer have a greatest-predecessor
method. That method was provided by the Fidge/Mattern timestamp. However, we can adapt
the method used to compute the least successor slice. That technique performed a search for
the least successor on the trace over the range of the greatest predecessor up to the maximum
event currently stored on the trace. To compute the greatest predecessor, we now have to search
over the entire range of the trace. The execution time-bound for this is the same as that for
computing the least successor, though the actual number of events that would have to be examined
in practice would likely rise. The remaining precedence-related event sets can be computed per
the description in Section 6.2.

CHAPTER 8. DIMENSION-BOUND TIMESTAMPS 137

8.3 ANALYSIS

In this chapter we have presented a novel algorithm for dynamic, centralized dimension-bounded
timestamps. We have completely solved the problem of incremental computation of critical pairs.
We have presented one solution to the problem of building pseudo-realizers and it has, thus far,
produced promising results. We have provided a solution to the problem of assigning vectors to
events, though it centralizes the precedence test. We have presented the necessary precedence-test
algorithms.

This approach is significant since, insofar as we are able to build efficient pseudo-realizers,
we can create significantly smaller vector timestamps with little cost increment in the precedence
test. The ability to build efficient pseudo-realizers is a function of the algorithm used and the
distributed-computation event interactions.

However, there are a significant number of potential problems with this timestamp. First,
it is unclear if efficient pseudo-realizers can be created and, even if they can, it is possible that
elementary communication paradigms such as the repeated neighbour interactions of Life really
do have a large dimension. In such a case, this approach would be inapplicable for this important
class of applications. A clear characterization of the class of programs for which such a timestamp
is applicable is required.

Second, and in some respects a more significant problem, there does not appear to be any good
caching strategy for these timestamps. The algorithm we have defined in this chapter relies on the
computation of Fidge/Mattern timestamps. It is thus not possible to directly adapt it for caching
purposes. While it is possible to compute the Fidge/Mattern timestamp for any event given this
timestamp (per the algorithm for greatest predecessors identified in the previous section), the
cost of this operation i€ (N log(n/N)), which is less attractive than cached Fidge/Mattern
timestamps. Thus the choice of this timestamp relies on the capability of fitting the timestamp
structure into available memory. In this sense, they may be less space-consumptive, but it can
also be argued that they are not scalable.

Third, it is not clear what the practical space-consumption requirements are of this algorithm.
Clearly the extensions requif¥d) space per event, where the Fidge/Mattern timestamp required
O(N) space per event. However, the Fidge/Mattern timestamp is prediéatyegers. In this
algorithm, there aré pointers per event into the extension. Each location-node in an extension
in turn requires one integer for the index and one pointer to indicate its successor. It may be that
this can be improved upon [120]. However, as defined, this clearly requires adbautspace
per event. If we were able to solve the problem of creating extensions using DAGSs, the space
consumption is likely to increase, since the location nodes would then have multiple successors.
Given the overall complexity of this approach, the valuedofvould have to be significantly
smaller thanV to make it attractive.

For these reasons, and one other, we have not yet implemented this algorithm, and thus can-
not report experimental results other than the dimension-bounds already cited. The one other
reason is that shortly after defining this algorithm, we developed the dynamic-cluster timestamp
approach, and observed immediately that it appears to be a more promising approach.

9 DyNAMIC CLUSTER-TIMESTAMPS

We now turn to our alternate solution, the dynamic cluster-timestamp. This approach is based on
the observation that many, possibly most, parallel and distributed computations employ a high de-
gree of communication locality. That is, most traces do not communicate with many other traces.
More precisely, there are no communication events directly connecting most traces with most
other traces. Note that this does not imply that there is not a transitive connection. Indeed, our
experience with Fidge/Mattern timestamps suggests that transitivity of communication rapidly
connects all or most traces.

A standard example of this phenomenon is the Single-Program-Multiple-Data (SPMD) pro-
gramming paradigm for parallel applications [30, 74]. In that technique there is typically a master
process that will communicate with all other processes, while the remaining processes will only
communicate with those which have required data, usually neighbouring processes iVsome
dimensional grid. Thus, in the PVM implementation of Life, all but one process communicated
solely with three other processes: left and right neighbours, and the master process.

It should not, however, be thought that this communication locality is limited to such mas-
ter/slave parallel-programming approaches. We examined the communication patterns for all of
the computations that we studied for our dimension-bound programs (see Section 8.1.3) to deter-
mine the number of partner traces each trace has. This was averaged for each computation, and
a scatter plot of the results is presented in Figure 9.1(a). We then normalized this, by dividing by
the number of traces in the computation, to produce the Figure 9.1(b). As can be seen in these
figures, the average number of traces each trace communicates with is typically in the 3—-4 range,
and rarely more than six, regardless the number of traces. This in turn means that the average
fraction of traces a given trace communicates with drops as the number of traces rises.

Our approach in this solution is then to attempt to exploit this locality. Our algorithms for
this timestamp start with the Summers cluster-timestamp and make a number of very significant
changes, enumerated as follows.

1. Encoding is changed to halve the space-consumption.
Timestamp-creation is dynamic.

Timestamps are hierarchical.

A complete precedence test is added.

It is independent of Fidge/Mattern timestamps.
Clusters are system-selected, not user-selected.

N o gk~ w DN

A caching strategy is developed.

We divide our algorithm description into three, roughly orthogonal, components. First, we de-
velop the dynamic algorithm. Within this, we describe the precedence test, the mechanism for

138

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 139

Average Number of Partners Traces Per Trace Average Fraction of Partners Traces Per Trace

Average Number of Partner Tr
+ 4
+

Average Fraction of Partner Tr

L L L L L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces

(a) Average Number of Partner Traces Per Trace (b) Average Fraction of Partners Traces Per Trace

Figure 9.1: Average Traffic Patterns

making the algorithm fully hierarchical, and the removal of the Fidge/Mattern computation. The
algorithm that results, while being a cluster-timestamp algorithm, is essentially independent of
the cluster strategy that is adopted. In Section 9.2 we create two cluster strategies, one static
and one dynamic, and demonstrate their requisite cluster algorithms. Third, we needed a caching
strategy to allow the integration of our algorithm into a scalable distributed-system observation
tool such as BET. This is provided in Section 9.3. We have evaluated our algorithm both an-
alytically and experimentally. We provide theoretical analysis with the algorithm description,
and experimental results in Section 9.4. Preliminary versions of this work have been presented
that first developed the hierarchical, dynamic algorithm [168] and then the self-organizing clus-
ters [169]. This chapter is a substantial reworking of those papers, adding in the caching strategy
which was not previously presented.

9.1 TIMESTAMP ALGORITHM

We describe our algorithm in three steps. We start with a simple dynamic variant of the Summers
algorithm and provide an O(cluster size) precedence-test method that works for all events in the
partial order. We then extend this to be an arbitrary-depth hierarchical cluster algorithm. This

can provide additional aggregate vector-size reduction by allowing a tradeoff between the cluster
size and the cluster-receive timestamp size. Finally, we remove the Fidge/Mattern timestamp
computation.

9.1.1 TwoO-LEVEL ALGORITHM

Our two-level variant on the Summers algorithm makes six changes to that method. First, we
require all traces to be members of exactly one cluster. The methods by which this might be
achieved are almost orthogonal to the timestamp algorithm, and will be discussed in Section 9.2.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 140

The only point at which the clustering strategy affects the algorithm is in whether or not the
strategy is static (that is, pre-determined). We will identify the relevant portions of the algorithm
that are required only for dynamic clustering.

Second, we interleave the Fidge/Mattern-timestamp creation with the cluster-timestamp cre-
ation. This is based on the recognition that only a bounded number of Fidge/Mattern timestamps
need to be maintained at any given time [165]. This interleaving is what enables us to make the
algorithm dynamic.

Third, we use an alternative encoding to the Summers technique that can reduce the timestamp
size by half. Specifically, the second-half of the timestamp can be replaced by a reference to the
greatest cluster-receive that precedes (reflexively) the given event. This is based on the fact that a
cluster-receive evenrt can only causally affect another eveawithin the cluster if it is causally
prior to that evené’. This causal precedence is encoded in the first half of the timestamp. Having
identified the causal predecessors within the cluster, the cluster-receive predecessors would then
be the set of greatest cluster-receives in these respective traces.

Fourth, we incorporate synchronous events into the algorithm. Summers’ algorithm was cre-
ated in terms of cluster-receive events, which were defined as receive events whose corresponding
transmit partner is not on a trace within the cluster. We extend, and formalize, this as follows.

Definition 26 (Cluster-Receive) Anevent e isa cluster-receive if-and-only-if it isa receive event
with a partner event on a trace in a different cluster or a synchronous event whose home traces
occur in different clusters.

Note that this definition is not in terms of coverage. The reason is that coverage is insufficient. It
is enough for receive events, as such events cover their transmit partners. However, a synchronous
event may occur on traces that are in different clusters, but not cover events that are on traces in
different clusters. The problem occurs when the first event in the trace is a synchronous event. In
such a case, the event covers nothing.

Fifth, cluster-receive events simply retain their Fidge/Mattern timestamp. In the Summers
algorithm cluster-receive events are assigned cluster-timestamps, but their Fidge/Mattern time-
stamps have to remain recorded. We remove this redundancy.

Finally, we provide a complete precedence-test algorithm that does not require the recreation
of the Fidge/Mattern timestamp. It is constant-time for all events within a cluster and O(cluster
size) when comparing events in different clusters.

The code for two-level cluster-timestamp creation in the single-partner environment is shown
in Figure 9.2. Before describing the algorithm, we will first discuss the additional methods and
data necessary to support this code. There are three aspects to this: augmentation of the existing
classes, the Cluster class, and the GCR array.

The TracelD class is augmented with the cluster() method, which takes one argument, the
PartialOrder object to which the trace belongs, and returns a reference to the Cluster object to
which the trace invoking the method belongs. Note that the argument is required as the alterna-
tive would require every TracelD object to maintain this information. While this could be encoded
reasonably efficiently if the number of partial orders in any given program was small (a not un-
reasonable assumption), it would result in redundant information in every EventRef::Data object.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 141

1: void tinestanp(EventRef & e) {

2: e._event->FM = fidgemattern(e);

3: if ((e.receive() || e.synchronous()) &&

4: ('e.cluster().contains(e.partner().tracel))) &&
5: le.cluster(). mergeable(e)) {

6: e. _event->CT.CT = e. _event->FM

7. CCR[e.tracel)] = e.eventPosition();

8: } else {

9: if ((e.receive() || e.synchronous()) &&
10: ('e.cluster().contains(e.partner().tracelD())))
11: e.cluster().merge(e);
12: e. _event->CT.CT = e.cluster().project(e._event->FM;
13: }
14. e. event->CT.CR = GCCR[e.tracel)];
15: }

Figure 9.2: Two-Level Dynamic Cluster-Timestamp Creation

Specifically, many will have two or more TracelD objects as member data. In the single-partner
case, every EventRef::Data object will have exactly two TracelD member objects.

Since the TracelD is accessible in both the EventID and EventRef classes, the cluster()
method is provided directly in those classes. The only difference is that in the EventRef class
the PartialOrder object does not need to be passed as an argument. The reason is that EventRef
objects know the block of which they are a part (see Section 5.2), and those blocks will maintain
the knowledge of the PartialOrder to which they in turn belong. Thus, although an event belongs
to a trace, which in turn belongs to a cluster, we will tend to abuse notation and refer to that event
as belonging to the cluster.

In addition to the cluster() method, the EventRef::Data class has the following new data mem-
bers.

cl ass Event Ref {
class Data {

Event Posi ti on* FM /1 Fidge/ Mattern tinestanp
class CT {
Event Position CR // Cduster Receive
Event Position* CT; // Custer tinmestanp
} CT;
}s

The FM EventPosition array holds the Fidge/Mattern timestamp until such time as it is disposed
of. Since there should be a limited nhumber of such timestamps stored at any givenpeoint (

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 142

the discussion in Section 8.2.1), this could be reworked so that this pointer was not required as
member data, but was stored in some separate structure. We show it this way for convenience
of explanation. The cluster timestamp is composed of two parts. The EventPosition array CT is
of length equal to the cluster size and identifies the greatest predecessor slice to the event within
the cluster. The EventPosition CR contains a reference to the greatest cluster-receive causally
prior (reflexively) in this trace to the given event. We note briefly that the arrays could be built
from SliceRef objects. This would be a bad idea as that class was designed for external usage,
providing garbage collection thus requiring an extra dereference per operation. However, for
convenience we will assume that TracelDs map to integers from/® to 1 where N is the
number of traces, allowing us to index arrays by TracelD. Any reasonable implementation of
the TracelD class would facilitate such an approach. Alternately, we could have used integers
rather than EventPositions, as this is internal data. There are two reasons we choose not to.
First, it makes the algorithm and code clearer. Second, a well-crafted implementation of the
EventPosition class should require no greater cost that the integer class, but would allow greater
flexibility. Specifically, it would enable the trivial change of encoding from short to integer to
long to arbitrary length. Likewise, it facilitates code debugging.

The Cluster class itself is defined as follows.

class Custer {

publi c:
Cl uster & mer ge(Event Ref &) ;
bool mer geabl e(Event Ref &) ;
Tracel D& map(int);
i nt i nver seMap(Tracel D&) ;
bool contai ns(Tracel D&) ;
i nt si ze();

Event Posi ti on* project(Event Position*);
¥
The merge() method merges the various clusters in which the argument event and its partners
occur, returning a reference to the resulting cluster. The mergeable() method determines, accord-
ing to the rules of the clustering strategy, if the various clusters in which the argument and its
partners occur can be merged. It returns true if they can, and false otherwise. It does not perform
the merger, but merely determines its feasibility. The map() method maps CT array positions to
TracelDs, while the inverseMap() method performs the inverse function. The contains() method
returns true if the cluster contains the given TracelD, and false otherwise. It is strictly redun-
dant, since the inverseMap() method must return some indication of failure in the event that the
TracelD requested is not present in the cluster. However, we prefer to maintain a separation of
concerns at the interface-level of a class. The inverseMap() will therefore expect the TracelD
to be present, and will throw an exception if it is not. The size() method returns a count of the
current number of traces contained within the cluster. Finally, the project() method accepts an
EventPosition array interpreted as a Fidge/Mattern timestamp, and returns the projection of that
timestamp over the traces in the cluster.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 143

The algorithms for these methods are the subject of Section 9.2. For now, it is sufficient to
know what they do, and observe that the cost should not be appreciably worge(tharor the
mergeable(), contains(), (inverse) mapping, and size() method® &f)dwherec is the cluster
size, for the merge() and project() methods.

Third, we define the GCR array. This global array of EventPositions identifies the current
greatest cluster-receive event in each trace. Initially the elements are set to EventPosition(0).

We now describe the actual timestamp-creation algorithm. It first computes the Fidge/Mattern
timestamp (line 2) using the method described in Section 6.1.2. For events that are cluster-
receives (lines 3 and 4) and whose clusters are not mergeable (line 5), we use the Fidge/Mattern
timestamp (line 6), and adjust the vector of greatest cluster-receives to identify this new event
(line 7). An event that does not satisfy ttiecondition is either not a cluster-receive or its cluster
is mergeable with that of its partner event. If it is the latter (lines 9 and 10), then the two clusters
are merged (line 11), rendering the event no longer a cluster-receive. Thus, on line 12 no event
is a cluster-receive. The algorithm therefore takes the projection of the event's Fidge/Mattern
timestamp over the cluster as the array portion of its cluster timestamp. To enable precedence
determination beyond the cluster, the algorithm also records the greatest preceding cluster-receive
in the event’s trace (line 14). In the case of cluster-receive events, this will be a self-reference.

Those events with EventPosition(0) (that is, the fake event that precedes all other events on its
trace) are deemed to be cluster-receive events with a Fidge/Mattern timestamp of all zeros. This
is necessary to ensure the correct operation of the precedence test.

Lines 5 and 9 to 11 are only needed for dynamic clusters. Static clusters cannot be merged,
and thus will never satisfy the mergeable() condition.

The computation cost of this algorithmds(V), whereN is the number of traces. This cost
arises because of the need to compute the Fidge/Mattern timestamp in line 2. To extend this
algorithm to the multi-partner environment, theconditions would need to check each partner
to determine if the event was a cluster-receive. Merging would require that the clusters of all
partners could be merged. The algorithm is otherwise unaltered, and would r@féjncost as
the Fidge/Mattern computation would still dominate.

Finally, we must delete Fidge/Mattern timestamps when they are no longer needed. They may
be disposed of by using the technique used for dynamic critical-pair computation (Figure 8.6,
lines 4 to 6), applied at any point in the code after line 12. Alternately, we might register a
callback for events that are covered, as follows.

cal | backd eanup c;
po.registerCall back(Partial Order::cbType::covered, c);

We would then provide a callbackCleanup class as shown in Figure 9.3. The Fidge/Mattern
timestamp is not deleted if the event is a cluster receive, since the timestamp will be pointed to
by the CT element.

1By this phrase we mean that the computation cost should approximate a small constant in practice, even if it is not
in theory. For example, event lookup, which(glog n) in theory, takes two, or at most three steps in practice (see
the discussion of this point in Section 5.2, page 75).

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 144

cl ass cal |l backd eanup : public Partial Oder:: Call back {
publi c:
“cal | backd eanup() {};
bool call back(const Tracel D& { return false; };
bool callback(...) { return false; };
bool call back(const EventRef& e) {
if (e. _event->CT.CT != e. _event->FM
delete [] e._event->FM
e. _event->FM = 0;
¥
1

Figure 9.3: Fidge/Mattern Cleanup Callback

The precedence-test algorithm for the two-level cluster timestamp is shown in Figure 9.4. The
basic principle behind the algorithm is as follows. If tieés-event trace is in the same cluster
as the argument then the standard Fidge/Mattern test applies, with parameters adjusted to map
the traces to timestamp entries appropriately. If it is not, then precedence is true if-and-only-if
there is a cluster-receive that precedes the argumand is a successor to thigis event. Such a
cluster-receive would have to be a predecessor to the (reflexive) greatest predecessors within the
trace of the argumerat

We now walk through the code line by line. In line 2 we determine what the relevant entry
for thethis event’s Fidge/Mattern timestamp would be if it maintained such a timestamp. This is
identical with its EventPositiorper the definition of these timestamps (see Section 6.1.2). Now,
if the argument is a cluster-receive (line 3), then its cluster-timestamp array will be identical to
its Fidge/Mattern timestamp, and so the algorithm can simply index the relevant entry and return
the resuliper Equation 6.5 (line 4). Likewise, if evemtis not a cluster-receive but thikis event
is in the same cluster as even(line 5), then a simple inverseMap() operation determines what
the relevant Fidge/Mattern entry would be for the test to apply (line 6). Note that because of
cluster merging, the test is not the same requirement as the two events being in the same cluster.
It is quite possible, indeed with dynamic clusters it invariably happens in practice early in the
trace, that the cluster of théis event is not in the same as that of evepéven though its trace
is in e’s cluster. We will elaborate on this point in Section 9.2. Suffice it to say for the present,
containment is the required test.

Should the code reach line 7, then the clusters of the two events are clearly distinct. Hitherto
the algorithm has taken the approach of computing what the Fidge/Mattern entry foreevent
would be if it maintained such a timestamp. At this juncture it takes a different tack. Since the
events are in different clusters, the objective is to determine if there is a cluster-receive prior
to e that is a successor of théis event. To do this, the algorithm loops over the greatest-
predecessor events efwithin the cluster (line 7). Line 9 retrieves each such eve(ote that
the Fidge/Mattern timestamp definition records one position greater in each trace, other than
in the trace of the event timestamped, than the reflexive greatest-predecessor), while line 10 then

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 145

1. bool operator<(EventRef& e) {
2: Event Position el = eventPosition();
3: if (e. _event->CT.CR == e.eventPosition())
4. return (el < e._event->CT.CT[tracel D()]);
5: if (e.cluster().contains(tracelD()))
6: return
el < e._event->CT.CT[e.cluster().inverseMap(tracel D())];
7. for (int j =0 ; j <e.cluster().size() ; ++) {
8: Tracel D jTrace = e.cluster().map(j);
9: Event Ref g = _event-> bl ock. po(j Trace, e._event->CT. CT[j]
- (jTrace == TracelD ? 0 : 1));
10: Event Ref r = _event-> bl ock. po(j Trace, g._event->CT.CR);
11: if (el <r. event->CT.CT[tracelX)]);
12: return true,
13: }
14: return fal se;
15: }

Figure 9.4: Two-Level Dynamic Cluster-Timestamp Precedence Test

identifies the greatest cluster-receivieflexively prior to sucly events. If thehisevent precedes

any suchr event (line 11), then precedence holds, and the algorithm can return true (line 12). If
no such event exists, then thieis event does not precede(line 14). Note that if we actually
wanted to compute the Fidge/Mattern entry, then rather than haifetest in line 11 and return

in line 12, we would take the maximum of EventPositions over the whole loop. That maximum
would represent the Fidge/Mattern value for eveat positiont hi s- >tracel ().

Finally, note that the partial order must be known to execute this test. Specifically, lines 9
and 10 perform an event-retrieval operation. As noted in the discussion of the cluster() method,
the EventRef::Data object knows the block of which it is a part, which in turn knows the partial
order. There are two significant aspects to these retrievals. First, the ability to retrieve events
with EventPosition(0) is necessary to ensure the correct operation of the precedence test. Specif-
ically, the EventPosition stipulated in either line 9 or 10 could be EventPosition(0). In practice,
the precedence test would skip any such retrieval and continue the loop. Since that unneces-
sarily obscures the essence of the algorithm we have chosen to show it this way. Second, the
requirement for retrievals indicates that the precedence test is centralized, not distributed, for any
between-cluster test.

The computation cost of this test depends on the relative locations and precedence relation-
ships of the two events. If the events are in the same cluster or if the arguneeatcluster-
receive, the cost is constant-time. If this is not the case, then the cost is O(e.cluster().size()),
being on average less than half thighis <¢ e. These costs presume that the various opera-
tions, in particular contains() and inverseMap(), can be performed in constant time. This point is
discussed in Section 9.2.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 146

. 1(1,0,0) el;goo €3(3,2,0)
b2 @, O
1(1,1,0) e 63(2 3,2)
D3 U O
12.0,1) 42.0,2) A(2.0,3)

Figure 9.5: Variant Fidge/Mattern Timestamps

9.1.2 HERARCHICAL ALGORITHM

We now extend the two-level algorithm to an arbitrary hierarchy of levels. The core idea is for
each level of the hierarchy to maintain a set of cluster-receive events that have timestamps only
to the next level in the hierarchy. This allows a tradeoff between the number of cluster-receives,
the size of the cluster, and the size of the cluster-receive timestamp. In the two-level algorithm,
there is only a tradeoff between the first two of these.

First we must deal with a subtle detail of the Fidge/Mattern timestamp, as defined in Sec-
tion 6.1.2. As defined in that section, the elements of the timestamp correspond to one greater
than the greatest-preceding event position for every entry except the zero entries and the entry
corresponding to the trace of the event being timestamped. While easy to compute, this unneces-
sarily complicates the following algorithms, which are sufficiently complex as is. Therefore we
define the variant Fidge/Mattern timestamp as follows.

FM'(e) = max (FM (e9)) 9.1)
[FM'(e)li] +1 ifi€ ple)
FM(e)lil = { FM' (e)[i] otherwise

(Recall thatp(e) maps event to its traces.) This then means that the timestamp records precisely
the reflexive greatest-predecessor set of eyefihe precedence test is

(9.2)

e <g el = g0y FM(e)[p] < FM(e)p] (9.3)

An example of this variant Fidge/Mattern timestamp is shown in Figure 9.5, which the reader
may wish to compare with our original example shown in Figure 6.2. For the remainder of this
chapter this variant will be used as the Fidge/Mattern timestamp. Likewise, when we refer to the
greatest predecessor, greatest-predecessor set, causally prior, precedes or any other such variant
on the notion of precedence, we will mean the reflexive fqren Equation 9.3.

The code for hierarchical dynamic cluster-timestamp creation in the single-partner environ-
ment is shown in Figure 9.6. As with the two-level algorithm, we first describe the changes to
existing classes and data necessary to support this code. These changes encompass the definition

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 147

1: void tinestanp(EventRef & e) {

2 e._event->FM = fidgemattern(e);

3 int k = 0;

4: while ((e.receive() || e.synchronous()) &&

5: le.cluster(k).contains(e.partner().tracel D)) &&
6: le.cluster (k). nergeable(k,e)) {

7. CCR k] [e.tracel D()] = e.eventPosition();

8: ++k;

9 }
10: if ((e.receive() || e.synchronous()) &&
11: (e.cluster(k).uc() ||
12: le.cluster(k).contains(e.partner().tracelD())))
13: e.cluster(k).merge(k,e);
14; e. _event->CT.l evel = k;

15: e._event->CT.CR = CCRk][e.tracel)];
16: e._event->CT.CT = e.cluster(Kk).project(e._event->FM;
17: }

Figure 9.6: Hierarchical Dynamic Cluster-Timestamp Creation

of cluster-receive, the cluster() method and Cluster class, the EventRef::Data::CT class, and the
GCR data.

First, note that we can no longer identify an event as belonging to just one cluster. Rather, an
event belongs to a series of clusters, extending out to a cluster that composes the entire computa-
tion. Thus clusters are assigned a level starting at 0, which is the innermost cluster. We redefine
the cluster() method to take an integer paramktemd return a reference to the leveCluster
object to which invoking event belongs.

The outer-level cluster that encompasses the entire computation is referred to as the universal
cluster. Any attempt to find the levél-cluster for an event which has no cluster at lelvedsll
return this universal cluster. However, this cluster does not have the expected properties of a
cluster that explicitly encompasses all traces. Rather, this is an implicit cluster. It may be thought
of as the least upper-bound of all clusters. The relevant properties of this cluster are that its size
is one and the containment test is true for any valid TracelD. The first property guarantees that
events in different traces whose only common cluster is the universal cluster will be deemed to
be mergeable, where a size constraint on clusters would otherwise prevent the merger. More
precisely, a new cluster will be created at this new highest level. The second property guarantees
that a common cluster is found for precedence-testing purposes. Our algorithms do not require
(inverse) mapping or projection of this universal cluster, and so they are left undefined. This
universal cluster is only relevant for dynamic clusters.

We likewise define the term “levdl-cluster timestamp” to refer to a timestamp that encom-
passes exactly those traces of the lgveluster. While such a timestamp will effectively have en-
tries for the level-0 to leve(% — 1) clusters, the mapping and inverse-mapping functions for those

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 148

clusters would not work correctly on the leviekluster-timestamp. Thus, i nver seMap(t)

will yield the array index for the -TracelD entry into the cluster-timestamp at legel evel . It

will not yield the correct index into timestamps at other levels. It is therefore very important that
mapping and inverse mapping be applied to clusters at the correct level for the cluster-timestamp
array.

The Cluster class is augmented with the uc() method. In addition, a new project() method is
added, to provide the projection of a levekluster-timestamp to a level-cluster-timestamp,
wherek’ < k, and the merge() and mergeable() methods take different arguments. The formal
interface is

class Custer {

bool uc();

Event Posi tion* project(const Event Ref &) ;
void merge(int, const EventRef&);

voi d nmergeabl e(int, const Event Ref&);

}

The uc() method returns true if the cluster is the universal cluster, and false otherwise. The
project() method returns the projection of the cluster-timestamp of the event over the traces in the
cluster. The merge() and mergeable() methods must now take the cluster level as well as the event
as parameters, as leviekluster merging is predicated on lev@i+ 1) merging. We discuss this

point further in Section 9.2.2.

This change in cluster membership requires us to redefine the term “cluster-receive.”

Definition 27 (Level-k Cluster-Receive) An event e is a level-k cluster-receive if-and-only-if it
is a receive event with a partner event on a trace in a different level-k cluster or a synchronous
event whose home traces occur in different level-% clusters.

Note that a levek cluster-receive is, by this definition, also a level-0 to lef/el- 1) cluster-
receive. This is a very significant aspect of this definition, since maintaining cluster-receive
information correctly is crucial to ensure that transitive dependencies are captured properly.

Alevel-k cluster-receive will require a levék+1) cluster-timestamp. Since a leviekluster-
receive is also a level-0 to levék— 1) cluster-receive, this implies that it needs level-1 to leivel-
cluster-timestamps as well as the leygl+ 1) cluster-timestamp. However, such timestamps
would be redundant, as the leygl-+ 1) cluster-timestamp would contain all the necessary infor-
mation. When a lower-level timestamp is required, the project() method will be applied.

For the various reasons above, we can no longer maintain just one GCR array, but must main-
tain such an array for every cluster level. All of these arrays are initialized to EventPosition(0).
Likewise, a levelk cluster-receive does not update just the Iev€CR array, but all such arrays
from level-0 to levelk (line 7), since it is also a cluster-receive at all those lower levels.

Finally, the EventRef::Data::CT class must be augmented with an integer mémber
that identifies the cluster-level at which the CT array is a cluster-timestamp, and thus the level of
cluster-receive to which the CR member refers.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 149

We now walk through the code, line by line. As with the two-level algorithm, it starts by
computing the Fidge/Mattern timestamp of the event (line 2). It then ascertains the cluster-level at
which the event and its partner are either in the same cluster or the different clusters are mergeable
(lines 3to 9). In the course of doing so, it updates the GCR arrays, since for everk &wehich
the event and its partners are in separate non-mergeable clusters, the event ig alestr-
receive. On exiting the loop (line 10), the valuefofs equal to the cluster level in which the
event and its partner are in the same cluster or mergeable clusters. Lines 10 to 12 determine if it
is the latter condition, and, if so, line 13 will merge the two clusters. Thus, by line 14 the event
and its partners are in the same leketiuster. Line 14 records that cluster level for use in the
precedence test. The greatest current léveluster-receive in the trace, recorded in the GCR
structure, is recorded for the event. Finally, the projection of the Fidge/Mattern timestamp over
the event's levek cluster is recorded as its cluster-timestamp array.

As with the two-level algorithm, those events with EventPosition(0) are deemed to be cluster-
receive events at the highest cluster level, with a timestamp of all zeros. This is necessary to
ensure the correct operation of the precedence test.

Note that the algorithm as defined implicitly forces a merge on first communication. Specifi-
cally, theif test of lines 10 to 12 will always succeed if the event and its partners are in different
clusters at all levels of the hierarchy. In effect, this forces a merge on first communication re-
gardless of the outcome of the mergeable() test of line 6. The specific outcome depends on the
definition of the merge() method. As we have defined it in Section 9.2.2, the result will either be
a merging of the two clusters or the creation of a new parent cluster for the two clusters. This is
not desirable, since the intent of the algorithm is to allow arbitrary merging criteria and not force
merging on first communication. There is no conceptual difficulty in fixing this problem. We can
simply identify this special case and assign the event its Fidge/Mattern timestamp as its cluster
timestamp. However, we have left the algorithm as is for two reasons. First, the fix obscures
the essence of both this algorithm and the algorithms that it is dependent upon. In particular,
both the precedence test and the various Cluster-class methods require a substantial amount of
special-case code, reducing their comprehensibility. Second, we are currently unconvinced that
this is the correct solution to apply. An alternate, and we believe more attractive, solution is to
resolve the problem of trace-movement between clusters. We can then allow merging on first
communication and correct any such mergers that prove to be poor.

Lines 6 and 10 to 13 are only needed for dynamic clusters. Static clusters cannot be merged,
and thus will never satisfy the mergeable() condition. Likewise, static clusters are expected to
specify a complete cluster hierarchy, and thus every event will have some cluster, other than the
universal cluster, that contains every trace. As such, lines 11 and 12 will always return false for
static clusters, and thus the merge() method will never be invoked in line 13. Note also that the
algorithm effectively reduces to the two-level algorithm if level-1 in the hierarchy is a cluster that
contains all traces. Any cluster-receive event (a level-0 cluster-receive in this scheme), would
reach line 10 withk = 1 while all other events would have= 0 at that point. The projection
of a level-1 cluster Fidge/Mattern timestamp would be identical to that timestamp.

The computation cost of this timestamp-creation algorithm rem@i¥) for the single-

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 150

partner environment. First, it must be at le@stV) because it still requires the calculation of the
Fidge/Mattern timestamp for each event (line 2). Second, the loop that determines the cluster level
at which the event and its partners are in the same cluster (lines 4-9) will be exédiresk,
wherek is that common cluster level. Since all operations within that loop have a cost that is
not appreciably worse thafi(1) andk < N, the cost of this loop is then negligible. Third, the
merging of clusters (lines 10-13) will be no worse than linear in the size of the merged cluster, per
our requirement on the merge() method. A merged cluster can contain no mor¥ theces and

so this merge() cost is no worse théN). Lines 14 and 15 are botfi(1) operations. Finally,

the Fidge/Mattern timestamp projection of line 15 is likewise constrained to be no worse than
linear in the size of the projected timestamp, which must be no bigger thaivsias nothing in

the remainder of the algorithm is worse thafN'), the algorithm cost i®(N).

The deletion of Fidge/Mattern timestamps would be identical with the callback approach used
in the two-level algorithm (Figure 9.3), though ttigest is not necessary, as t6€ pointer never
points to theFMarray.

The precedence-test algorithm for hierarchical cluster timestamps is shown in Figure 9.7.
Note that the increased complexity of this precedence test arises in lines 6 to 20. Where the pre-
vious algorithm simply used the cluster timestamp of the argument event to determine the cluster-
receive timestamps, this algorithm must compute the relevant cluster-receive events. It does so by
repeatedly computing the maximum of greatest-predecessor cluster-receive timestamps in each
cluster level as it moves up the cluster hierarchy. It stops at the cluster prior to that cluster which
contains the necessary precedence information. It then effectively invokes the previous algorithm
(lines 22 to 29). If the hierarchy only consists of two levels, Wiele loop of lines 7 to 20 will
never execute, and the algorithm reduces to the two-level precedence test.

We now walk through the code line by line. As with the two-level algorithm, the first thing
the precedence test does is to compute the value dhibevent’s Fidge/Mattern timestamp at
the relevant location to apply the Equation 6.5 precedence test (line 2). It then determines if the
argument event also has an entry in its cluster timestamp for the relevant location (lines 3 and 4).

If it has, then the algorithm applies the test and returns the result (line 5).

If, however, evene’s cluster-timestamp does not contain the required trace, the algorithm
must work up through the cluster hierarchy until it reaches a cluster that does contalmsthe
event’s trace. It starts at the cluster-level of evésitcluster-timestamp (line 3), and assigns the
current timestamp (CTS) tgs cluster-timestamp (line 6). Using this timestamp, it retrieves the
greatest predecessorsafvithin cluster levelk (line 11). It then determines the greatest level-

k cluster-receive that precedes each of these events (line 12). The code to achieve this looks
something like the following.

const EventRef& gcr(int k, EventRef& g) {
int i = g._event->CT.|evel;
while(i <= k) {
g = ¢g._event-> block.po(g.tracel D), g._event->CT.CR);
i = g._event->CT.|evel;

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS

151

1: bool operator<=(EventRef & e) {
2: Event Position el = eventPosition();
3: int k = e. _event->CT. | evel;
4. if (e.cluster(k).contains(tracelD()))
5: return
el < e._event->CT.CT[e.cluster(k).inverseMap(tracel D())];
6: Event Position* CTS = e._event->CT. CT;
7: while (!e.cluster(k+1).contains(tracelD()) {
8: Event Posi ti on* NTS = O;
9: for (int j =0 ; j <e.cluster(k).size() ; ++) {
10: Tracel D jTrace = e.cluster (k). map(j);
11: Event Ref g = _event->_bl ock. po(j Trace, CTS[j]);
12: Event Ref r = gcr(k, 9);
13: NTS = max(e. cluster(k+1). size(),
14: e.cluster(k+1).project(r),
15: NTS) ;
16: }
17: ++k;
18: if (CTS I= e._event->CT. CT)
19: delete [] CTS;
20: CTS = NTS;
21: }
22: for (int j =0 ; j <e.cluster(k).size() ; ++) {
23: Tracel D jTrace = e.cluster(k). map(j);
24: Event Ref g = _event->_bl ock. po(j Trace, CTS[j]);
25: Event Ref r = gcr(k, g);
26: if (el <r._event->CT.CT[r.cluster(r._event->CT.|evel).
i nverseMap(tracel D())])
27: return true;
28: }
29: return fal se;
30: }

Figure 9.7: Hierarchical Dynamic Cluster-Timestamp Precedence Test

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 152

return g;

}

Observe that because every leatiuster-receive is a level-0 to levél-— 1) cluster receive, this
algorithm will terminate withink iterations of thewhile loop. The variablé will monotonically
increase with each loop iteration. Note also that this is not the only way in which the greatest
level-% cluster-receive might be identified, though it is as we have defined the timestamp-creation
algorithm. The alternate solution would be to have every event identify its greatest cluster-receive
at every level in the hierarchy. While this sounds space-consumptive, it is unlikely that there
would be more than four or five levels in the hierarchy, for reasons that will become apparent
when we analyse the computation cost of the precedence test. This choice represents a binary
time/space tradeoff, with no clear basis for the choice. If the hierarchy is shallow, the space-
consumption will be small, but so also will be the cost of computing the required cluster-receive.
If the hierarchy is deep, the space-consumption will be large, as will be the computation cost.

The algorithm must then determine the TracelD-wise maximum of each of these cluster-
receive events (line 13). Several points need to be made about this maximum operation. At a
mundane level, the max() function performs a simple array comparison, thus.

Event Posi ti on* max(int sz, EventPosition* al, EventPosition* a2)

{

if (a2 == 0) {
a2 = new Event Position[sz];
for (int i =0 ; i < sz ; ++i)
az2[i] = alfi];
} else {
for (int i =0 ; i <sz; ++i)
az2[i] = al[i] > az[i] ? al[i] : a2[i];
}
return az;

}

The more significant aspects of the maximum operation are in the arguments. First, note that the
size parameter is that of the levdl+ 1) cluster-timestamp. Eveantwill have no such timestamp,

but it will be part of such a cluster, and that cluster will have a specified size and associated set of
traces at the time thatwas timestamped. However, not every lekatluster-receive is guaran-

teed to have entries in its levél-+ 1) cluster-timestamp array for all of the positions specified

by the event level-(k + 1) cluster. This is because of cluster merging. The cluster-receive might
well have been timestamped prior to a lower- or same-level cluster merge. On the other hand, the
level-k cluster-receive might have many more entries in its cluster-timestamp array thagisdoes
level-(k + 1) cluster. This is because it may be a leyeH- 1) cluster-receive as well as a level-
cluster-receive. The function, then, of the project() method that is used in argument 2 (line 14), is
to ensure that any gaps are filled and no extraneous elements present. It thus provides a uniform-
length timestamp, with consistent mapping of the array elements corresponding to those specified

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 153

by evente’s level-(k + 1) cluster, for all cluster-receive events, allowing the element-wise maxi-
mum operation to be correct. The algorithm for the project() method is described in Section 9.2.
It has cost O(size of the output array).

Second, note that we have stated that eventll have no level{k + 1) cluster-timestamp,
but that it will be part of such a cluster, and by this we mean a cluster other than the universal
cluster. At the relevant line of code (line 13), this statement will be true. If evbat no explicit
level-(k + 1) cluster, then the. cl ust er (k1)+ invocation would return the universal cluster
(line 7). Itin turn would return true to the TracelD containment query (line 7), thus exiting the
whileloop, continuing execution at line 22.

After thefor loop has finished iterating, the NTS variable will contain the greatest predeces-
sors reflexively-prior to everitin the level% cluster (line 16). The algorithm then increments the
cluster level (line 17), and sets the current timestamp to the value of this newkléwedstamp
(line 20), cleaning up the old current timestamp first (lines 18 and 19).

The while loop will continue iterating if the next cluster-level beyokhddoes not contain
the required TracelD (line 7). Thus, on exit of thwdile loop, the CTS array contains a level-
timestamp which identifies the greatest predecessar’s ievel-k cluster to event. This is the
equivalent of the projection efs Fidge/Mattern timestamp oveis level-% cluster.

This is effectively the identical situation to the two-level precedence test when it was at line 7.
The remainder of the algorithm is therefore effectively the same. It iterates over the resultant CTS
timestamp (line 22), retrieving the greatest predecessor in each trace (line 24), and using that to
determine the greatest leveleluster-receive (line 25). It exits, returning true, if it finds such a
cluster-receive that succeeds times event (line 26). If no such event is found, the algorithm
returns false.

As with the two-level precedence test, the computation cost of this test depends on the
relative locations and precedence relationships of the two events. If the cluster-timestamp of
evente contains an entry for théhis event’s trace, the cost is constant-time. When this is
not the case, the cost depends on how far up the cluster hierarchy the algorithm must go to
find a cluster that encompasses both events. If this point is reached at level-2, then the cost is
O(e.cluster(1).size()), being on average half this this <¢ e. In the general case,
going beyond level-2 clusters, we must compute additional timestamps, and this can be expen-
sive. As such, this cost dominates. If the cluster that encompasses both events occurskin level-
then line 13 of the algorithm is execut€e. cl ust er (k- 2). si ze()) times and each time
requiresd(e. cl ust er (k-1). si ze()) operations. The total cost of this algorithm is there-
fore Q(e. cluster(k-1).size()*e.cluster(k-2).size()). If we wish to ensure
that this cost is always less th&@e. cl ust er (k) . si ze()) we must increase the cluster-
size at each level to the power @df ++/5)/2 (about 1.62) or more.

It is worth noting that the algorithm effectively corresponds to a breadth-first search through
the cluster-receive space. This begs the question as to whether an alternate strategy, notably depth-
first search, might be better. The breadth-first algorithm is extremely predictable, as noted above,
while a depth-first approach will depend heavily on the specific nature of the cluster-receive
events. The best case would be much faster, completing in time proportional to the shortest

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 154

cluster-receive path between the events; in other words, in time proportional to the height of the
cluster hierarchy. On the other hand, the worst case would examine a number of cluster-receive
events unnecessarily, that the max() function of line 13 eliminates in our algorithm.

9.1.3 H.IMINATING FIDGE/MATTERN TIMESTAMP GENERATION

As we observed in our description of the precedence-test algorithm, if the events have a common
cluster at levek, then that algorithm effectively computes the projection of the Fidge/Mattern
timestamp to leve(# — 1) and then applies the two-level algorithm. It is lines 6 to 21 that
are computing this levelk — 1) projection. Given this, we do not need to compute the full
Fidge/Mattern timestamp for each event, as we are currently doing on line 2 of the timestamp-
creation algorithm of Figure 9.6. We therefore alter that algorithm as follows. First, we remove
line 2. Second after line 14 we know that we require a léveldster-timestamp. Note that line 16

is the first, and only, point at which we use the Fidge/Mattern timestamp. We therefore developed
a projection() function, shown in Figure 9.8. This function takes an eventd a cluster-level

to which e’s cluster-timestamp is to be projected. Lines 3 and 4 deal with the possibility that
e's cluster-timestamp already exceeds the required level, and use the Cluster project() method (to
be described in Section 9.2) to extract the required timestamp. Lines 5 to 20 are essentially a
replica of lines 6 to 21 of the precedence test, with just the condition owtliile loop changed

to match the requirement of the function. On exiting Wigile loop the desired timestamp has
been computed, and is returned (line 21). The cost of this algorithm is the product of the sizes of
the levels and level{i — 1) clusters.

The remainder of the timestamp-creation algorithm is altered as follows. After line 14 each
event covered by the eveatbeing timestamped has its leveleluster timestamp computed by
the above projection() function. In line ¥ _event - >CT. CT is assigned the element-wise
maximum of these projections. It is then incremented by one in every element-location that
corresponds tg(e).

In our original timestamp-creation algorithm the computation of the Fidge/Mattern timestamp
dominated the algorithm cost. Since this has been removed, we must re-analyse the cost. As with
our original, it is clear that the cost of determining the cluster-receive level will be negligible.
Cluster merging is required to be no more expensive than linear in the merged cluster size. Thus,
the projection cost will determine the timestamp-creation cost. If the event being timestamped is
not a cluster receive, then the cost will be proportional to the level-0 cluster size. Ifitis &level-
cluster receive, then the cost will be proportional to the cost of projecting the covered events’
timestamps to level;, and then taking the maximum over those timestamps. Assuming a single-
partner environment, there will be two such events, either of which may need to have its time-
stamp projected, at a costOf e. cl uster (k). si ze()*e.cluster(k-1).size()).

For level# cluster-receive events whekeis near the top of the cluster hierarchy, this ap-
proach can be more costly than the Fidge/Mattern computation. Specifically, in a two-level envi-
ronment it is identical to the Summers mechanism for regenerating the Fidge/Mattern timestamp.
That method iSO(N(e. cl uster().size())). However, for non-cluster-receive events,
the cost isQ(e. cl uster (). size()), which is substantially better than the Fidge/Mattern

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 155

1: EventPosition* projection(EventRef& e, i) {
2 int k = e._event->CT. | evel;

3 if (k >=1i)

4: return e.cluster(i).project(e);

5: Event Positi on* CTS = e._event->CT. CT;

6 while (k < i) {

-

8

Event Positi on* NTS = O;
. for (int j =0 ; j <e.cluster(k).size() ; ++) {

9: Tracel D j Trace = e.cluster (k). map(j);

10: EventRef g = _event->bl ock. po(j Trace, CTS[j]);
11: Event Ref r = gcr(k, g);

12: NTS = max(e. cluster(k+1).size(),

13: e.cluster(k+1).project(r),

14. NTS) ;

15: }

16: ++k;

17: if (CTS != e._event->CT.CT)

18: delete [] CTS;

19: CTS = NTS;
20: }
21: return CTS;
21: }

Figure 9.8: Cluster-Timestamp Projection to Level-

computation cost. Likewise, levélcluster-receives where the cluster is not near the top of the
hierarchy will be more efficiently computed using this method. It can be shown that for the
two-level hierarchy, if the ratio of cluster-receive events to non-cluster-receive events is less than
1/ e.cluster().size() then this approach will be beneficial. In general, the entire ap-
proach of this suite of algorithms is premised on the observation that cluster-receives are notably
less frequent than other events.

9.1.4 HRRECEDENCERELATED EVENT SETS

We must now deal with the second half of the precedence problem, determining precedence-
related event sets. The approach we take is essentially the same as was used with Fidge/Mattern
timestamps (Section 6.2). That is, we must compute the greatest-predecessor set, and the re-
maining sets will be computed based on that, using the algorithms described in that section. The
algorithm we use for greatest-predecessor determination is the same cluster-timestamp projec-
tion algorithm used to eliminate Fidge/Mattern timestamp generation (Figure 9.8). We simply
require that the cluster level be that level which encompasses the entire computation. The cost is
as described in the previous section.

Having described these algorithms, we observe that they are probably not a good choice of

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 156

interface for our timestamp algorithm. Specifically, there is no partial-order-interface method that
exists between event-precedence determination and greatest-predecessor set. Thus, if we wish to
compute some number of greatest-predecessors, but not all, we have a poor choice. The greatest-
predecessor set is somewhat expensive to compute using our timestamps, but the individual tests
cannot take advantage of the aggregate nature of the query. Further, this is not a contrived case.
Specifically, if we wish to indicate the predecessor events in a display, we would only wish to
compute the predecessors for those traces that are currently visible. An extended interface to the
data structure is clearly required, but is beyond the scope of this work.

9.2 (QLUSTERINGALGORITHMS

We now turn to the problem of providing the Cluster-class and cluster() methods. This has been
deferred until now as it is dependent on the cluster-strategy employed. Good cluster strategy is
crucial to the quality of the timestamp algorithm. While the timestamp algorithm is able to exploit
communication locality, it is incumbent on the cluster strategy to determine that locality.

The strategies can be broadly divided into two categories: static and dynamic. A static strat-
egy is one in which, for the purpose of the timestamp algorithm, the clusters are pre-determined
and will never change during the execution of the algorithm. Various methods satisfy this con-
straint. A user-defined-cluster approach would likely be static, specifying the mapping from
traces to clusters. While such clusters in principle could be optimal, it is not reasonable to re-
quire user involvement in core data-structure issues. However, computation-specific information
might be extracted through source-code analysis. This could then be provided to our timestamp
algorithm to identify the cluster-hierarchy to which a trace belonged.

Alternately, we might employ a delayed timestamping scheme. In this technique we first
capture some small number of events on each trace and cluster the traces according to the com-
munication so captured. Thatis, we would use the current state of something equivalert® P
communication matrix as our similarity metric. Any standard hierarchical clustering algorithm
can be applied, though some care should be taken as a naive algorithm woQidVB¢ or
worse [4, 75]. The effect of a poor choice would increase the delay prior to timestamping. Not all
traces are necessarily present at the start of a computation. However, it would be sufficient for this
algorithm if the clusters are defined prior to the arrival (at the timestamp algorithm) of an event
for a previously unknown trace. This would have some implications on the clustering algorithm.
Specifically, it would have to be dynamic with respect to the arrival of new traces, though it could
not alter existing cluster relationships. Insofar as the initial communication events between traces
are reflective of subsequent clustering in the computation, this would be an effective approach.

A third possibility would be to simply select arbitrary contiguous ranges of traces. Such an
approach would hardly be ideal in capturing communication locality, though it does have the
virtue of extreme simplicity. In addition, if either of the previous two techniques were employed,
it would be a simple matter to re-map the ordering of their traces such that the clusters they
provided covered contiguous ranges. Thus, the Cluster-class methods that we develop for this
technigue are equally applicable to those static approaches. Further, by employing this technique

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 157

for our static-algorithm experimental results we were provided with a nice lower bound on the
performance we can expect from our timestamp algorithm.

No static technique can be perfect. Source-code analysis is target-specific, and thus less-
attractive. Further, it is limited in the information it can extract by lack of knowledge of run-time
data. Delayed timestamping has an unattractive transient startup time, and the quality of clus-
ters produced will be dependent on the initial communication being reflective of the clustering.
The only virtue of arbitrary contiguous clusters is simplicity. We therefore look at non-static
alternatives.

Dynamic cluster strategies are ones in which the clusters are not kagwiori, but are
determined by the run-time behaviour of the computation. This makes the strategy dynamic in a
very unusual sense. We wish to cluster traces, and thus they are the fundamental elements over
which the clustering algorithm is applied. However, it is often the case that many of the traces
will be known early in the computation. What is not known is the communication pattern that will
occur between those traces. That is, the dynamic aspect is the similarity metric. It is changing
with each communication event. Thus, what initially appears to require some form of hierarchical
agglomerative clustering [31, 161] is apparently quite different. Further, we are constrained by
the required performance of the Cluster-class methods, all of which must be O(size of the output)
which is needed to maintain the dynamic properties of the timestamp algorithm, the requirement
that every trace is a member of a cluster at any given instant, and the implicit limitations on space-
consumption. We are not aware of any algorithm that satisfies all of these requirements. Indeed,
the mere need to satisfy the performance requirement would substantially constrain the choices.
We therefore developed our own approach, which we describe in Section 9.2.2.

We have developed two cluster strategies, fixed clusters and self-organizing clusters, which
are static and dynamic, respectively. We now describe these strategies, and their associated
Cluster-class methods.

9.2.1 HXED CLUSTERS

We now describe the algorithms required to implement the Cluster-class and cluster() methods
for the fixed-cluster strategy. As defined above, these clusters are contiguous over a range of
traces in the Fidge/Mattern timestamp. We therefore assign each cluster an offset that indicates
the starting element in the Fidge/Mattern array. The size is already required by the timestamp
algorithm, and thus the termination point of the range is determinable. We now briefly recollect
the methods that we must provide, together with the private data that we can now specify.

class Custer {

publi c:
bool uc();
Cl uster & mer ge(Event Ref &) ;
Cluster& nerge(int, EventRef&);
bool nmer geabl e(Event Ref &) ;
Tracel D& map(int);

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 158

i nt i nver seMap(Tracel D&) ;
bool contai ns(Tracel D&) ;
i nt size();

Event Posi ti on* project(EventPosition*);
Event Posi ti on* project(const Event Ref &) ;

pri vat e:
int offset;
int _size;
b

The private data is self-explanatory.

The uc() method determines whether or not the cluster is the universal cluster, returning true
if it is, and false otherwise. The universal cluster is identified by having an offset of -1.

The merge() and mergeable() methods are straightforward, as these clusters are fixed and so
no merging can ever take place. Thus, mergeable() simply returns false, while merge() throws an
exception. The size() method is likewise obvious, returning thieze member data.

Containment is determined by treating the TracelD argument as an integer, ranging from 0 to
N — 1, which is effectively required to have the clusters over a contiguous range, and checking
if it falls in the interval[_offset, offset+_size). Ifit does, contains() returns true. It
returns false otherwise.

The map() method adds the value adf f set to the argument and returns the result. Like-
wise the inverseMap() method subtracts tlué f set from the argument and returns the result.
Finally, the two project() methods are

Event Position* Cluster::project(EventPosition* fm {
Event Position* p = new EventPosition[_size];

for (int i =0 ; i < _size ; ++i)
pli] = frimap(i)];

return p;

}

and

Event Position* Cluster::project(EventRef* e) {
Event Position* p = new EventPosition[_size];
for (int i =0 ; i < _size ; ++i)
p[i] = e._event->CT.CT[e.cluster().inverseMap(map(i))];
return p;

}

Observe that we have not added the requisite checking to any of these algorithms to ensure cor-
rectness of the arguments. This is because the manner in which our timestamp algorithm is
written is such that we can be sure that they will never be called with a bad argument. If this class

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 159

is to be widely available, however, such checking would be required. It should also be noted that
these algorithms clearly satisfy the required performance and space-consumption bounds.
Finally we must provide the cluster() and cluster(int) methods. The cluster() method is an
inline call to cluster(0). The cluster(int) method can be provided in a variety of ways. Each
cluster could identify its parent, and the event would identify the lowest-level cluster. This would
then costO(k), wherek was the requested cluster level. This is not unreasonablejsalikely
fairly small. However, we can do better. Each event already identifies the block to which it
belongs. Since cluster membership is fixed by trace, and each event block contains data for only
a single trace, we record the cluster membership in the event trace, thus

cl ass Event Bl ock {

Cluster** clusters;
¥
Then the cluster(int) method becomes

cl ass Event Ref {

Cluster& cluster(int k) const {
return *_event->_bl ock. _clusters[K];
b
¥

Suitable bounds checking should be added if this method is made public.

9.2.2 SLF-ORGANIZING CLUSTERS

We now turn to our dynamic algorithm. We start by outlining our design options given the
constraints imposed. The membership requirement and the hierarchical nature of our clusters
imply that we must use some variant on hierarchical agglomerative clustering. We therefore
require that each trace initially belongs to a cluster of size one. We must then determine when
to merge clusters and whether or not traces should move between clusters. Clearly we cannot
pairwise compare all traces after the arrival of every new event to determine if the clustering has
changed, nor is it desirable to do so, as no single event should have a significant impact on current
clustering. Instead we deal with the computation cost of this approach by noting that we merely
require good clusters, not optimal ones. It is thus sufficient to consider merging clusters based on
some number of communications between the clusters, subject to a maximum cluster size.

The constraint on the number of communications examined is that we must make a merge
decision at the earliest opportunity. The reason is that after an event is timestamped, either its
timestamp will never change or we must pay a computation cost to change it. If timestamps are
never changed, then some events will receive a longer timestamp than they should. Specifically,
some events will be timestamped as cluster-receives even though in hindsight they are not, since

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 160

the merger had not occurred at the time the event was timestamped (we refer to such events as
false cluster-receives). In fairness, this will to some degree be balanced by the fact that those

non-cluster-receive events that are timestamped prior to the merger will have somewhat shorter

timestamps, reflecting the smaller pre-merger clusters. There is thus a space-penalty to pay, that
grows as the merger decision is delayed. Conversely, if we alter the timestamps after a merger,

the longer the merger is deferred, the larger the number of timestamp alterations that must be

performed. Therefore, if clusters are to merge, the sooner the merger occurs the better.

The constraint on the maximum size of a cluster is required to prevent all traces from joining a
single cluster. This upper bound must increase with each level of the cluster hierarchy or cluster-
merging would never be able to take place beyond the lowest level. Further, it should increase by
a least a factor of two, or no two lower-level clusters that had reached their maximum size would
be able to merge. In general, it should be an integral multiple of the previous-level maximum
cluster size for this same reason.

Second, we must deal with trace-movement between clusters. While our algorithms do not
strictly presume that once a trace is part of a cluster it is forever part of that cluster, we have
not yet evaluated alternatives to the contrary. In particular, it is unclear that we can satisfy both
the time- and space-bounds should we move traces between clusters. Further, it substantially
simplifies the merge() method when it is known that traces will never leave a cluster.

The third design option we must address is the issue of how to deal with timestamps given to
events that were processed prior to a merger. Such timestamps are not valid in the merged cluster.
There are two solutions that we have examined for this problem. We may adjust the timestamps
for existing events, such that the interpretation given to them by the merged cluster is correct.
This is largely a matter of iterating through the events on each trace of the merged cluster prior
to the merge point and changing the entries as required. For most events it would presumably
require allocating a larger array and filling in zeros in the appropriate elements, though for false
cluster-receives it would presumably result in a space reduction. The advantage of this method
is that it substantially simplifies the merge() and cluster() methods. However, it is not without
disadvantages. Its cost is proportional to the size of the merged cluster times the number of
events whose timestamp must be altered. If there are few prior events, this may be reasonable.
However, it has a second drawback. Although we do not address the problem of trace-movement
between clusters, we would like our system to remain open to that possibility. This scheme is
clearly incompatible with that ideal.

The alternate solution is to keep track of the event number at which merging took place for
each trace involved in the merger. We then maintain the information that interprets the timestamp
both prior to and after the merger. This will be somewhat more space-consumptive, though that
may be mitigated somewhat by the fact that smaller timestamps are used prior to the merger, as
is the interpretation information for timestamps prior to the merger. This is the technique we
have adopted for our algorithms. The implication of this is that is a transmit an@’ is the
corresponding receive, and the result of this transmission is to cause their respective clusters to
be merged, thea’’s cluster will contaire®’s trace but novice versa. This is why the timestamp
algorithm used TracelD containment testing rather than cluster equality.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 161

Given these design options, we now provide our solutions. We start with a two-level solution,
as it is notably simpler.

9.2.2.1 TwoO-LEVEL CLUSTER-CLASS ALGORITHMS

The clusters for our self-organizing algorithm must now keep track of the complete map and
inverse-map data, rather than just an offset and size. Further, this data must be maintained in such
a fashion as to enable the interpretation of timestamps both before and after merge operations.
A naive approach would be to create a new cluster at each merge point to interpret the post-
merge timestamps, leaving the old clusters to interpret the pre-merge timestamps. While easy to
implement, this would not be ideal from a space-consumption perspective. We can do better. In
particular, the post-merge cluster contains only two new pieces of information: the merge point
and size data. None of the data required for interpretation changes in any way. We therefore
divide the Cluster-class functionality over three entities: the event block, the Cluster-class front
end, and a new Cluster-class back end. The event block maintains the merge-point information.
The back end maintain the mapping and inverse-mapping data for a tree of merged clusters. The
front end maintains the necessary indexing information into the back-end data to interpret it for
the particular front-end cluster.

First, we will deal with the merge-point information. Unlike the fixed-cluster case, the cluster
will not be the same for every event in a trace. When a clustererges with another cluster
c; to form a new cluster, the cluster() method for the events prior to the merger must return
references te; or c;, as appropriate for their trace, while those after the merger must return a
reference tey. We therefore augment the EventBlock with the following data

cl ass Event Bl ock {

class CusterlList {
Event Positi on _m nEvent;

Cluster* _C;
3
ClusterList* _clusters;
i nt _currentd uster;

¥
and define the cluster() method as follows.

Cluster& EventRef::cluster() const {
int i = event-> block. currentd uster;
while (_event-> block. clusters[i]._mnEvent > EventPosition())
- =i :
return * _event->_block. clusters[i]. _c;

}

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 162

class Custer {

privat e:

cl ass BackEnd {
publi c:
int _id,
int* _map;
int _size;

SparseArray<int> _inver sehMap;
SparseArray<i nt > comCount ;
Parti al Order& _po;

b

int _size;
int offset;
BackEnd* _be;

Figure 9.9: Self-Organizing Two-Level Cluster-Class Private Data

The number of clusters in the cluster list is, in the worst case, O(cluster size). On average it
will be O(log cluster size) if all cluster mergers were between equal-size clusters. However, both
of these values ignore that fact that no event block need maintain information for clusters that
contain no events from the block. If we presume that most cluster mergers occur within the first
event block, then the cluster list will likely be quite short in subsequent blocks.

Note also that we work backwards from the current cluster of which the trace is a member.
This is because the cluster() method is used in two places, timestamping and precedence determi-
nation. In the precedence-determination case we cannot readily guess the location of the events
whose clusters must be determined, and thus their likely clusters, though we would suspect that
more events occur later, and are thus closer to the current cluster. In the timestamp case, however,
we know that we are timestamping in a linearization of the partial order, and thus clusters that
we look up are for events closer to or at the current cluster for the trace. This linear search is
therefore probably quite fast, though in the worst case it could be O(cluster size). If this was
found to happen frequently, and the cluster sizes were large, we would move to some form of
binary search.

We now deal with the Cluster class, whose private data is as shown in Figure 9.9. For each
merge operation, a new front end is created, while the back end merges in the new cluster informa-
tion. The methods are provided at the front end, and augmented with front-end data, provide the
correct interpretation of the back-end data. Thap and_i nver seMap arrays of the BackEnd
class provide the interpretation of the timestamp data. Trregp array maps cluster-timestamp
indices to TracelDs. Conversely, the nver seMap array maps TracelDs to cluster-timestamp
indices. To understand the operation of these arrays, we provide the merge() method, as shown

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 163

in Figure 9.10. This method does four things. It creates a new front-end cluster (lines 4 to 7), it
merges the back-end of the clusters (lines 8 to 14), it updates the information maintained in the
event block that is required for the cluster() method (lines 15 to 19 and line 26), and it updates the
offset data for clusters whose BackEndeap variable has been relocated (lines 20 to 24). The
creation of the new front end is straightforward, and so we do not comment further.

For the back-end merger we arbitrarily select the back end pointed thigyront end as
the object into which we will merge the data. We could slightly more intelligently select the
larger back end, where larger would be defined either by number of traces kept within the cluster
or by the number of front-end clusters that pointed to that back end. Either approach would be
somewhat better than arbitrary selection, but is of little significance to our algorithm description.
The map data for the other back end is appended to the map détisfback end (lines 9 and 10).

Note that this means that any front-end cluster that pointed to that other back end will now have
incorrect offset information, as the offset has been shifted by the sieiotluster. It is the
function of line 22 to correct this. The inverseMap data is likewise incorporated (line 11), the
size of the new back end adjusted (line 13) and the other back end, no longer needed, is deleted
(line 14). The deletion of this other back end means that any front-end cluster that pointed to that
other back end will now have a dangling pointer. It is the function of line 23 to correct this.

Lines 15 to 19 and line 26 update the front-end cluster information maintained in the event
block. This is primarily a question of iterating through the traces in the cluster and setting their
current cluster value to indicate the new front end for future events (hence the use of one greater
event position than the current maximum event on the trace). This is true for all but the event that
triggered the merger, which must have its position identified as the beginning of the new front
end, which is the purpose of line 26.

As already noted, both the offset and BackEnd pointer of front end clusters that referred
to the deleted back end must be corrected. The traces for which this is an issue are those that
were maintained by that back end, and are thus those at locasibme and beyond in the
merged entity. Note that this code is not strictly correct. This will only update clusters that are
represented within this event event block. Clusters in prior event blocks will be missed. There
are two solutions to this issue. Either we may create a new back end for the first merger in any
new event block, or we must update back to the first block for each trace. The second solution is
likely more expensive than we wish to incur, and so we presume the first solution.

Having described the merger process and the manner in which the back-end data are main-
tained, we can readily provide the remaining methods of the Cluster class. The map() method is
simply

inline Tracel D& nap(int index) const {
return _be-> map[index+_ offset];

}

The inverse-mapping data, on the other hand, is somewhat more complex. It implements the
mapping of TracelD to cluster-timestamp index, and is thus sparse over its domain. A space-
consumption-naive implementation of this would be an array of size equal to the number of

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS

19:
20:
21:
22:
23:
24.
25:
26:

27:
28:

Cluster& Custer::nmerge(Event Ref & e) {

}

assert(_size == _be->_size);
Cluster& c = e.partner().cluster();
Cluster* nc = new Cluster();

nc-> be = be;

nc-> offset = 0;

nc-> size = _size + c._be->size;

reall oc(_be->_map, nc->_size);

for (int i =0 ; i <c._be->size; ++i) {
_be-> map[_size+i] = c._be->_map[i];
_be->_inverseMap[c. _be-> map[i]] = _size + i;

}

_be-> size = nc->_size;
del ete c. _be;
for (int i =0 ; i <nc->size ; ++i) {
Event Ref f = e. bl ock. po. maxEvent (_bc-> map[i]);
++f . _bl ock->_current d uster;
f. block->clusters[f. block-> currentCluster]. _ m nEvent
= f.eventPosition() + 1;

164

f. block->clusters[f. block-> currentCluster]. c = this;

if (i >= _size)

for (int j =0 ; j < f._block->_currentduster - 1;
f. block.clusters[j]._c. _offset += _size;
f. block.clusters[j]._c._be = _be;

}

}

e. bl ock->clusters[e. block-> currentC uster]._m nEvent
= e.eventPosition();
return *nc;

Figure 9.10: Self-Organizing Two-Level Cluster Merging

++) |

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 165

traces, with most elements indicating no data present. This is not, however, as bad an idea as it
may first appear. Specifically, it is very fast. We index the inverse map array by TracelD and find
the relevant index in the cluster timestamp. Further, we will never have more back-end cluster
objects than we have traces, and on each merge operation, the number of such back-end clusters
is reduced by one. However, we can do better. At a minimum we can use any reasonable vector
class that only allocates space over the domain of input indices. Thus, any cluster with only one
trace will require an array of size one. Not only are such clusters present in our system, they
are initially the only form of cluster. This thus eliminates at least half of the space problem.
We can still do better. There is no reason why an inverseMap array representing two TracelDs
needs to use an array over the entire range of those TracelDs, especially if that range is large. A
two-step lookup process is still cheap. This eliminates a further quarter of the space requirement.
A three-step process is likewise probably still cheap, though becoming less attractive. At some
point we move from a size-of-cluster sparse array to a range-of-indices array, which is a tradeoff
between the size of the range and the desire to have fast lookup. There are, of course, many other
alternatives that an implementer can examine, including those in the various literature on sparse
arrays and hashing. For this reason, we simply specify thatitiwer seMap member-data is

a sparse array of type int. The inverseMap() method is then

inline int inverseMap(Tracel D& t) const {
return _be-> inverseMap[t] - _offset;

b

Note that neither the map() nor inverseMap() methods checks their argument to determine if it is
valid. A brief examination of the timestamp code should convince the reader that neither function
will be invoked with out-of-domain arguments. That said, the containment test does effectively
require the inverseMap() method to accept out-of-domain parameters. It is a test as to whether or
not a given TracelD is represented in the cluster, and thus amounts to a lookup in the inverse map.
We therefore require that the SparseArray class return an indicator when there is no data present.
Since the data in the sparse array will be array indices, -1 is a suitable choice of indicator. This
leads to the following containment test.

inline bool contains(TracelD& t) const {
return (_be-> inverseMap[t] >= offset &&
_be-> inverseMap[t] < _offset + _size);

b

This leaves the size, uc, mergeable, and project methods. The size and uc methods are unchanged
from the fixed-cluster case, as is Fidge/Mattern projection. The merge(k,e) and project(e) meth-
ods are only used in the hierarchical-timestamp algorithm, and are thus not required at this point.
This leaves the mergeable() method.

The merger decision is taken by the mergeable() method. As we have indicated above, this
must be made as quickly as possible, and as efficiently as possible. For the timestamp algorithm
to be reasonable, this method must be roughly constant-time. The following code satisfies these

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 166

requirements, and is consistent with the design options of merging based on some number of
communication events.

bool Cd uster::nergeabl e(Event Ref & e) {
Cluster& ¢ = e.partner().cluster();
if (_be-> size + c. _be-> _size > sizeThreshol d)
return fal se;
if ((_be->_comCount[c. be->id] + c. _be-> commCount[be-> id])
[(_be->_size+c. _size) < comihreshol d)
return fal se;
return true;

}

The _commCount data is a sparse array whose elements are incremented on communication
events between the clusters. This can be implemented by means of a callback on receive-
and synchronous-event store() operations on the partial order. The purpose of dividing the
_comCount sum by the size of the clusters is to filter out the effect of cluster size and capture
instead the average number of communications events per trace. That said, we believe that a sub-
stantially greater study of clustering algorithms would be of value. For our experimental results,
we have simply used initial communication as a sufficient requirement to merge clusters. This
corresponds to eommiThr eshol d value of zero, as mergeable is only ever invoked when com-
munication occurs. It is also for this reason that we have not yet dealt with the issue of merging
the communication-count information when clusters merge, as is clearly required.

9.2.2.2 HERARCHICAL CLUSTER-CLASS ALGORITHMS

For the hierarchical Cluster-class algorithms we must deal with two additional problems that
pertain to cluster merging. First, one or both of the the clusters to be merged might be the
universal cluster. Second, when clusters merge, there are implications for the parent clusters (that
is, the clusters at the next level in the hierarchy).

Before dealing with these issues we briefly observe that the remaining methods of the Cluster
class are essentially unaltered from the two-level self-organizing algorithms described above. The
cluster() method, as described in the timestamp algorithms, must now take an integer parameter
indicating the level in the cluster hierarchy to which it refers. The algorithm for this is there-
fore formed by applying the hierarchical fixed-cluster approach to the two-level self-organizing
cluster() method. The result is the following change to the EventBlock

cl ass Event Bl ock {

class CusterlList {
Event Positi on _m nEvent;
Cluster* _C;

H

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 167

ClusterlList** _clusters;

i nt* _currentC uster;
i nt _maxLevel ;
static Cluster* _uc;

¥
allowing us to define the cluster() method as follows

Cluster& EventRef::cluster(int k) const {
if (k > _maxLevel)
return *_uc;
int i = event->_block. _currentduster[k];
while (_event-> block. clusters[k][i]._m nEvent > EventPosition())
--1;
return * _event->_block. clusters[k][i]. _c;

}

The universal cluster is kept as a static pointer in member data

We now address the problem of cluster merging. We deal with the second issue, that of
parental involvement in merging, first. We first observe that the merging of two parent clusters is
only of minimal relevance to their child clusters. Specifically, the event block for child clusters
will need to be updated to reflect the new parent. Other than this, there is no change. However,
the converse is not the case. When child clusters merge, their parent clusters must also merge,
recursively? This is required to ensure that no cluster has more than one parent. In the event that
trace-movement between clusters is developed, and likewise cluster-movement between higher-
level clusters, this requirement would presumably be altered.

This leads to the mergeable() test, which augments the two-level test as follows.

bool Custer::nergeable(int k, EventRef& e) {
if (!mergeabl e(k+1, e))
return fal se;
return twolLevel Mergeabl e(e);

}

wheret woLevel Mer geabl e() is the previously defined algorithm for mergability testing

in two-level clusters. Merging is likewise altered to become a recursive algorithm. However,
merging must also deal with our first problem, namely that one or both of the clusters might be
the universal cluster. If both clusters are the universal cluster, then a new cluster (that is, a new
back end as well as a new front end) must be created, such that the child clusters refer to that new
cluster as their parent, rather than the universal cluster. This is essentially a question of taking the
two clusters and applying a modification of the merge algorithm from Figure 9.10.

2The requirement for parental approval has some precedent in the non-technical literature [133].

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 168

1. Cluster& Cluster::newd uster(EventRef& e) {
2: Cluster& ¢ = e.partner().cluster();

3: Cluster* nc = new Cluster();

4. nc-> be = new C uster:: BackEnd

5: nc-> offset = 0;

6: nc-> size = _size + c._be->size;

7: nc-> _be-> map = nal |l oc(nc->_size);

8: for (int i =0 ; i < be->size; ++i) {
9: nc-> be-> map[i] = _be-> map[i];

10: nc-> be-> i nverseMap[_be-> map[i]] = i;
11: }

12: for (int i =0 ; i <c._be->size ; ++i) {
13: nc->_be-> map[_size+i] = c._be->_map[i];
14: nc->_be->_inverseMap[c. _be->_map[i]] = _size + i
15: }

16: nc-> _be-> size = nc->_size;

17: return *nc;

18: /1 Adjust cluster pointers

19: }

This code shows only the creation of the new back and front end. The adjustment of cluster
references in the event blocks (line 18) requires all event blocks for the traces represented in the
cluster to add a new ClusterList element. This is a small matter of applying lines 15 to 19 and
line 26 from Figure 9.10, adjusting to reflect the somewhat different structure of the ClusterList.

When only one of the two clusters to be merged is the universal cluster we do not need to
create a new back end. Rather, for the event whose leetister is the universal cluster, we
use the level# — 1) cluster. We merge that levék — 1) back end into the other cluster, per
the algorithm of Figure 9.10, though we do not delete the I¢kel-1) back end, and the cluster
pointer update is per the universal-cluster merging method.

If neither cluster is the universal cluster, then we merge the two, per the two-level algorithm,
and then we merge their parent clusters, up to the point of merging two universal clusters. We do
not merge the two universal clusters, as the creation of a new cluster at that point is redundant. If
the parent clusters are the same, then no such merger need occur.

We note at this juncture that this merging process is potentially quite expensive. However, it is
also quite unlikely to occur over more than one or two levels in the hierarchy. keslekters are
only created in the timestamp algorithm because the Igwelt) clusters could not accommodate
the merger. This is almost invariably because of the size limitation of the clusters. As such, we
suspect it would be unusual for a cluster far from the top of the hierarchy to be involved in a
merger. We do not yet have data on this point, as we have not yet implemented this approach.
Likewise, we note that the space consumption has risen substantially over the two-level approach,
as each level maintains its own copy of the cluster information. We would like to address this
problem before we implement this algorithm.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 169

9.3 CACHING STRATEGY

When we first developed this algorithm, and the dynamic-Ore timestamp, we did so with the idea
that a sufficient space-consumption reduction would enable an entirely in-core partial-order data
structure. In such a case the precedence tests would assuredly be much faster than is currently the
case. While our results will show that we have achieved up to an order-of-magnitude space re-
duction (Section 9.4), it would be hard to argue that this is enough. Although it enables an in-core
data structure for partial orders that is noticeably larger than can currently be handled, we could
not credibly claim that such an approach was scalable. Further, as soon as the data-structure size
exceeded the core-memory size, performance would degrade dramatically. A caching strategy is
required to claim that the structure is scalable.

We could simply adopt the®ET caching strategy. That is, we would have multiple caches,
each recording some timestamper state and some number of recently-computed timestamps.
However, this is not the best approach possible. In particular, it fails to take advantage of the
variation in cost required to compute timestamps at different levels in the cluster hierarchy when
we have eliminated Fidge/Mattern timestamp generation (Section 9.1.3). More simply put, the
lower the level of the cluster-timestamp, the cheaper it is to compute.

If we consider the two-level algorithm, any cluster-receive timestamp will ©¢&iV) while
the remaining timestamps only ca8{c), whereN is the number of traces andis the cluster
size. Thus, the natural caching strategy is to keep only cluster-receive timestamps. If possible, we
keep them all, and cache the remaining timestamps on an as-space-available basis. We can guar-
antee this possibility by increasing the size of the clusters until the number of cluster-receives is
sufficiently small to fit in cache (this is based on the observation that the number of cluster-receive
events decreases as cluster-size increases). We are, in effect, bounding the space-consumption of
our timestamp. We note at this point that this approach does not lead to the minimum-possible
space-consumption. Rather, it bounds the core-memory consumption. We call this mode of op-
eration “caching mode” and distinguish it from “core mode,” where we would attempt to achieve
the minimum space-consumption possible with the view that the entire data structure would reside
in core memory.

The obvious extension of this approach to the hierarchical algorithm is to cache cluster-
receive events from the highest level, working our way down, subject to available space. In this
case it is doubtful that we could cache all cluster-receives at every level. However, the lower the
level of cluster-receive, the cheaper it is to compute. A léveluster-receive costd(cicr 1)
to compute, where; is the size of the cluster at level-At low levels, cluster size is small, and
hence this cost is low.

Finally, we note the cost of precedence-tests in a caching situation. Recall (Section 7.1.2) that
the cost of such tests for Fidge/Mattern timestam@3(i&/), as timestamps have to be computed
dynamically. If we consider the two-level version of our described caching-mode, an in-cluster
precedence test will require the computation of the appropriate cluster timestamps, and will thus
beO(c). A between-cluster test will require the calculation first of the relevant cluster-timestamp,
and then examination of each greatest-preceding cluster-receive, and will thus él&g beith
the constant larger by one, since there would be one additional iteration over the cluster size.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 170

9.4 EXPERIMENTAL EVALUATION

We now turn to the evaluation of our timestamp. While we have looked at, and will present results
for, the same environments and computations that we studied for our dimension-bound programs
(see Section 8.1.3), we have focused this evaluation on PVM and Java computations. This focus
was necessary to allow for more in-depth analysis and these environments were found to be
reasonably representative. All of the following experiments will concern timestamp size, rather
than precedence-test computation time. This choice is dictated by our study of the scalability
problems of the Fidge/Mattern timestamp (Chapter 7), together with an inability to determine a
representative sample of precedence-test operations (see Section 7.1.1 of that chapter).

Our analysis is broken down according to the clustering algorithm used. We first evaluated
fixed clusters, with no special pre-processing technique to improve the cluster selection. This
represents a practical worst-case scenario for our timestamp. We then looked at self-organizing
clusters. Here we chose the worst-case clustering algorithm, which in this instance is to merge
clusters on first communication. Thus, the results we present should be viewed as the least time-
stamp size-reduction one can expect with the application of our approach. For both clustering
techniques we studied both caching- and core-mode operation.

9.4.1 HXED-CLUSTERALGORITHM

For all of our fixed-cluster experiments the timestamp-tool generated contiguous clusters of equal
size at each level in the hierarchy. Thus, for a cluster-sitiee firstc traces received by the tool

were placed in the first cluster, the nexin the second cluster, and so forth. We start with

an analysis of the two-level algorithm with the intent of core-mode use. That is, we wished

to identify that cluster-size which achieves the minimum-average cluster-timestamp size. The
form of the experiments was to vary the cluster size from 2 to 50 and observe the changes in the
ratio of cluster-receive events to total-event count, the average timestamp size, and the percentage
of the Fidge/Mattern timestamp size.

Not surprisingly, the cluster-receive ratio was high when the cluster size was small. It tended
to be around one-third for a cluster size of 1, though in the case of Hermes it was as high as two-
thirds. It dropped off fairly rapidly, going below 20% by the time the cluster size was between
10 and 20. This is consistent with the average number of traces a given trace communicates with,
as shown in Figure 9.1. Of greater interest was the degree of variability, especially in the Java
computations. An example of this phenomenon is shown in Figure 9.11(a). What appears to
be going on is that the arbitrary clusters that are selected by the timestamp tool are not always
well-chosen. This is not surprising, and it strongly suggests that computation-specific clustering
would be capable of generating significantly better, or at least consistent, results. In the PVM
computations we found a much smoother decline in the cluster ratio, which is probably a function
of regular communication patterns exhibited in the PVM programs we studied.

The average timestamp size tended to follow the cluster-ratio reduction for low cluster sizes,
but grew as the cluster-size grew. This is unsurprising, as it reflects a substantial benefit in reduc-
ing the timestamp size for non-cluster-receive events when the cluster-size is very small. When

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 171

Sample Java Cluster-Receive Ratio Sample Hermes Average Cluster-Timestamp Size and Cluster-Receive Ratio
200

T T
Cluster-Receive Ratio
Average Timestamp Size -------

08 - 4 08 4h

Ratl
o
>

06 -

to Total Number of Events

Cluster-Receive Ratio
o
=

04

Average Cluster-Timestamp Size

02 o, g 02

Ratio of Cluster-Receives

L L L L L L
0 20 40 60 80 100 0 20 40 60 80 100
Cluster Size Cluster Size

(a) Sample Java Cluster-Receive Ratio (b) Sample Hermes Average Cluster Timestamp Size

Figure 9.11: Sample Cluster-Receive and Timestamp-Size Results

the cluster-size is larger, the benefit of cluster-timestamps is attenuated by the size of the clus-
ter itself. Figure 9.11(b) shows an example of this phenomenon for a Hermes application. In
this instance, the optimum benefit of the cluster timestamp is a one-third reduction in space-
consumption over a Fidge/Mattern timestamp.

We then observed the percent reduction in timestamp size against Fidge/Mattern timestamps.
To compare the two-level algorithm results with Fidge/Mattern timestamps we have to consider
the manner in which the Fidge/Mattern timestamps were encoded. There are three different plau-
sible ways in which Fidge/Mattern timestamps may be encoded in a distributed-system obser-
vation tool. First, we may use a fixed-size array. For this we used 300, since this is the value
that FOET uses. Second, it may use a timestamp of size equal to the number of traces currently
known, plus one to indicate the current array size. This is optimal from a space-consumption per-
spective, though possibly poor in practice because of the “Swiss-cheese” effect on heap-memory
allocation. Third, we presume that we know neither the number of traces nor an upper-bound on
that number. We thus use a tabling technique and double the array size whenever it is insufficient
to contain all traces. This technique depends on the starting size, which we arbitrarily selected
as 2, and thus we rounded up to the nearest power of 2. In addition to these results, we aggre-
gated the results by determining the minimum ratio for each method, and then determining its
minimum, average, and maximum value over the different computations for each environment.
We also determined the cluster-size range over which these minimums occur. These results are
summarized in Table 9.1, while Figure 9.12 shows samples for the four different environments.

Note that in the best case PVM shows more than 90% size reduction. The worst result we
have seen so far for the PVM environment is a two-thirds size reduction over Fidge/Mattern. On
average the PVM computations achieved 80% size reduction, while the Java, DCE, and Hermes
programs only achieved between one- and two-thirds reduction. The choice of Fidge/Mattern
encoding technique had the most significant effect in the DCE computations, which is doubtless

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 172

Method Minimum (%) Average (%) Maximum (%) Range

Fixed-Size 7.6 17.0 33.0 10-64
Optimal 11.1 22.7 34.2 2-8
Tabling 11.1 22.6 34.2 2-8

(a) PVM

Method Minimum (%) Average (%) Maximum (%) Range

Fixed-Size 16.6 28.8 37.6 6-53
Optimal 16.6 39.1 51.8 6-24
Tabling 14.6 34.7 49.8 6-24

(b) Java

Method Minimum (%) Average (%) Maximum (%) Range

Fixed-Size 23.3 38.2 57.7 68-100
Optimal 62.6 64.8 67.2 11-38
Tabling 53.0 60.8 65.9 22-78

(c) DCE

Method Minimum (%) Average (%) Maximum (%) Range

Fixed-Size 32.7 34.5 35.4 43-44
Optimal 32.8 39.7 42.9 22-44
Tabling 26.9 36.5 42.7 22-67

(d) Hermes

Table 9.1: Cluster- to Fidge/Mattern-Timestamp-Size Ratio Summary Results

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 173

Average Cluster-Timestamp Ratio

Average Cluster-Timestamp Ratio

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Sample PVM Ratio of Average Cluster-Timestamp Size to Fidge/Mattern Size Sample Java Ratio of Average Cluster-Timestamp Size to Fidge/Matter Size

T T T T 1 T T T T

= g 08 g
°
K]
&
o
g
= g S o6 g
g
E
I
3]
3
3
r 1 G o4t g
ot 3 e
o+ S -+ i
T $ - PR
et z + L
et < ot IS,
L Y] L e]
e 02 T
+ e et
———» PR
4 Ww*****” T
b
. . . . 0
0 20 40 60 80 100 0 20 40 60 80 100
Cluster Size Cluster Size
ample atio of Average Cluster-Timestamp Size to Fidge/Mattern Size ample Hermes Ratio of Average Cluster-Timestamp Size to Fidge/Mattern Size
Sample DCE Ratio of Average Cluster-Ti p Size to Fidge/M: s Sample H Ratio of Average Cluster-Ti Size to Fidge/Mattern Si
T T T T 1 T T T T
= g 08 g
)
K]
&
o
£
L 1] 1
z
g
E
I
]
z
L] a g
5} o FESTITTS
v I T,
& B T T
I g +
e, JITINEU g
PR bt R <
= g 02 g
. . . . 0
0 20 40 60 80 100 0 20 40 60 80 100
Cluster Size Cluster Size

(c) DCE (d) Hermes

Figure 9.12: Sample Ratios of Cluster- to Fidge/Mattern- Timestamp Sizes

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 174

Environment Range (20%) Range (10%) Range (5%)

PVM 4-9 62 -
DCE 4-41 10-12 20
17-25
33-34
Hermes 21-23 22 22
25-27
29-33
36-45

2Only 93% of the computations examined were within 10% at
cluster-size 6.

Table 9.2: Cluster-Size Required for Timestamps within 5%, 10%, and, 20% of Optimum

because all but one of those had less than 120 traces. This thus skewed the results in the fixed-
size encoding artificially in favour of our cluster-timestamps. This also explains why the large
cluster-size was optimal for this case. For the remainder of this work we presumed that the
optimal Fidge/Mattern encoding was used, as this is least-favourable to the cluster-timestamp.

All of these size reductions presume that the optimal cluster-size is selected for the computa-
tion. Such a selection, in advance, is in general impossible. Indeed, over all of the computations
we have studied the optimum cluster-size varied from 1 to 100. Even though it tended to be more
constrained for the specific programming environments, the range was still large and, especially
in the case of Java, the cluster-timestamp size would vary substantially over that range. We there-
fore analysed the range for each environment to determine what set of cluster-sizes resulted in a
cluster-timestamp size within 5%, 10%, and 20% of the optimum. The intent was to determine
if there was an intersection of these ranges over the set of computations which could be used to
achieve “good” size-reduction. For three of the environments, PVM, Hermes, and DCE, we were
able to determine cluster-size ranges that satisfied this at the 20%-level for all of the computations
examined. For both Hermes and DCE we were able to identify a cluster-size that was within 5%
of optimal for all computations. We show these ranges in Table 9.2.

Java was somewhat more problematic, which is not surprising given the variability in cluster-
receive ratio that it exhibited. The best that could be achieved was slightly more than 85% of the
computations within 20% of optimal. This problem can be easily seen in Figure 9.13(a), which
shows the fraction of computations that have a timestamp-size near to the optimal for the given
cluster size. Based on this data, arange of between 17 to 23 is the best that can be achieved. Using
this range we examined the minimum, maximum, and average timestamp-size for the various Java
computations. These results are presented in Figure 9.13(b).

Clearly the size-reduction desired has not been achieved for three of the four environments,
and the PVM size-reduction is less than might be hoped for. In fairness to the PVM results,
most of the computations have 128, or fewer, traces, and thus an order-of-magnitude reduction

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 175

Fraction of Computations with Cluster-Timestamp Size Near Optimal Java Ratio of Average Cluster-Timestamp Size to Fidge/Mattern Size

Within 5%
Within 10% -
Within 20% --------

08 i 4 08

06 -

04

Fraction of Computations
Average Cluster-Timestamp Ratio

02

L L L L L
60 80 100 0 50 100 150 200 250 300
Number of Traces

(a) Fraction with Good Timestamp Size (b) Timestamp Size for Cluster-Size 17-23

Figure 9.13: Problems with Java Cluster-Size Selection

was plausibly more than could be expected. Further, the traffic-pattern analysis suggests that the
ratio of cluster-timestamp to Fidge/Mattern-timestamp size will improve as the number of traces
increases. In Java, while some reasonable size-reduction was exhibited, it was not consistent
with a given range of cluster-size. In neither Hermes nor DCE was reasonable size-reduction
exhibited. In all three of these environments we believe, based on traffic analysis, that the result
is because of arbitrary, and thus poor, cluster selection.

We now evaluate the use of caching-mode. As we have already observed, no size-reduction
amount will be sufficient for all computations. For caching-mode we presume that all cluster-
receive events will be kept in core memory. We therefore wish to determine at what point the
number of cluster-receives is less than some space-reduction threshold. We have arbitrarily se-
lected 20%, 10%, and 5% as a reasonable fraction of the total number of events. This would cor-
respond to 20%, 10%, and 5%, respectively, of the required Fidge/Mattern space-consumption.
Figure 9.14 shows the results of this in terms of absolute cluster-size required, while Figure 9.15
provides the information as a ratio of the required cluster-size to the number of traces in the
computation.

There are several points to be observed about these figures. First, note that the cutoff of 100 is
false, as this is simply the maximum cluster-size that we examined. Thus, the apparent decline in
the DCE ratio of Figure 9.15(c) can be seen to be false based on the cutoff of 100 shown in Fig-
ure 9.14(c). Further, it is apparent that the 5%-cluster-receive ratio is unrealistic for most of these
computations. That said, there is a cluster-size bound that will achieve a 20%-cluster-receive ratio
for PVM. It is shown as the horizontal line at cluster-size 52 in Figure 9.15(a). Likewise, for Java,
at cluster-size 87 all but one computation achieve a 20%-cluster-receive ratio. It also appears that
such a bound exists at the 10% and 5% levels, though this is near the edge of the data range,
and thus we are hesitant to assert the bound. Given these bounds we can expect to compute the
non-cluster-receive timestamps significantly faster than when using Fidge/Mattern timestamps.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS

Cluster-Size

Cluster-Size

100

Cluster-Size to Number of Traces

T T T T
5% Cluster-Receives
10% Cluster-Receives -
20% Cluster-Receives -
Cluster-Size = 52

80

60

| !

40 w H 4
20 i L 1

0 L 1 1 1 1

50 100 150 200 250
Number of Traces
Cluster-Size to Number of Traces
120 ' ' ' " 5% Cluster-Receives]
10% Cluster-Receives -
20% Cluster-Recelves -

100 1
80 1
60 1
40 1
20 F 1

0

0 50 100 150 200 250 300
Number of Traces

(c) DCE

Cluster-Size

Cluster-Size

100

Cluster-Size to Number of Traces

176

T T T T
5% Cluster-Receives
10% Cluster-Receives --
20% Cluster-Receives -------
Cluster-Size = 87

A

A

80 A

60

40 i 1

i
20 g
0
50 100 150 200 250
Number of Traces
Cluster-Size to Number of Traces
120 j j j " 5% Cluster-Receives 1
10% Cluster-Receives -
20% Cluster-Receives -------

wof |
80 g
60 B
40 B
20 g

0

0 50 100 150 200 250 300
Number of Traces

Figure 9.14: Cluster-Size v. Number of Traces

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 177

Ratio of Cluster-Size to Number of Traces Ratio of Cluster-Size to Number of Traces
1 T T T T T 1 T = T T T
5% Cluster-Receives 7 5% Cluster-Receives
10% Cluster-Receives - - ; 10% Cluster-Receives -------
20% Cluster-Receives - ; 20% Cluster-Receives -------
| 3
g 08 4 g 08 it
g g i
8 8 i
= = ¥
5 ~ 5 :
3 3
2 2
E 06 1 E 06
5 5
2 2
2 2
@ @
N N
@ @
5 04f 1 5 04f
]]
2) 3
o \v o
b § s
=} i =}
g . \ . ! 5
02 : S \ R 02
0 L L L L i 0 L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces
Ratio of Cluster-Size to Number of Traces Ratio of Cluster-Size to Number of Traces
1 T T T T T 1 T T T T T
5% Cluster-Receives 5% Cluster-Receives
10% Cluster-Receives - 10% Cluster-Receives -------
20% Cluster-Receives - 20% Cluster-Receives -------
2 08 1 2 08
g g
g g
= =
5 5
3 3
2 2
E 06 1 E 06
5 5
2 2
2 2
@ @
S N
@ @
5 04f 1 5 04f
]]
= =
o o
5 5
=} =}
5 5
€ 02 R 02 B
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces

(c) DCE (d) Hermes

Figure 9.15: Ratios of Cluster-Size to Number of Traces

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 178

The final aspect of the fixed-cluster approach that we wish to study is the hierarchical algo-
rithm. For this algorithm we must select some cluster-size for every level in the hierarchy. It is
reasonable to presume that the system will select some factor by which to increase the cluster
size at each level of the hierarchy. For this we considered two possibilities. For both of them we
considered a system in which the level-1 cluster was size 2. For the first approach we presumed
that the cluster-size doubled at each level in the hierarchy. This technique can be expected to yield
the smallest average-size timestamps possible with fixed-clusters. However, it is not entirely real-
istic, as it makes event-precedence determination quite costly when the cluster that encompasses
both events occurs at a high level in the hierarchy. For the second approach we presumed that
the cluster-size was squared at each level of the hierarchy. We expected that this method would
yield somewhat poorer average timestamp sizes than the first approach. However, it represents a
realistic tradeoff between the cluster-timestamp size and time to compute event precedence.

The results of these approaches are shown in Figure 9.16 for cluster-size doubling and Fig-
ure 9.17 for cluster-size squaring. These results encompass over 30 PVM computations with the
number of traces varying from 50 to 250, and over 15 Java computations, with a similar range
of traces represented. These figures illustrate the ratio of average cluster-timestamp size to opti-
mal Fidge/Mattern timestamp size. As anticipated, the doubling technique achieved better results
than did squaring, requiring as little as 2.5% of an optimal Fidge/Mattern encoding for PVYM and
5% for Java. Most Java results were less than 20% of Fidge/Mattern size, while the PVM results
tended to require less than 10%. That said, as noted above, these size-reductions come at the cost
of more-expensive precedence tests.

For the hierarchical squaring, the PVM results were almost exclusively below 15%, while the
Java results tended to be in the 20% to 35%-range. We believe the problem in the Java case is
that the sensitivity to cluster-size is being exhibited. Specifically, the cluster-size 16 was not one
of the preferred choices for Java in the two-level algorithm.

We now examine the number and ratio of cluster-timestamps at each level in the hierarchy.
These are shown in Figure 9.18 for PVM and Java. We have used lines rather than points for these
figures to make the data clear. That said, there are five discrete points per figure, rather than a con-
tinuous function. While the curves clearly differ, the essential shape is the same, with the largest
guantity of cluster-timestamps being at level-0. In the case of PVM, about 75% of the events are
in level-0, on average, while for Java the corresponding number was 30%. None of these results
are surprising, though they do require some explanation. First, every transmit and every unary
event will be timestamped in level-0. In the case of PVM, typically over one-third of the events
are unary, and, as there are no multicast or synchronous events, the remainder are equally split
between transmit and receive. This immediately explains about a 70% ratio, even if all receives at
level-0 were cluster-receives. However, that is not the case. As is typical in parallel computation,
there is substantial amount of nearest-neighbour communication. Since the level-0 cluster is size
two, half of these nearest-neighbours will be within the level-0 cluster. The remaining half will
be in level-1, which is why it contains the second largest number of events, on average. Java com-
putations have far fewer events in level-0, as most of their communication is synchronous, and
thus (potentially) cluster-receives, and there are, typically, far fewer unary events recorded in the

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS

Size Ratio

Size Ratio

Ratio of Average Hierarchical Cluster-Timestamp Size to Fidge/Mattern Size Ratio of Average Hierarchical Cluster-Timestamp Size to Fidge/Mattern Size

179

T T T T T 0.4 T T T T T
1 0.35 1
1 025 * 1
+ 2 *
+ 8 M
g + ke +
8
.
+ 1 0.15 " 4
A
R
+ q 01 + + q
.
N 0.05
,
$
50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces
(a) PVM (b) Java
Figure 9.16: Results for Doubling Hierarchical Timestamp
Ratio of Average Hierarchical Cluster-Timestamp Size to Fidge/Mattern Size Ratio of Average Hierarchical Cluster-Timestamp Size to Fidge/Mattern Size
T T T T T 04 T T T T T
.
b 035 [L]
+ **
1 0.3 | + 4
. .
+ 4 0.25 + 4
2 * N '
i g .l - i
:
.
" + q 015 | 4
4 01k +
.
* + q 0.05 |- q
¥
50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces

(@) PVM (b) Java

Figure 9.17: Results for Squaring Hierarchical Timestamp

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 180

Average Ratio of Level-k Timestamps to Total Events Average Ratio of Level-k Timestamps to Total Events

Ratio of Level-k Timestamps to Total Events
o
©

Ratio of Level-k Timestamps to Total Events
o
©

Cluster Level Cluster Level

(a) PVM (b) Java
Figure 9.18: Average Ratio of LevélTimestamps to Total Events

Java environment. The modest peak at cluster-level-2 (Java) or 3 (PVM) appears to be capturing
much of the remaining communication. The number of level-4 timestamps is negligible, though
that is in part because we are reaching the limits of our available data. These results suggest that
a caching-mode is feasible for the hierarchical algorithm, though the fixed-cluster algorithm is a
poor choice, and must be remedied.

9.4.2 SFLF-ORGANIZING ALGORITHM

We now move to self-organizing clusters. As we have already indicated, we will only examine
the two-level algorithm, with particular focus on the Java environment. The cluster heuristic
we use for these results is to merge two clusters on first communication, subject to the upper-
bound on cluster size. This is probably a worst-case dynamic-clustering algorithm, and so insofar
as it provides good results, better clustering methods will only improve the results. We also
chose this technique as it was developed first, since it substantially simplified the cluster-merging
algorithms. As with the two-level fixed-cluster algorithm, we look first at core-mode and then
caching-mode.

For core-mode analysis we are primarily interested in identifying that maximum cluster-size,
or range of sizes, which minimizes space-consumption. As with the fixed-cluster examination,
the form of our experiments was to vary the maximum cluster-size from 2 to 100 and observe
the changes in the ratio of cluster-receive events to total-event count, the average timestamp
size, and the percentage of the Fidge/Mattern timestamp size. In addition, we compared the
space-requirements and ideal maximum-cluster-size ranges with those of the two-level fixed-
cluster algorithm. For all of these experiments we presumed that the observation tool uses optimal
encoding for the Fidge/Mattern timestamp.

The summary of our results can be seen in Table 9.3. As can be seen by comparison with

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 181

Environment Minimum (%) Average (%) Maximum (%) Range

PVM 11.0 22.0 34.3 2-16

Java 13.8 33.3 48.6 5-9

DCE 41.4 44.7 48.8 20-30
Hermes 26.6 34.6 37.9 21-22

Table 9.3: Self-Organizing Cluster- to Fidge/Mattern-Timestamp-Size Ratio Summary Results

Fraction of Computations with Cluster-Timestamp Size within 10% and 20% of Optimal Ratio of Cluster-Timestamp Size to Fidge/Mattern-Timestamp Size

" Fixed Clusters within 20% " Fixed Clusters within 20%
Self-Organizing jthin 20% - Self-Organizing Clusters within 20% -—--——-

ithin
Self-Organizing Clusters within 10% 035 -
08

06

Rati
o
©

04

Fraction of Computations

02

L L L S L L L L L L L L L L
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 45 50
Cluster Size Cluster Size

(a) Fraction with Good Timestamp Size (b) Timestamp-Size Ratio Improvement

Figure 9.19: PVM Ideal Maximum-Cluster-Size Analysis (Note: Scales Differ)

the optimal-encoding fixed-cluster results (Table 9.1, page 172), the self-organizing algorithm is
consistently better in every environment, with the exception of PVM. For PVM, the ratios are no
worse, but the cluster-size range has increased from 2—-8 to 2—16. The lack of improvement for
PVM was not surprising, as fixed clusters were clearly a good fit. However, the range increase
was surprising, and so we investigated it further. First, we analysed the near-optimal maximum-
cluster-size to determine if this quality had degraded. The result of this investigation, shown
in Figure 9.19(a), was that there was no significant change. Clearly the effect of this larger
range was in no significant way detrimental. We then determined which computations exhibited
a minimum timestamp-size ratio at a maximum-cluster-size of between 9 and 16. This revealed
various computations, such as that whose timestamp-size ratio is shown in Figure 9.19(b). What
has happened is that the self-organizing-cluster algorithm has smoothed out the variability that
occurs, even occasionally in PVM, when using fixed clusters. This can be seen most explicitly
when we compare the range of cluster-size that results in a timestamp within 5%, 10%, and
20% of the optimal, as displayed in Table 9.4. Thus the increase in cluster-size for optimum
timestamp-size reflects an improvement, not a decline, in the PVM results.

The summary results could easily hide individual computations experiencing a significantly-
worse average timestamp-size than was the case with the fixed-clusters. We therefore examined

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 182

Proximity Fixed Clusters Self-Organizing Clusters
5% 8, 24 8, 10-26
10% 4,8,12,17, 20, 23-24 8-35
20% 4-24, 26-28 4-46

Table 9.4: Cluster-Size Ranges for PVM Sample

Sample Java Cluster-Receive Ratio Sample Java Average Cluster-Timestamp Size

T
Clusters

T T
Fixed
Self-Organizing Clusters -------

100 - §
08

8O

06 i
60 [

to Total Number of Events

04

40

Average Cluster-Timestamp Size

02 20

Ratio of Cluster-Receives

Figure 9.20: Sample Self-Organizing Cluster-Receive and Timestamp-Size Results

the individual computations and determined that this effect of more consistent and slightly better

space-consumption was true over almost all experiments that we ran. Further, in no instance
did our self-organizing cluster-timestamps achieve worse results than pre-determined clusters.
In the cases where the results were no better, it was readily observed that the pre-determined
clusters happened to be a good selection. This typically occurred in PVM programs where the

communication was extremely regular and coincided with the pre-determined clusters.

We now turn to a somewhat more-detailed analysis of the Java results, as there was no ideal
cluster-size range that satisfied all Java computations in the fixed-cluster algorithm. Sample re-
sults for cluster-receive ratio and timestamp size are shown in Figure 9.20. In those figures we
display both the self-organizing and fixed data for a single Java computation. As can readily be
seen, the self-organizing algorithm has not removed all deficiencies, but it has produced a siz-
able range in which the cluster-timestamp size is at or near minimum. In particular, this example
demonstrates a size ratio of between 23 and 25 percent of Fidge/Mattern over a range of max-
imum cluster size from 5 to 10. By contrast, the pre-determined cluster algorithm experienced
a size ratio of between 25 and 70 percent of Fidge/Mattern over that same range of cluster size.
Simply put, the self-organizing clusters are far more stable in their space-consumption require-
ment than are the pre-determined clusters. While there are still spikes in the Java results, they
are less frequent, and more easily avoided by our observation tool. These deficiencies are not
surprising given the merging rule. We expect a more-sophisticated merging requirement would
remove much of the remaining variability.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 183

Fraction of Computations with Cluster-Timestamp Size Near Optimal Fraction of Computations with Cluster-Timestamp Size Near Optimal
1 1
j j j Within 5% j j j Within 5%
Within 10% ------- Within 10% -------
Within 20% -------- Within 20% --------
08 - 1 08 - 1
2 2
2 2
g 06 1 g 06 1
2 2
£ £
£ £
o o
5 5
< 3 <
S 04 i 4 S 04 4
g g
02 1 02 1
0 L L 0 JAN W ¥ A W L\ i L
0 60 80 100 0 20 40 60 80 100
Cluster Size Cluster Size
(a) Self-Organizing Clusters (b) Fixed Clusters
Java Ratio of Average Self-Organizing Cluster-Timestamp Size to Fidge/Mattern Size Java Ratio of Average Cluster-Timestamp Size to Fidge/Mattern Size
1 T T T T T 1 T T T T T
08 4 08 4
=) =) -
T T 1
[:4 24 1
z z |
5 5 1 | :
g 06 4 g 06 . j i ir
5 = Tx !
2 3 T o L ; |
z 3k ; z : 1 |
O 04r i * 1 O 04r | | H
g ‘) g 1 |
* A
02 q 02 H
.
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Traces Number of Traces

(a) Self-Organizing Clusters (7—10) (b) Fixed Cluster (17-23)

Figure 9.22: Timestamp Size for Optimum Cluster-Size Selection

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 184

The aggregate data for Java computations displays a similar level of improvement. Fig-
ure 9.21(a) shows the fraction of computations that have a timestamp-size near to the optimal
for the given cluster size. While we have yet to achieve a single cluster-range that allows all
computations to be within 20% of optimal, we have exceeded the fixed-cluster results, which we
have reproduced in Figure 9.21(b) for comparison purposes. Where the fixed clusters achieved
85% commonality within 20% of optimal, the self-organizing clusters exceed 93%. In addition,
the location of the ideal range has shifted substantially. Where the preferred fixed-cluster range
was between 17 and 23, the self-organizing clusters ideal is from 7 to 10. This is advantageous as
it reduces the average cluster-timestamp size, since any non-cluster-receive events will require a
timestamp of about half the size as is required for the fixed-cluster case. Based on the range of 7
to 10 we examined the minimum, maximum, and average timestamp-size for the various Java
computations. These results are presented in Figure 9.22(a). Again, for comparison purposes,
we have reproduced the analogous results for the fixed-cluster case in Figure 9.22(b). As can be
seen, there are now just three computations with significant variability. What the self-organizing
clusters have not yet achieved, however, is a more-substantial reduction in timestamp size over
the fixed-cluster case.

This then leads to caching-mode analysis. The caching-mode results for Java are virtually
indistinguishable from those of the two-level fixed-cluster algorithm. This is as expected, since
the minimum cluster-size required for caching-mode to achieve a reasonable space-reduction is
sufficiently large that it is past most of the variability in the Java results. A brief examination of the
sample Java cluster-receive ratio, shown in Figure 9.11(a), indicates that most of the variability
occurs when the cluster-size is less than 50. This was typical for Java computations. By contrast,
the cluster-size required to achieve a 20%, or less, cluster-receive ratio was 87. Given this lack of
change, we do not repeat the results here. The final comment that must be noted is that we have
been conservative when determining an appropriate bound for caching-mode. That is, we have
used the least cluster-size for which no greater cluster-size exceeds the desired threshold. This is
arguably more conservative than is required, particularly when more-stable results are achieved.
On that point we observe that the cluster-receive ratio for the Java computations averages 27%
when in the cluster-size range of 7-10, and is as low as 11%. It is probably therefore reasonable
to revisit the caching-mode approach, with a view to tightening the bound.

9.5 ANALYSIS

In this chapter we have presented a novel algorithm for dynamic cluster-timestamps. These

timestamps attempt to exploit communication locality as determined by an appropriate trace-

clustering algorithm. We have presented experimental results that demonstrate that this time-
stamp can produce a significant space-consumption reduction, provided the clustering algorithm
is adequate to the task. In particular, in our PVM experiments we were able to achieve up to an

order-of-magnitude size reduction. We have also demonstrated that the self-organizing cluster
algorithm is more stable with cluster size and provides timestamps whose average size is consis-
tently superior to a pre-determined cluster approach, even with a poor clustering algorithm.

CHAPTER 9. DYNAMIC CLUSTER-TIMESTAMPS 185

This algorithm is significant since it appears, subject to the cluster algorithm, to have satis-
fied our requirement for a scalable timestamp. The qualifiers are necessary for various reasons.
Although the results are reasonably good for PVM, they are clearly less-so for the remaining
environments. The evidence we have presented leads us to believe that the lesser reduction of
the remaining environments was in some part due to an inadequate cluster algorithm. However,
we also note that in many instances we cannot realistically expect a significant space-reduction,
even with good communication locality. By way of example, consider a 100-trace computation
with only 10% cluster-receive events and an optimum cluster-size of 10. In such a case, the aver-
age timestamp-size will be 19, or a four-fifths reduction. These are the type of results we see for
PVM. In the other environments, the poor-nature of merging on first communication, or the worse
fixed-cluster algorithm, coupled with the ubiquity of synchronous events in those environments,
cannot hope to achieve only 10% cluster-receive events, and indeed the results indicate that it is
between 20% and 30%. Such a rate cannot reduce space-consumption in a 100-trace computation
by more than two-thirds. However, as we move to larger computations, and a hierarchical, rather
than two-level, algorithm, even a 30% cluster-receive rate can result in an order-of-magnitude
space saving. We can see something of this effect in the fixed-cluster hierarchical-squaring re-
sults for Java, which achieved a significant additional reduction over the two-level fixed approach.

CONCLUSIONS

186

10 CONCLUSIONS

In this dissertation we have developed algorithms to enable a scalable partial-order data structure
for distributed-system observation. In the process we have provided the following significant
contributions to scientific and engineering knowledge.

1. The formalization of the operations on a partial-order data structure for distributed-system
observation.

2. Proof that timestamp vector-size affects the performance of precedence-test execution time
in distributed-system-observation tools.

3. Evidence that practical distributed computations do not in general have large dimension.

4. The creation of a centralized, dynamic timestamp algorithm that scales with partial-order
dimension, not width.

5. The creation of a centralized, dynamic timestamp algorithm based on capturing communi-
cation locality.

While we will not repeat the discussion from Section 1.2, we will highlight some of the more
important aspects of our work. Clearly, our most significant achievement is the development of
the dynamic-cluster-timestamp algorithm. This timestamp can be integrated, with some small
amount of programming, intod®ET in place of its current use of Fidge/Mattern timestamps. The
benefit of doing so would be the achievement of scalability in the data structure that is lacking in
Fidge/Mattern timestamps.

Such an integration would take a non-trivial effort, in large measure becanse ke every
other distributed-system observation tool, was not built around the concept of a partial-order data
structure. Rather, it was designed around the idea of events with logical timestamps, and even
there, the formal properties of the timestamps were not enforced though an appropriate interface.
It is for this reason that we spent a significant effort formalizing the requirements and interface
of the partial order. Insofar asd2T, or any other observation tool, is built on that interface, we
can arbitrarily replace the implementation as is appropriate to the circumstances.

Also of substantial significance is the clear evidence we have presented of the scalability
problems experienced by Fidge/Mattern timestamps. One of our more interesting findings was
that the constant-time precedence test is not constant-time. An in-core data structure built using
Fidge/Mattern timestamps will experience very poor processor-cache performance. When the
data-structure exceeds core-memory size, it will either page, very poorly, or a caching scheme
must be used, which results (V) time for precedence tests. These observations enabled us
to develop the caching-mode for the cluster-timestamp. While that mode needs further study, we
believe it can substantially out-perform a large Fidge/Mattern-based structure.

187

CHAPTER 10. CONCLUSIONS 188

Finally, we note that our dynamic-Ore timestamp may have longer-term significance, though
this would depend on a substantial amount of further research, as we enumerate below. However,
its value, from our perspective, is that its development enabled us to create the techniques needed
to turn Summers’ static cluster-timestamp into a dynamic timestamp. The dynamic-Ore algorithm
itself depended on the quite curious online dimension-bound algorithm [165], which, at the time
of its creation, served no clear purpose. We wonder if some of this work might be of value to
those who work on partial-order theory.

10.1 FJUTURE WORK

There are several areas of future work that we are actively exploring, which can be largely bro-
ken down into three categories. First, we wish to deal with the apparent functionality gap in the
data-structure interface that exists between precedence testing and precedence-related event sets.
There are two approaches that might be taken to this problem. The straightforward method would
be to alter the interface to provide some intermediate operations. Probably the most appropriate
route to take for this would be incorporation of trace-abstraction (Section 3.10.2) into the inter-
face. If well-designed, this should allow the provision of the precedence-related event sets by
abstract trace, rather than over the whole computation. Note that these abstract traces should not
be confused with clusters in the dynamic-cluster timestamp. We most explicitly do not wish to
expose the underlying timestamp algorithm through the interface. The alternate approach, that re-
quires no change to the current interface, and is thus also worth investigating, is the application of
lazy evaluation to the precedence-related event sets. This approach would require usage-pattern
information to determine its value.

Second, there are several aspects in the dynamic-Ore timestamp that require further investiga-
tion. At a relatively easy level, a lower-bound dimension-analysis algorithm is clearly required.
This is needed to determine if computations such as Life really do have a high dimension and
to allow us to start classifying computations by dimension. A possible approach to this would
be to seek cliques of mutually-incompatible critical pairs. The largest such clique would yield a
lower-bound on the dimension. This technique effectively amounts to looking for an embedding
of Crown S{, within the partial order, which is not strictly required for a dimension of size
However, it would be a reasonable first-step, as a suitable algorithm would run efficiently, while
computing the dimension is NP-hard.

Next, we would like to perform some experimental analysis of the dynamic-Ore algorithm.

In particular, it is unclear at this juncture whether or not the dimension-bounds determined by our
analysis are achievable in a dynamic-Ore timestamp. Even given the success of this, two other
problems need to be addressed. The pseudo-realizer encoding would likely have to be much
more efficient than our naive approach. If such an encoding cannot be developed (though there is
reason to believe that it can [120]), then this timestamp would only be of value when the width
exceeds the dimension by at least a couple of orders-of-magnitude. This would substantially limit
its applicability. Second, a suitable caching needs to be developed. We currently have no idea
how this might be achieved.

CHAPTER 10. CONCLUSIONS 189

Third, we wish explore various aspects of our dynamic-cluster timestamp. We are currently
looking at alternate, more sophisticated, dynamic-clustering algorithms. Specifically, our merg-
ing algorithm allows us to observe several communication events before deciding on the suitabil-
ity of a cluster merger. We have not yet evaluated the effectiveness of this capability. The tradeoff
in the use of the capacity is an increase in the number of false cluster-receive events. Second, and
in a similar vein, we would like to extend this work to enable dynamically-reconfigurable clusters.
That is, we would like the capacity to shift traces between clusters, and clusters between higher-
level clusters. This is required when communication patterns are not stable in long-running com-
putations or to correct mistakes made by the dynamic clustering algorithm. Third, we need to
more thoroughly explore the tradeoffs in cluster size and arrangement for the hierarchical algo-
rithm with three or more cluster levels. This is a complex tradeoff between average timestamp
size, timestamp-creation time, precedence-test time, and greatest-predecessor-set computation
time. Likewise, we wish to explore static cluster-analysis techniques to determine if they can be
applied to improve the performance of the fixed-cluster approach. Fourth, the caching-mode of
the timestamp needs to be further explored. In particular, we are currently far too conservative in
assessing an appropriate bound for caching-mode use. We believe that we can be more aggressive
in the bound-selection, particularly as we develop improved clustering capabilities.

Finally, we wish to integrate this timestamp technique inGE®. There are several research
motivations for this. First, the ®T system is based on fixed-size Fidge/Mattern timestamps,
with their distributed-precedence-testing capability. The implications of variable-size timestamps
requiring centralized-timestamp testing are unclear. Second, it would enable the exploration of
various caching strategies which cannot be evaluated bgger lient. Third, insofar as the
timestamp is scalable, it will enable us to gather data from significantly larger computations.
This will open up various research fronts, not least of which is how such large computations
might reasonably be displayed to a user of the tool [167].

We also anticipate that our work might have application in other areas. In particular, partial
orders are not uncommon in various fields, including scheduling, information structuring, and in
any domain where directed-acyclic graphs are present. The limitations of our work to applica-
tion beyond distributed-system observation are in the implicit requirement to process events in
a linearization of the partial order (needed by the Fidge/Mattern computation) and in the nature
of communication-locality and dimension-bound of distributed systems. Abdeddaim [1] devel-
oped a technique that uses the ideas of Fidge/Mattern timestamps to maintain dynamic directed
graphs, allowing arbitrary edge insertion. If our timestamp can be melded with that technique
then, subject to the nature of the data, it could develop wider applicability.

REFERENCES

[1] Said Abdeddan. On incremental computation of transitive closure and greedy alignment.
In Alberto Apostolico and Jotun Hein, editorBroc. 8th Symp. Combinatorial Pattern
Matching, number 1264 in Lecture Notes in Computer Science, pages 167-179. Springer-
Verlag, 1997.

[2] Frank Adelstein and Mukesh Singhal. Real-time causal message ordering in multimedia
systems. IrProceedings of the 15th |EEE International Conference on Distributed Com-
puting Systems, pages 36—43, Vancouver, June 1995. IEEE Computer Society Press.

[3] Rosario Aiello, Elena Pagani, and Gian P. Rossi. Causal ordering in reliable group com-
munication.Computer Communication Review, 23(4):106-115, October 1993.

[4] M. R. Anderberg.Cluster Analysis for Applications. Academic Press, 1973.

[5] Gregory R. Andrews. Concurrent Programming: Principles and Practice. Benjamin-
Cummings, Redwood City, California, 1991.

[6] Twan Basten, Thomas Kunz, James P. Black, Michael H. Coffin, and David J. Taylor.
Vector time and causality among abstract events in distributed computabsts buted
Computing, 11(1):21-39, December 1997.

[7] Twan A. Basten. Hierarchical event-based behavioural abstraction in interactive distributed
debugging: A theoretical approach. Master’s thesis, Eindhoven University of Technology,
Eindhoven, 1993.

[8] Peter C. Bates. Debugging heterogenous distributed systems using event-based models of
behaviour. ACM S GPLAN Notices, 24(1):11-22, January 1989.

[9] Adam Begulin. Xab: A tool for monitoring PVM programs. Technical Report CMU-
CS-93-164, Carnegie Mellon University, School of Computer Science, Carnegie Mellon
University, June 1993.

[10] Adam Begulin and Erik Seligman. Causality-preserving timestamps in distributed pro-
grams. Technical Report CMU-CS-93-167, Carnegie Mellon University, School of Com-
puter Science, Carnegie Mellon University, June 1993.

[11] Eike Best and Brian Randell. A formal model of atomicity in asynchronous sysctes.
Informatica, 16:93—124, 1981.

[12] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of
failures. ACM Transactions on Compueter Systems, 5(1):47-76, February 1987.

190

REFERENCES 191

[13] Kenneth P. Birman, Andr'Schiper, and Pat Stephenson. Lightweight causal and atomic
group multicastACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[14] Peter A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke.
uC++: Concurrency in the Object-Oriented Language+C Software — Practice and
Experience, 22(2):137-172, February 1992.

[15] Thomas L. Casavant and Mukesh Singhal, editdRsadings in Distributed Computing
Systems. IEEE Computer Society Press, Los Alamitos, California, 1994.

[16] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.
Information Processing Letters, 39:11-16, July 1991.

[17] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, asyn-
chronous and causally ordered communication. Submitted to Distributed Computing.

[18] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11:191-201, 1998.

[19] David R. Cheriton and Dale Skeen. Understanding the limitations of causally and totally
ordered communication. [Rroceedings of the 14th Symposium on Operating Systems
Principles, pages 44-57, New York, 1993. ACM SIGOPS.

[20] Wing Hong CheungProcess and Event Abstraction for Debugging Distributed Programs.
PhD thesis, University of Waterloo, Waterloo, Ontario, 1989.

[21] Wing Hong Cheung, James P. Black, and Eric Manning. A framework for distributed
debugging.| EEE Software, 7(1):106—-115, January 1990.

[22] Mark Christiaens and Koen De Bosschere. Accordion clocks: Logical clocks for data race
detection. In Sakellariou et al. [128], pages 494-503.

[23] Marshall Cline. C++ FAQ Lite. Available at www.parashift.com/c++-fag-lite/, 1991-2001.
[24] Marshall Cline, Greg Lomow, and Mike GiroC++ FAQs. Addison-Wesley, 1999.

[25] Mariano Consens, Masum Hasan, and Alberto O. Mendelzon. Debugging distributed and
parallel programs by visualizing and querying event traces. In Mendelzon [106]. CSRI-
285.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford $t&iaduc-
tion to Algorithms. MIT Press, Cambridge, Massachusetts, 2nd edition, 2001.

[27] Janice Cuny, George Forman, Alfred Hough, Joydip Kundu, Calvin Lin, Lawrence Snyder,
and David Stemple. The ariadne debugger: Scalable application of event-based abstraction.
ACM SIGPLAN Notices, 28(12):85-95, May 1993.

REFERENCES 192

[28] Suresh K. Damodaran-Kamal and Joan M. Francion. Testing races in parallel programs
with an OtOt strategy. In T. Ostrand, edit®roceedings of the 1994 International Sym+
posium On Software Testing and Analysis, August 1994.

[29] Suresh K. Damodaran-Kamal and Joan M. Francioni. Nondeterminancy: Testing and
debugging in message passing parallel progra&@M S GPLAN Notices, 28(12):118—
128, May 1993.

[30] Frederica Darema, David A. George, V. Alan Norton, and Gregory F. Pfister. A single-
program-multiple-data computation model for EPEX/FORTRARarallel Computing,
7(1):11-24, April 1988.

[31] William H.E. Day and Herbert Edelsbrunner. Efficient algorithms for agglomererative
hierarchical clustering methodournal of Classification, 1(7):7—-24, 1984.

[32] Erik Demaine. Space saving by differential encoding of timestampomT. Personal
Communication, October 2000.

[33] Giuseppe Di Battista, Peter Eadea, Roberto Tamassia, and loannis G. Tollis. Algorithms
for drawing graphs: An annotated bibliograph@omputational Geometry: Theory and
Applications, 4(5):235-282, June 1994.

[34] Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18(8):453—-457, August 1975.

[35] Paul S. Dodd and Chinya V. Ravishankar. Monitoring and debugging distributed real-time
programs.Software — Practice and Experience, 22(10):863—-877, October 1992.

[36] Albert Einstein. Zur elektrodynamik bewegteorpér. Annalen der Physik, 17, June
1905. English translation, "On the Electrodynamics of Moving Bodies” available at
http://www.fourmilab.ch/etexts/einstein/specrel/wwwy/.

[37] Greg Eisenhauer, Weiming Gu, Eileen Kraemer, Karsten Schwan, and John Stasko. Online
displays of parallel programs: Problems and solution$rbteedings of the International
Conference on Parallel and Distributed Prcessing Techniques and Applications, pages 11—

20. PDPTA97, 1997.

[38] Greg Eisenhauer and Karsten Schwan. An object-based infrastructure for program mon-
itoring and steering. IfProceedings 2nd SGMETRICS Symposium on Parallel and Dis-
tributed Tools (SPDT’ 98), pages 10-20, 1998.

[39] Darren Esau. Efficient detection of data races in SR programs. Master’s thesis, University
of Waterloo, Waterloo, Ontario, 1996.

[40] Etnus. TotalView users guide. Technical Report http://www.etnus.com/Support/docs/-
rel5/html/userguide/, Etnus, LLC, 2001.

REFERENCES 193

[41] Paul D. Ezhilchelvan, Raimundo A. Mado, and Santosh K. Shrivastava. Newtop: A fault-
tolerant group communication protocol. Rroceedings of the 15th IEEE International
Conference on Distributed Computing Systems, pages 296—306, Vancouver, June 1995.
IEEE Computer Society Press.

[42] Colin Fidge. Logical time in distributed computing systerhSEE Computer, 24(8):28—
33, 1991.

[43] Colin Fidge. Fundamentals of distributed systems observation. Technical Report 93-15,
Software Verification Research Centre, Department of Computer Science, The University
of Queensland, St. Lucia, QLD 4072, Australia, November 1993.

[44] Open Software Foundatiornntroduction to OSF/DCE. Prentice-Hall, Englewood Cliffs,
New Jersey, 1993.

[45] Jerry Fowler and Willy Zwaenepoel. Causal distributed breakpoint8rdoeedings of the
10th IEEE International Conference on Distributed Computing Systems, pages 134-141.
IEEE Computer Society Press, 1990.

[46] Mark Robert Fox. Event-predicate detection in the monitoring of distributed applications.
Master’s thesis, University of Waterloo, Waterloo, Ontario, December 1998.

[47] Daniel P. Friedman and David S. Wise. CONS shuld not evaluate its arguments. In
S. Michaelson and Robin Milner, editoBroceedings of the Third EATCS International
Colloguium on Automata, Languages and Programming, pages 257-284, Edinburgh, Scot-
land, 1976. Edinburgh University Press.

[48] Michael Frumkin, Robert Hood, and Jerry Yan. On the information content of program
traces. Technical Report NAS-98-008, NAS Parallel Tools Group, NASA Ames Research
Center, Mail Stop 258-6 or T27A-1, Moffett Field, CA 94035-1000, March 1998.

[49] Jason Gait. A probe effect in concurrent progra®sftware — Practice and Experience,
16(3):225-233, March 1986.

[50] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer WidoBatabase Systems: The
Complete Book. Prentice Hall, New Jersey, 2002.

[51] Michael R. Garey and David S. Johnso@omputers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[52] Vijay K. Garg and Chakarat Skawratananond. String realizers of posets with applications
to distributed computing. IMCM Symposium on Principles of Distributed Computing,
August 2001.

[53] Al Geist, Adam Begulin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy
SunderamPVM: Parallel Virtual Machine. MIT Press, Cambridge, Massachusetts, 1994.

REFERENCES 194

[54] Al Globus and Sam Uselton. Evaluation of visualization softwaCemputer Graphics,
29(2), May 1995. NAS Technical Report NAS-95-005.

[55] James Gosling, Bill Joy, and Guy Steel&he Java Language Specification. Addison-
Wesley, 1996. Available at http://java.sun.com/docs/booksl/jls/.

[56] Siegfried Grabner, Dieter Kranzlmiér, and Jens Volkert. EMU — Event Monitoring
Utility. Technical report, Institute for Computer Science, Johannes Kepler University Linz,
July 1994,

[57] Boris Gruschke. A new approach for event correlation based on dependency graphs. In
Proceedings of the 5th Workshop of the OpenView Univer sity Association: OVUA' 98, April
1998.

[58] Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey Vetter. Falcon: On-line mon-
itoring for steering parallel program&oncurrency: Practice and Experience, 6(2):699—
736, 1998.

[59] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In
Mullender [110], pages 97-145.

[60] Jessica Zhi Han. Automatic comparison of execution histories in the debugging of dis-
tributed applications. Master’s thesis, University of Waterloo, Waterloo, Ontario, 1998.

[61] Paul K. Harter, Dennis M. Heimbigner, and Roger King. IDD: An interactive distributed
debugger. IrProceedings of the 5th International Conference on Distributed Computing
Systems, pages 498-506, May 1985.

[62] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel pro-
grams.|EEE Software, pages 29-39, September 1991.

[63] P. Henderson and J. Morris. A lazy evaluator. Third Symposium on Principles of Pro-
gramming Languages, pages 95-103. ACM, 1976.

[64] Alfred A. Hough and Janice E. Cuny. Belvedere: Prototype of a pattern-oriented debugger
for highly parallel computation. lProceedings of the 1987 International Conference on
Parallel Processing, pages 735—-738, 1987.

[65] IBM Corporation. WebSphere application server, object level trace. Technical Report
http://lwww-4.ibm.com/software/webservers/appserv/olt.html, IBM Corporation, 1998.

[66] IBM Corporation. AIX 5L Version 5.1: Performance Management Guide. IBM Corpora-
tion, 2nd edition, April 2001. Available at http://as400bks.rochester.ibm.comlidét
en.US/adoclib/aixbman/prftungd/prftungd.htm.

REFERENCES 195

[67] Intel Corporation. System performance visualization tool user’s guide. Technical Report
312889-001, Intel Corporation, 1993.

[68] Christian E. Jaekl. Event-predicate detection in the debugging of distributed applications.
Master’s thesis, University of Waterloo, Waterloo, Ontario, 1997.

[69] Pankaj Jalote Fault Tolerance in Ditsributed Systems. Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

[70] Claude Jard and Guy-Vincent Jourdan. Dependency tracking and filtering in distributed
computations. Technical Report 851, IRISA, Campus de Beaulieu — 35042 Rennes Cedex
— France, August 1994.

[71] Dean Jerding, John T. Stasko, and Thomas Ball. Visualizing interactions in program ex-
ecutions. Ininternational Conference on Software Engineering, pages 360-370. IEEE,
1997.

[72] Dean F. Jerding and John T. Stasko. Using visualization to foster object-oriented pro-
gram understanding. Technical Report GIT-GVU-94-33, Georgia Institute of Technology,
Atlanta, GA, USA, July 1994.

[73] Dean F. Jerding and John T. Stasko. The information mural: Atechnique for displaying and
navigating large information spaces. Technical Report GIT-GVU-97-24, Georgia Institute
of Technology, Atlanta, GA, 1997.

[74] Harry F. Jordan. Structuring parallel algorithms in an MIMD shared memory environment.
Parallel Computing, 3(2):93-110, May 1986.

[75] L. Kaufman and P.J. Rousseeuwinding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York, 1990.

[76] Richard B. Kilgore and Craig M. Chase. Testing distributed programs containing racing
messagesThe Computer Journal, 40(8):489, 1997.

[77] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transi-
tive closure in digraphs. 140th Annual Symposium on Foundations of Computer Science,
pages 81-91. IEEE Computer Society, 1999.

[78] Valerie King and Garry Sagert. A fully dynamic algorithm for maintaining the transitive
closure. InProceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, pages 492-498. ACM, 1999.

[79] Shmuel Kliger, Shaula Yemini, Yechiam Yemini, David Ohsie, and Salvatore Stolfo. A
coding approach to event correlation.|tegrated Network Management 1V [132], pages
266-277.

REFERENCES 196

[80] James Arthur Kohl and Al Geist. XPVM 1.0 user’s guide. Technical Report TM-12981,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, November 1996.

[81] Eileen Kraemer. Causality filters: A tool for the online visualization and steering of parallel
and distributed programs. Proceedings of the 11th IPPS, pages 113-120. IEEE, 1997.

[82] Eileen Kraemer and John T. Stasko. Creating an accurate portrayal of concurrent execu-
tions. Concurrency, 6(1):36—46, 1998.

[83] Dieter Kranzimiller. Event Graph Analysis for Debugging Massively Parallel Programs.
PhD thesis, GUP Linz, Johannes Kepler Univesitinz, Linz, Austria, September 2000.

[84] Dieter Kranzlmiller, Siegfried Grabner, R. Schall, and Jens Volkert. ATEMPT — A Tool
for Event ManiPulaTion. Technical report, Institute for Computer Science, Johannes Ke-
pler University Linz, May 1995.

[85] Dieter Kranzimiller, Siegfried Grabner, and Jens Volkert. PARASIT — Parallel simulation
tool. Technical report, Institute for Computer Science, Johannes Kepler University Linz,
December 1994.

[86] Dieter Kranzimiller, Siegfried Grabner, and Jens Volkert. Race condition detection with
the MAD environment. InSecond Australasian Conference on Parallel and Real-Time
Systems, pages 160-166, September 1995.

[87] Dieter Kranzimiller, Siegfried Grabner, and Jens Volkert. Debugging with the MAD envi-
ronment.Journal of Parallel Computing, 23(1-2):199-217, April 1997.

[88] Dieter Kranzlmiller and Jens Volkert. Debugging point-to-point communication in MPI
and PVM. InProceedings of EUROPVM/MPI *98, volume 1497 ot_ecture Notesin Com-
puter Science, pages 265—-272. Springer-Verlag, September 1998.

[89] Thomas Kunz Abstract Behaviour of Distributed Executions with Applications to Visual-
ization. PhD thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1994.

[90] Thomas Kunz. Visualizing abstract events.Rioceedings of the 1994 CAS Conference,
pages 334-343, October 1994.

[91] Thomas Kunz. Automatic support for understanding complex behavioBrobeedings of
the Inter national Workshop on Network and Systems Management, pages 125-132, August
1995.

[92] Thomas Kunz. High-level views of distributed executions. Pioceedings of the 2nd
International Workshop on Automated and Algorithmic Debugging, pages 505-512, May
1995.

REFERENCES 197

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Thomas Kunz. Evaluating process clusters to support automatic program understanding.
In WPC '96: Proceedings of the |IEEE Fourth Workshop on Program Comprehension,

(Berlin, Germany; March 29-31, 1996), pages 198-207. IEEE Computer Society Press,
March 1996.

Thomas Kunz and James P. Black. Using automatic process clustering for design recovery
and distributed debuggingoftware Engineering, 21(6):515-527, 1995.

Thomas Kunz, James P. Black, David J. Taylor, and Twan A. BasteBT:PTarget-system
independent visualisations of complex distributed-application executibimesComputer
Journal, 40(8):499-512, 1997.

Leslie Lamport. Time, clocks and the ordering of events in distributed syst€ommu-
nications of the ACM, 21(7):558-565, 1978.

Leslie Lamport and Nancy Lynch. Distributed computing: Models and methodsanid-
book of Theoretical Computer Science, volume 2, pages 1157-1199. Elsevier Science Pub-
lishers B. V., 1990.

Thomas J. LeBlanc, John M. Mellor-Crummey, and Robert J. Fowler. Analyzing parallel
program executions using multiple viewlaurnal of Parallel and Distributed Computing,
9:203-217, 1990.

Masoud Mansouri-Samani and Morris Sloman. Monitoring distributed systems (a survey).
Technical Report DOC92/23, Imperial College of Science, Technology and Medicine,
1992.

Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cos-
nard et al., editoProceedings of the International Workshop on Parallel and Distributed
Algorithms, pages 215-226, Chateau de Bonas, France, December 1988. Elsevier Science
Publishers B. V. (North Holland).

Friedemann Mattern and S. Funfrocken. A non-blocking lightweight implementation of
causal order message delivery. Technical Report TR-VS-95-01, Technical University of
Darmstadt, Department of Computer Science, Technical University of Darmstadt, Ger-
many, March 1995.

Paul Mazzucco. The fundamentals of cache. Available at http://www.systemlogic.net/-
articles/00/10/cache/, October 2000.

Paul Mazzucco. Intel pentium 4. In-depth techincal overview. Available at http://www.-
systemlogic.net/articles/01/8/p4/, August 2001.

Charles E. McDowell and David P. Helmbold. Debugging concurrent prograxas/
Computing Surveys, 21(4), December 1989.

REFERENCES 198

[105] Sigurd Meldal, Sriram Sankar, and James Vera. Exploiting locality in maintaining po-
tential causality. InProceedings of the Tenth Annual ACM Symposium on Principles of
Distributed Computing, pages 231-239, May 1991.

[106] Alberto O. Mendelzon, editorDeclarative Database Visualization: Recent Papers from
the Hy+/GraphLog. CSRI, University of Toronto, June 1993. CSRI-285.

[107] Barton P. Miller and Jong-Deok Choi. Breakpoints and halting in distributed programs. In
Proceedings of the 8th |EEE Inter national Conference on Distributed Computing Systems,
pages 316—-323. IEEE Computer Society Press, 1988.

[108] Gordan Moore. Moore’s law. Ifihe New Hacker’s Dictionary [121]. Also available online
at http://www.intel.com/intel/museum/25anniv/hof/moore.htm.

[109] MPI Forum. The message passing interface (MPI) standard. Available at: http://www-
unix.mcs.anl.gov/mpi/indexold.html.

[110] Sape Mullender, editorDistributed Systems. Addison-Wesley, New York, 2nd edition,
1993.

[111] Robert H.B. Netzer and Yikand Xu. Replaying distributed programs without message
logging. InProceedings of the Sxth International Symposium on High Performance Dis-
tributed Computing, August 1997.

[112] Oleg Y. Nickolayev, Philip C. Roth, and Daniel A. Reed. Real-time statistical clustering
for event trace reductiordournal of Supercomputing Applications and High-Performance
Computing, 11(2):144-159, 1997.

[113] Ernst-Ridiger Olderog. Operational petri net semantics for CCHEEE Network, pages
34-43, September/October 1997.

[114] Oystein OreTheory of Graphs, volume 38. Amer. Math. Soc. Collog. Publ., Providence,
R.I., 1962.

[115] Cherri M. Pancake. Applying human factors to the design of performance tools. In
P. Amestoy, P. Berger, M. Dagdl. Duff, V. Frayss,, L. Giraud, and D. Ruiz, editors,
EuroPar’99 Parallel Processing, Lecture Notes in Computer Science, No. 1685, pages
44-60. Springer-Verlag, 1999.

[116] Guru Parulkar, Douglas Schmidt, Eileen Kraemer, Jonathan Turner, and Anshul Kanta-
wala. An architecture for monitoring, visualization, and control of gigabit netwdE&SE
Network, pages 34-43, September/October 1997.

[117] Alexander Peleg and Uri Weiser. Dynamic flow instruction cache memory organized
around trace segments independent of virtual address line. United States Patent 5,381,533,
January 1995. Available at: http://www.uspto.gov/.

REFERENCES 199

[118] Beth Plale, Greg Eisenhauer, Karsten Schwan, Jeremy Heiner, Vernard Martin, and Jef-
frey Vetter. From interactive applications to distributed laboratoril&&EE Concurrency,
6(2):78-90, 1997.

[119] Beth Plale and Karsten Schwan. Run-time detection in parallel and distributed systems:
Application to safety-critical systems. Imternational Conference on Distributed Com-
puting Systems, pages 163-170, 1999.

[120] Darrell RaymondPartial Order Databases. PhD thesis, University of Waterloo, Waterloo,
Ontario, 1996.

[121] Eric S. Raymond.The New Hacker’s Dictionary. MIT Press, 3rd edition, 1996. Also
available online a3he Jargon File at http://www.jargon.org.

[122] Michel Raynal, Ande” Schiper, and Sam Toueg. The causal ordering abstraction and a
simple way to implement itlnfor mation Processing Letters, 39(6):343-350, 1991.

[123] Michel Raynal and Mukesh Singhal. Capturing causality in distributed systéBiE
Computer, 29(2):49-56, 1996.

[124] Golden G. Richard llI. Efficient vector time with dynamic process creation and termina-
tion. Journal of Parallel and Distributed Computing, 55(1):109-120, 1998.

[125] Luis E. T. Rodrigues and Paulo Verissimo. Causal separators for large-scale multicast
communication. IrProceedings of the 15th |EEE International Conference on Distributed
Computing Systems, pages 83-91, Vancouver, June 1995. IEEE Computer Society Press.

[126] David A. Rusling.The Linux Kernel. Linux Documentation Project, 1996—1999. Version
0.8-3. Available at http://www.linuxdoc.org/LDP/tlk/tIk.html.

[127] Mark Russinovich. Inside memory managemewtndows NT Magazine, August 1998.
Available at http://www.winntmag.com/Articles/Index.cfm?lssuelD=56.

[128] Rizos Sakellariou, John Keane, John Gurd, and Len Freeman, eHitooRar’ 01 Parallel
Processing, volume LNCS 2150 of ecture Notes in Computer Science. Springer-Verlag,
August 2001.

[129] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system
design.ACM Transactions on Computer Systems, 2(4):277-288, November 1984.

[130] André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement causal
ordering. InProceedings of the 3rd International Workshop on Distributed Algorithms,
pages 219-232, Berlin, 1989. Springer.

[131] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grddistributed Computing, 7(3):149-174, 1994.

REFERENCES 200

[132] Adarshpal S. Sethi, Yves Raynaud, and Fabienne Faure-Vinotagr.ated Network Man-
agement 1. Chapman and Hall, 1995.

[133] William ShakespeareRomeo and Juliet. 1597. Available in “The Complete Works of
William Shakespeare” Chatham River Press, New York, 1975.

[134] Ehud Shapiro. The family of concurrent logic programming languag€si Computing
Surveys, 21(3), September 1989.

[135] Joseph L. Sharnowski and Betty H. C. Cheng. A visualization-based environment for top-
down debugging of parallel programs. Rnoceedings of the Sth International Parallel
Processing Symposium, pages 640-645. IEEE Computer Society Press, 1995.

[136] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector clocks.
Information Processing Letters, 43:47-52, August 1992.

[137] Richard M. Stallman. Debugging with GDB: The GNU source-level debugger. Technical
Report http://lwww.gnu.org/manual/gdb-4.17/gdb.html, Free Software Foundation, 1998.

[138] Janice M. Stone. A graphical representation of concurrent procegg€eld. SGPLAN
Notices, 24(1):226—235, January 1989.

[139] Robert E. Strom et alHermes. A Language for Distributed Computing. Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

[140] James Alexander Summers. Precedence-preserving abstraction for distributed debugging.
Master’s thesis, University of Waterloo, Waterloo, Ontario, 1992.

[141] Andrew S. TanenbaunComputer Networks. Prentice Hall, New Jersey, 3rd edition, 1996.

[142] Ashis Tarafdar and Vijay K. Garg. Addressing false causality while detecting predicates
in distributed programs. limternational Conference on Distributed Computing Systems,
pages 94-101, 1998.

[143] David J. Taylor. Scrolling displays of partially ordered execution histories. In preparation.

[144] David J. Taylor. A prototype debugger for hermes. Piroceedings of the 1992 CAS
Conference, volume 1, pages 29-42, November 1992.

[145] David J. Taylor. The use of process clustering in distributed-system event displays. In
Proceedings of the 1993 CAS Conference, pages 505-512, November 1993.

[146] David J. Taylor. Integrating real-time and partial-order information in event-data displays.
In Proceedings of the 1994 CAS Conference, pages 505-512, November 1994,

REFERENCES 201

[147] David J. Taylor. Event displays for debugging and managing distributed systems. In
Proceedings of the International Workshop on Network and Systems Management, pages
112-124, August 1995.

[148] David J. Taylor, Thomas Kunz, and James P. Black. Achieving target-system indepen-
dence in event visualisation. Proceedings of the 1995 CAS Conference, pages 296—-307,
November 1995.

[149] Brad Topol, John T. Stasko, and Vaidy Sunderam. Integrating visualization support into
distributed computing systems. Technical Report GIT-GVU-94-38, Georgia Institute of
Technology, Atlanta, GA, October 1994.

[150] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Dual timestamping methodology
for visualizing distributed application behavioulnternational Journal of Parallel and
Distributed Systems and Networks, 1(2):43-50, 1998.

[151] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. PVaniM: A tool for visualization in
network computing environmentg€oncurrency: Practice and Experience, 10(14):1197—
1222, 1998.

[152] Francisco J. Torres-Rojas. Performance evaluation of plausible clocks. In Sakellariou et al.
[128], pages 476—-481.

[153] Francisco J. Torres-Rojas and Mustaque Ahamad. Plausible clocks: Constant size logical
clocks for distibuted system®istributed Computing, 12:179-195, 1999.

[154] William T. Trotter. Graphs and partially-ordered sets. In R. Wilson and L. Beineke, editors,
Selected Topics in Graph Theory 1, pages 237-268. Academic Press, 1983.

[155] William T. Trotter. Combinatorics and Partially Ordered Sets. Dimension Theory. Johns
Hopkins University Press, Baltimore, MD, 1992.

[156] William T. Trotter. Partially ordered sets. In R. Graham, Motschel, and L. Loasz,
editors,Handbokk of Combinatorics, pages 433—-480. Elsevier Science, 1995.

[157] G. J. W. van Dijk and A. J. van der Wal. Partial ordering of synchronization events for
distributed debugging in tightly-coupled multiprocessor systemsPrageedings of the
2nd European Distributed Memory Computing Conference, number 487 in Lecture Notes
in Computer Science, pages 100-109. Springer-Verlag, 1991.

[158] Jeffrey Vetter and Karsten Schwan. Models for computational steering. Technical Report
GIT-CC-95-39, Georgia Institute of Technology, Atlanta, GA, 1995.

[159] Jeffrey Vetter and Karsten Schwan. Progress: A toolkit for interactive program steering.
In Proceedings of the 24th Inter national Conference on Parallel Processing, pages I1:139—
142, Oconomowoc, WI, 1995.

REFERENCES 202

[160] Jeffrey S. Vetter. Computational steering annotated bibliografs@yl S GPLAN Notices,
32(6):40—-44, June 1997.

[161] Ellen M. Voorhees. Agglomererative hierarchical clustering algorithms for use in docu-
ment retrieval.lnformation Processing and Management, 22:465-476, 1986.

[162] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed comput-
ing. Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc., November
1994.

[163] Paul A.S. Ward. On the scalability of distributed debugging: Vector clock size. Technical
Report CS98-29, Shoshin Distributed Systems Group, Department of Computer Science,
The University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, December 1998. Avail-
able at ftp://cs-archive.uwaterloo.ca/cs-archive/CS-98-29/CS-98-29.ps.Z.

[164] Paul A.S. Ward. An offline algorithm for dimension-bound analysis. In Dhabaleswar
Panda and Norio Shiratori, editof;oceedings of the 1999 International Conference on
Parallel Processing, pages 128-136. IEEE Computer Society, 1999.

[165] Paul A.S. Ward. An online algorithm for dimension-bound analysis. In P. Amestoy,
P. Berger, M. Dayd;, |. Duff, V. Frayssg, L. Giraud, and D. Ruiz, editor&uroPar’ 99 Par-
allel Processing, Lecture Notes in Computer Science, No. 1685, pages 144-153. Springer-
Verlag, 1999.

[166] Paul A.S. Ward. A framework algorithm for dynamic, centralized dimension-bounded
timestamps. IfProceedings of the 2000 CAS Conference, pages 78—-87, November 2000.

[167] Paul A.S. Ward. Issues in scalable distributed-system management. Technical Report
CS-2001-01, Shoshin Distributed Systems Group, Department of Computer Science, The
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, January 2001. Available at
http://www.shoshin.uwaterloo.ca/"pasward/Tech-Reports/CS-2001-01.ps.gz.

[168] Paul A.S. Ward and David J. Taylor. A hierarchical cluster algorithm for dynamic, central-
ized timestamps. IRroceedings of the 21st | EEE Inter national Conference on Distributed
Computing Systems, pages 585-593. IEEE Computer Society Press, April 2001.

[169] Paul A.S. Ward and David J. Taylor. Self-organizing hierarchical cluster timestamps. In
Sakellariou et al. [128], pages 46-56.

[170] Colin Ware and Glenn Franck. Evaluating stereo and motion cues for visualizing informa-
tion nets in three dimension8CM Transactions on Graphics, 15(2), 1996.

[171] Gregory V. Wilson. The ansi cimplementation of the cowichan problems. Technical report,
University of Toronto, 1995.

REFERENCES 203

[172] Gregory V. Wilson and R. Bruce Irvin. Assessing and comparing the usability of parallel
programming systems. Technical report, University of Toronto, 1995.

[173] Roland Wisnaller, ise Trinitis, and Thomas Ludwig. Q€— A monitoring system for
interoperable tools. IBIGMETRICS Symposium on Parallel and Distributed Tools, pages
1-9, New York, 1998. ACM.

[174] Jerry C. Yan, Haogiang H. Jin, and Melisa A. Schmidt. Performance data gathering and
representation from fixed-size statistical data. Technical Report NAS-98-003, Nasa Ames
Research Center, Mail Stop T27A-1, Moffett Field, CA 94035-1000, February 1998.

[175] Jerry C. Yan, Sekhar R. Sarukkai, and Pankaj Mehra. Performance measurement, visual-
ization and modelling of parallel and distributed programs using the aims toStkitvare
— Practice and Experience, 25(4):429-461, April 1995.

[176] Cheer-Sun D. Yang and Lori L. Pollock. The challenges in automated testing of multi-
threaded programs. IIRroceedings of the 14th Inter national Conference on Testing Com-
puter Software, pages 157—-166, June 1997.

[177] Mihalis Yannakakis. The complexity of the partial order dimension probE®M Jour-
nal on Algebraic and Discrete Methods, 3(3):351-358, September 1982.

[178] Daniel M. Yellin. Speeding up dynamic transitive closure for bounded degree gragtas.
Informatica, 30(4):369-384, 1993.

[179] Yuh Ming Yong. Replay and distributed breakpoints in an OSF DCE environment. Mas-
ter's thesis, University of Waterloo, Waterloo, Ontario, 1995.

[180] Yuh Ming Yong and David J. Taylor. Performing replay in an OSF DCE environment. In
Proceedings of the 1995 CAS Conference, pages 52—62, November 1995.

