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Abstract 

Modern building and bridge codes require seismic design of foundations and structures; 

for which, the evaluation of the soil’s response to dynamic loads is an important 

requirement in seismic design. The dynamic soil response is governed by its dynamic 

properties such as shear modulus (wave velocity) and damping ratio. These soil dynamic 

properties are typically measured in laboratory mostly using a bender element system 

(BE) or a resonant column (RC) device. However, the operating frequency range of BEs 

(e.g. 1 to 15 kHz) and the RC (e.g. 20 to 220 Hz) are not representative of typical 

earthquake loads (e.g. 0.1 to 10 Hz). In addition, there are significant limitations in BE 

and RC testing which reduce their reliability. Thus, current seismic designs could be either 

conservative or unsafe.  

A major limitation in BE testing is that there is no standard procedure; mostly because the 

soil-BE interaction is not well understood; and the characterization of BE inside a soil 

specimen was not possible. On the other hand in RC testing, the soil dynamic properties 

cannot be evaluated simultaneously as function of frequency and strain. In a typical 

narrow-band resonant column test (e.g. sine sweep, random noise), the induced shear 

strains are different at each frequency component. Therefore, the main objectives of this 

study are to understand better the soil-BE interaction; which will provide the basis for the 

development of reliable guidelines for BE testing; and to verify the BE test results using 

the standard RC device. 

The main objectives are achieved by testing the BE using a state-of-the-art laser 

vibrometer and a newly developed transparent soil to measure the actual response of the 

bender element transmitter (Tx) and receiver (Rx) inside different media such as air, 

liquids, and sand under different confinements. Then, the dynamic characteristics of the 

Tx are measured using advanced modal analysis techniques originally developed for 

structural applications (e.g. Blind Source Separation). The modal analysis is used to 

investigate if the different BE vibration modes correspond to a cantilever beam, as 

currently assumed or a cantilever plate. The Rx is also studied to assess the effects of 

compressional waves, the total damping of the BE system inside the medium on the 

actual evaluation of the shear wave velocity of the soil. In addition, the dependence of the 
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output voltage from the Rx and the applied strain is investigated at different confining 

pressures. The thesis concludes with the dynamic characterization of a sensitive clay 

(Leda clay) that is present in large areas of Eastern Canada (Leda or Champlain sea clay) 

BE and RC tests are performed on unique undisturbed samples. 

All results presented in this study represent to the averages of multiple tests (more than 

10 for RC and more than 500 for BEs). In all cases, the maximum coefficient of variance 

was 3 % which demonstrates the repeatability of the measurements. Contrary to a 

common assumption in BE testing, measurements on the transparent soil show that the 

Tx response inside the specimen is significantly different from the actual input voltage. In 

addition, BE measurements in soil and oil show that the time delay between input 

excitation and Tx response is not constant but it decreases with the increase in frequency. 

Results from the modal analysis of the Tx show a cantilever beam deformation (2D) only 

for the first mode of the Tx response in air and liquids; however, the response inside the 

soil specimen (no confinement) shows a cantilever plate behavior (3D). The excitation 

frequency in BE test should not be constant as commonly done; but it should be increased 

at each confinement level to match the increase in natural frequency and improve the 

signal-to-noise ratio.  

The overall damping ratio of the Tx increases up to 30% with confinement because of the 

soil-BE interaction, causing additional challenges in the evaluation of shear wave velocity 

and damping ratio from BE tests. The measured BE-system response shows a significant 

p-waves interference that affects the evaluation of the shear wave velocity. The p-wave 

interference must be carefully evaluated for the correct interpretation of the results. The 

p-wave interference is clearly observed when the Rx response is measured inside 

different liquids. This interference increases with the increase in the excitation 

frequencies. The Rx response in the transparent soil shows that participation of high 

frequencies and the interference of p-waves increases with increase in confinement. The 

p-wave arrivals mask the shear wave arrivals; which can lead to the overestimation of 

shear waves by more than 25 %. The results from the RC and BE tests on fused quartz 

and Leda clay specimens confirm the conclusion that high input frequencies enhance the 

generation of p-waves. The theoretical relationship between the maximum BE 

displacement and maximum input voltage for the Tx or the maximum output voltage for 
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the Rx is verified for the first time for liquids and sands at no confining pressure. The peak 

displacements at the tip of the BE increased linearly with the input voltage because the 

maximum displacement in a piezo-electric transducer is proportional to the applied 

voltage. RC and BE tests performed on four Leda clay samples showed the effects of 

shear strain, confinement, and excitation frequency on shear modulus and damping ratio 

of the Leda clay. The effect of frequency is evaluated using a recently proposed 

methodology called the ‘carrier frequency’ (CF) method. The stiffest sample displayed the 

highest degradation with the increase in shear strain. There is a 15 % difference observed 

between the shear wave velocity estimates from RC and BE tests. The RC tests at 

frequencies below 100 Hz showed no effect of loading frequency on shear modulus and 

damping ratio; however, BE tests at frequencies centred at 12kHz did show a 15% change 

in wave velocity. This change could be attributed to the loading frequency or to the 

complex interaction of between p-waves and s-wave in BE testing. Loading frequency in 

BE tests does have a significant effect in the results, up to 40% error in the estimation of 

s-wave velocity, as the interaction between p-waves and s-waves increases with 

frequency. 
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1 Introduction 

Earthquakes are some of the most devastating natural disasters that cause tremendous 

damage to the economy. Even low intensity earthquakes have the potential to cause 

significant damages because the earthquakes impact most the infrastructure (e.g. 

bridges, buildings, roads etc.) which is typically worth millions of dollars. Earthquake 

damages can be mitigated if a reliable procedure of seismic design of structures is used. 

Accurate understanding of soil behavior in response to seismic loads is highly important 

for a reliable seismic design. Even very low magnitude earthquake waves (Magnitude < 

4.0) can be amplified by up to six times by some soils before the earthquake waves reach 

the surface (Crow et al. 2011; Atkinson and Cassidy 2000). Past occurences (e.g. Mexico 

City 1985) have shown that site amplified earthquakes waves have caused more 

damages than the actual earthquake would have caused. Many modern building and 

bridge codes, such as the National Building Code of Canada (NBCC 2015), now require 

mandatory seismic design checks for structures depending on site class. The Canadian 

Highway Bridge Design Code (CHBDC) will be introducing a dedicated section for seismic 

design in 2020. Therefore, solid understanding of controlling the soil response to seismic 

loads is critical in seismic design of structures. 

The most important dynamic properties governing the soil response to seismic loads are 

shear modulus (G) and damping ratio (ξ) because they define the soil behavior in 

geotechnical earthquake engineering problems such as seismic design of foundations, 

liquefaction, slope stability, etc (Kramer 1996). Shear modulus is a measure of the 

stiffness of the soil while damping ratio is a measure` of energy dissipation in the soil. 

Shear modulus at low strain levels (Gmax) is related to another dynamic property of soils 

called the shear wave velocity (Vs). Seismic designs in all major codes require sites to be 

classified into different classes based on the average shear wave velocity of the top 30 

m of the soil profile, and different site classes have different seismic design requirements. 

Knowing that these dynamic properties govern the dynamic soil behavior, accurate 

estimation of these dynamic properties is critical for a reliable seismic design.  
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There are only two laboratory tests available to measure these dynamic properties of soils 

at low shear strains which represents seismic loads (γ < 10-3); they are bender elements 

(BE) and resonant column (RC) tests. Field tests such as seismic cone penetration 

(SCPT) and downhole (DHT) tests are also used to estimate the dynamic properties of 

soils at low strains; however, errors and inconsistencies are more difficult to control in the 

field than in laboratory. Therefore, laboratory methods are preferred over field tests to 

understand the effects of different factors on the dynamic properties of soils at low strains.  

BE test is a widely used and simple-to-operate laboratory test for measuring Vs. RC test 

is an ASTM standard test widely used for measuring G and ξ of the soil at strains between 

10-4 % and 10-2 %.  

The loading frequency ranges of BE (1 – 15 kHz) and RC (20 – 220 Hz) tests are different 

from the loading frequency range of seismic loads (0.1 – 10 Hz). The effects of loading 

frequency on dynamic properties of soils are not understood well, therefore, the estimated 

dynamic properties of soils are not representative of seismic loading frequency. In 

addition, BE and RC tests have their own limitations which limit the reliability of the 

measured dynamic properties of soils using BE and RC tests. A major limitation in BE 

test is that the BE test procedure has not been standardized yet because the actual 

behavior of the benders when inserted in the soil specimen is not well understood.  In RC 

test, the induced shear strain of soil the sample is not the same for all frequencies at 

which the transfer function is estimated because the shear strain and loading frequency 

cannot be controlled independently.  
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1.1 Research Objectives 

The main objectives of this study are to understand better the soil-BE interaction; which 

will provide the basis for the development of reliable guidelines for BE testing; and to 

verify the BE test results using the standard RC device. Below is a list of sub-objectives 

and the tasks associated with the sub-objectives: 

1. To understand the BE transmitter behavior inside the soil sample. This objective is 

achieved by evaluating the BE transmitter behavior with different input excitations, 

in multiple surrounding media, and under varying vertical stresses using time 

domain data. The time domain data is measured using a state-of-the-art laser 

vibrometer in air, liquids of different mass densities and in a transparent soil 

specimen. 

2. To evaluate whether the BE behave as a cantilever beam and to investigate BE-

soil sample interaction. This objective is achieved by extracting dynamic properties 

of the transmitter in different media. Resonance frequencies, damping ratios and 

vibration mode shapes of the BE-transmitter in variable conditions are determined 

by performing experimental modal analysis of the transmitter. A thoroughly 

calibrated numerical model of the transmitter is used to advance the understanding 

of the BE-soil sample interaction.  

3. To understand the BE transmitter and receiver system behavior inside the soil 

specimen. This objective is accomplished by evaluating simultaneously the 

response of BE transmitter and receiver with different input excitation frequencies 

and amplitudes and in multiple surrounding media. Again, the measurements are 

obtained using a laser vibrometer.  

4. To evaluate the low-strain behavior of Leda clays which are found in abundance 

in Easter Canada. The effects of shear strain and confinement on the low-strain 

dynamic properties of Leda clays are evaluated using the carrier frequency (CF) 

and equal strain (ES) methods along with the conventional RC method. Effects of 

loading frequencies are investigated using the CF method and by comparing the 

RC and BE test results.  



4 
 

1.2 Thesis organization 

This thesis is divided into eight chapters with four of them including the work submitted/to 

be submitted to journal papers. Chapter 1 discusses the motivation, research objectives 

and thesis organization.  

Chapter 2 presents the theoretical background of the concepts used in this study 

such as the wave propagation and linear-time invariant systems.  

Chapter 3 presents the literature review of the dynamic properties of soils. First, 

the factors affecting the dynamic properties are discussed. Then, the methodologies used 

for measuring these dynamic properties at different strains and frequencies are 

presented. Finally, background of the BE and RC tests is discussed. 

Chapter 4 presents the evaluation of the frequency response of the BE transmitter. 

First, the BE transmitter response in air is evaluated using different input excitations. 

Then, the transmitter is inserted in liquids of different viscosities and densities. Finally, 

the transmitter responses in transparent soil under different vertical stresses are 

evaluated. 

Chapter 5 is an extension of Chapter 4 in which modal characteristics of the 

transmitter is discussed using the results of experimental modal analysis of the transmitter 

in different surrounding media and the effects of these media on the vibration modes of 

the transmitter is evaluated. A numerical model of the BE-transmitter is developed based 

on experimental results in air; then, the model properties are changed to match the 

numerical model responses in different media to the experimental responses.  

Chapter 6 presents the study of BE receiver behavior in air, liquids, and in 

transparent soil sample. BE transmitter and receiver responses are compared in different 

media. The effects of input voltage amplitude, input excitation frequency and liquid mass 

density on the receiver behavior are evaluated.  

Chapter 7 presents the study of low-strain dynamic properties of leda clays using 

RC equipment with different interpreting techniques.  
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Chapter 8 presents the conclusions and future research. Main conclusions of this 

study related to the advancement of BE and RC tests are summarized. Then, the future 

work required is described.  
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2 Theoretical Background  

2.1 Wave propagation in a finite elastic medium 

Review of wave propagation theory in a bounded medium is essential for understanding 

the analytical concepts of Resonant Column and Bender Element techniques. In general, 

wave propagation with laboratory techniques allows the study of soil behavior without 

significantly affecting the soil specimen. The frequency dependent velocity and 

attenuation of waves are widely used to estimate material properties. Different types of 

waves have been studied; this study focuses on shear wave propagation because the 

governing dynamic stiffness parameter of soils is the shear modulus (G). However, 

equivalent explanations can be presented for Young’s modulus (compressional waves) 

because wave equation is the same for both compressional and shear waves. The one-

dimensional (1D) wave equation for torsional vibrations in a rod is derived and solved 

next, followed by relating the 1D wave equation/solution to BE and RC tests (Richart et 

al., 1970). 

A torque (T) is applied on a transverse section of a rod and the response is the twist angle 

(θ) as shown in Fig. 2-1 below.   

 

Fig. 2-1: Torsion and twist angle in a rod 

T and θ are related through the equation 

 

θ 

∆x 

T 

H 

x 

x 
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 T GJ
dx


=    2.1 

where J is the polar moment of inertia of the cross-section of the rod, and 
dx


  is the twist 

angle per unit length. 

Furthermore, the rotational inertia in an element of the rod of length ∆x is equal to the 

torque which can be written as  

 
2

2
JT x

t





= 


  2.2 

where ρ is the mass density of the rod and 
2

2t




 represents the rotational acceleration. 

Fig. 2-2 shows the rod of length ∆x. Newton’s second law is applied to get  

 
2

2
( ) J

T
T T x x

x t


=+

 
− +  

 
  2.3 

which on simplification becomes 

 
2

2
J

T
x t


=

 
 

  2.4 

 

Fig. 2-2: Torsion in a small element 

 

Substituting Eq. 2.1 into Eq. 2.4 gives 
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2

2
GJ J

x x t

 


 
 
 

  
=

  
  2.5 

and simplifying Eq. 2.5 results in 

 2
2 2

2 2SV
t x

 
=

 

 
  2.6 

where Vs  is the wave velocity of the shear waves in the rod given by  

 
2

S

G
V


=   2.7 

Eq. 2.6 is the one dimensional wave equation for a finite elastic medium (Richart et al. 

1970). This equation is a linear partial differential equation with constant coefficients; 

hence, superposition of solutions is applicable. For a finite rod, the solution to Eq. can be 

written as a trigonometric series solution in the form 

 
1 2

( cos sin )n nA C t C t  = +   2.8 

where   is the twist angle along the length of the rod, C1 and C2 are constants, and n   

is the natural frequency of nth mode of vibration of the rod.  

Eq. 2.8 represents the torsional vibration of the rod in a natural mode which can be 

substituted in Eq. 2.6 to obtain 

 
22

2 2
0n

S

d A
A

dx V


+ =   2.9 

where 

 
43

cos sinn n

S S

x x
A C C

V V

    
   
   
   

= +   2.10 

Eq. 2.10 represents the displacement amplitude of the rod and the constants C3 and C4 

depend on the boundary conditions. The relevant boundary conditions for this study are 

fixed and free ends. Fig. 2-3 shows the rod with fixed free boundary conditions. At the left 

end (x = 0), A = 0 and A x   = 0 is zero at the right end (x = H).  
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Fig. 2-3: Rod with fixed-free boundary conditions 

Substituting x = 0 in Eq. 2.10 yields C3 = 0. For C4, Eq. 2.10 is differentiated with respect 

to x. The result is 

 3 4sin cosn n n

S S S

x xdA
C C

dx V V V

   
= − + 

 
  2.11 

Substituting x=H in Eq. 2.11 will result in the transcendental equation  

 cos 0n

S

H

V

 
= 

 
  2.12 

Eq. 2.12 represents the mode shape function for a fixed free rod in torsional mode. To 

satisfy Eq. 2.12, which results in 

  for n = 1, 3, 5..
2

S
n

n V

H


 =   2.13 

Hence, Eq. 2.10 can now be written as  

 4 sin
2

n x
A C

H


=   2.14 

 

 

  x 

 H 
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2.1.1 Bender Element (BE) test 

The wave propagation theory in BE test is relatively simple; travel time of the elastic shear 

waves along the length of the rod is used to estimate G using Eq. 2.7. If a torsional wave 

takes the time (t) to travel along the rod of length (H), then G can be estimated as  

 
2

2

H
G

t
=   2.15 

where VS = H/t is substituted in Eq. 2.7 and ρ is the mass density of the rod. 

2.1.2 Resonant Column (RC) test 

In RC test, the soil specimen is assumed as a continuous, linear elastic, isotropic and 

homogenous cantilever solid cylinder; therefore, the wave equation (Eq. 2.4) will apply. 

The driving and motion monitoring instruments are attached at the free end of the soil 

specimen. Theoretically, the effects of these instruments are combined into a lumped 

mass (Fig. 2-4); this lumped mass changes the boundary condition at the free end.  

Therefore, Eqs. 2.12 - 2.14 are not applicable. Following are the modifications 

corresponding to the boundary conditions in RC test theory. 

A torque (T) is applied at the free end for inducing the torsional vibrations. This torque is 

equal to the rotational inertia of the lumped mass  

 
2

2oT GJ I
x t

  
= = −

 
  2.16 

where Io is the mass polar moment of inertia of the lumped mass and J is the polar 

moment of inertia of the rod. 

Since A = 0 at x = 0, C3 = 0 in Eq. 2.10. For x = H, we find 
2 2 and x t        

  

1 2

2
2

1 22

( cos sin )

and

( cos sin )

n n

n n n

A
C t C t

x x

A C t C t
t


 


  

 
= +

 


= − +



  

Eq. 2.16 is substituted in the above to get 
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 2
o n

A
GJ I A

x



=


  2.17 

 

Fig. 2-4: Cantilever cylinder with rigid mass at the free end 

Then, Eq. 2.14 and its derivative are substituted in Eq. 2.17 for x = H to obtain  

 
2cos sinn n n
n o

s s s

H H
GJ I

V V V

  
=   2.18 

Knowing that I J H=  for a uniform rod, Eq. 2.18 can be reduced to  

 tann n

o s s

H HI

I V V

 
=   2.19 

where I is the mass polar moment of inertia of the rod. 

The above procedure shows how the 1D wave propagation equation can be used with 

RC test boundary conditions to estimate Vs of the soil by knowing the resonance 

frequency ( n ) of the specimen. Similarly, Vs can be estimated using BE test conditions. 

Fixed base

H

x

T

Lumped mass

Cylinder
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Eq. 2.15 actually represents in the relationship of shear modulus at low strains (Gmax) with 

Vs 

 max
2
sG V=   2.20 

BE tests are not typically used for estimating the damping ratio (ξ) of the soil. In RC tests, 

ξ is determined independently using the phenomenon of attenuation of waves. 

2.1.3 Attenuation 

Attenuation of waves is the decrease in amplitudes of the waves in space. Main causes 

of attenuation are geometric spreading, apparent attenuation, and material losses 

(material damping ratio) (Winkler and Nur 1979). All of these causes are represented by 

parameters to define attenuation. The focus in this study will be on the parameters of 

attenuation which represent material losses. Following are the definitions of these 

parameters:  

2.1.3.1 Damping ratio (𝜉) 

Damping ratio is defined as the ratio between system damping and critical damping. For 

a single degree of freedom system, the equation of damping ratio is 

 
2cr

c c
c km

 = =   2.21 

where ccr is the critical damping coefficient, c is the system damping coefficient, k and m 

are the stiffness and mass of the system respectively. ccr is the boundary between 

oscillatory and non-oscillatory motion. For underdamped system c < ccr, for critically 

damped, c = ccr, and for over-damped, c > ccr   
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2.1.3.2 Logarithmic decrement 

This parameter is estimated using the method of free vibration; it is defined as the natural 

log of two successive amplitudes of free vibration of the system. The expression is  

 1ln i

i n

u
un


+

=   2.22 

where ui represents the maximum amplitude of ith cycle and n is the number of cycles 

between the two amplitudes.  

2.1.3.3 Quality factor 

For a linear visco-elastic medium, attenuation can be quantified using the complex 

modulus 

 *
R I

G G iG= +   2.23 

where GR is the storage modulus (real or elastic component) and GI is the loss modulus 

(imaginary or viscous component). Quality factor (Q) is defined as the ratio between GR 

and GI. Q can also be estimated using the half-power bandwidth method (section 3.2.1). 

The damping ratio and logarithmic decrement are parameters typically used to determine 

the material damping in conventional RC testing. These parameters are measured using 

methods such as half-power and free vibration (section 3.2.1). The shear modulus is 

determined independently even though soil behaves as a visco-elastic medium even at 

very low strains (Lo Presti et al. 1997). 

2.2 Linear time-invariant (LTI) system 

The concepts of laboratory methods used in this study for measuring the dynamic 

properties of soils are based on the assumption that the system of soil specimen and the 

equipment are LTI because the strain levels in these techniques are in very small to small 

range.  

Analysis of systems which are linear and time-invariant is significantly simpler than that 

of other systems. The assumption of LTI system facilitates the system identification 

problems (explained below). A time-invariant system is the one which does not change 

its characteristics over time; a linear system is the one in which the superposition principle 
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can be applied i.e. sum of time-shifted input is directly related to the sum of time shifted 

output. Details of LTI systems such as their properties can be reviewed from Santamarina 

and Fratta (2005). 

2.2.1 System identification in time domain 

The mass-dashpot system is a single-degree-of-freedom (SDOF) LTI system which is 

represented by the equation of motion 

 my cy ky f+ + =   2.24 

where f is the input force, y is the response, and m, c, and k represent the SDOF system 

properties; these properties characterize the LTI system. The problem of identifying these 

system properties is termed as the ‘inverse problem’ where an impulse response can be 

used to determine these properties. An impulse response is the response of the system 

(for example the mass-dashpot system) when an impulse is applied to that system (f in 

Eq. 2.29 is impulse) 

The underdamped impulse response of a SDOF system is given by  

 2

2
( ) sin( 1 )

1

ot

o

o

e
h t t

m



 
 

−

= −
−

  2.25 

where 
o  is the radial resonance frequency,   is the damping ratio, and m is the mass 

of the SDOF system.  

The advantage of assuming an LTI system is that the impulse response contains all the 

information about the system. Obtaining impulse response in practice is not possible 

because the impulse function and its response are mathematical ideologies. The system 

characteristics are obtained by processing the input and output results in frequency 

domain (next section). However, if an appropriate analytical model of the system is 

available, the measured impulse response can be curve-fitted to obtain approximations 

of the system characteristics. 
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2.2.2 System identification in frequency domain 

Consider again the SDOF system represented by Eq. 2.24. In time domain, an impulse 

is used as the input force to determine the impulse response. If the input force is replaced 

by a complex exponential, Eq. 2.24 can be written as 

 i t

omy cy ky F e + + =   2.26 

where Fo is the amplitude of the input force. The response of the system then becomes  

 ( ) ( ) i t

oy t H F e =   2.27 

Substituting y(t) in Eq. 2.26 will yield the expression for the transfer function ( )H   as  

 
2

2 2

1
( )

2
n

n n

H
k i




  

 
=  

+ − 
  2.28 

Eq. 2.28 is a complex function which represents the frequency response function or the 

transfer function of the SDOF system based on the displacement response (y). Similar 

transfer functions can be obtained for velocity ( )y  and acceleration ( )y  responses. They 

are expressed as  

 

2

2 2
        for v      elocity

1
( )

2
n

n n

i
H

k i




  

 
 
 

=
+ −

  2.29 

 

2 2

2 2
          for acceleration        

1
( )

2
n

n n

H
k i

 


  

 
 
 

−
=

+ −
  2.30 

The frequency response functions presented above also completely characterize the 

system in frequency domain. Although the displacement impulse (Eq. 2.30) and 

displacement frequency (Eq. 2.33) responses are in different domains, they provide the 

same system information; therefore, they must be related. Indeed, the frequency 

response is the Fourier transform of the impulse response expressed as 

 
( )( ) ( ). j tH h t e 


−

−

=    2.31 

Similar conclusion can be made for the velocity and acceleration transfer functions. 
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3 Literature review 

3.1 Dynamic characterization of soils 

Dynamic response of soils can be studied using either the phenomenological or 

micromechanical theory (Lai and Rix 1998). Micromechanical theory is a classical 

approach which is based on the identification of a deformable soil with regions of three-

dimensional Euclidean spaces. Soil is modelled as an assembly of interacting rigid or 

deformable discrete particles. However, in phenomenological theory, soil behavior is 

studied via causes and effects at a macro level. Micromechanical theory is further divided 

into the framework of discrete and continuum mechanics which are based on different 

mathematical models. Neither micromechanical nor phenomenological theories 

incorporate comprehensive features of soils, particularly of soils under cyclic loads (Lai 

and Rix 1998). Both theories can provide reasonable results if the problem under 

consideration satisfies the assumptions of that model. While recognizing the importance 

of studying soil response at a microscopic level, phenomenological approach has been 

adopted in this study to model the dynamic behavior of soils. 

3.1.1 What are the dynamic properties of soils? 

The mechanical behavior of soils in response to dynamic (or cyclic) loading is governed 

by the dynamic properties of soils. The two most important dynamic properties of soils 

are shear modulus (G) and damping ratio (ξ). Shear wave velocity of soils (Vs) is another 

important soil property which is related to Gmax i.e. shear modulus at low strains. Solution 

of various problems in soil dynamics such as seismic design of foundations, soil 

liquefaction assessment and site response analysis rely on the knowledge of these 

dynamic properties of soils. Moreover, substantial research has been performed during 

the past 20 to 30 years to study the response of soils to cyclic loads such as earthquakes 

or machine vibrations (Lai and Rix 1998, Richart et al. 1970). This research suggests that 

a better understanding of the dynamic properties of soils can be achieved by 

understanding the factors that affect these dynamic properties. Numerous testing 

methodologies have been utilized (phenomenological approach) to understand the 

factors affecting the dynamic behavior of soils. This is similar to the approach used in 
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defining the strength of soils whereby triaxial tests are adopted to understand the stress 

strain behavior of soils.  

3.1.2 Factors affecting the dynamic properties of soils 

Factors affecting G and ξ can be divided into external and internal (Lai and Rix 1998). 

Internal factors include soil properties such as void ratio, soil type, and in-situ effective 

stress; external factors correspond to the external actions such as applied shear 

stress/strain magnitude, shear stress/strain rate, and shear stress/strain duration. This 

study focuses on the effects of the external factors.  

Shear stress/strain magnitude is the most important external factor affecting the dynamic 

behavior of soils. This magnitude is proportional to the level of shear strain induced in the 

soils when the soil is subjected to dynamic loads (Vucetic 1994). Dynamic soil behavior 

is categorized according to the level of shear strain induced in the soil (Vucetic 1994). 

Table 3-1 shows three types of soil behavior based on the strain level limits defined as 

γL, and γV. Values of these strain levels depend on the soil type. For example, for a fully 

saturated clayey soil with plasticity index (PI) ≈ 50, γL = 0.001 % and γV = 0.01 %. 

Table 3-1: Shear strain levels and the corresponding soil behaviors 

Shear strain 

magnitude 

Very small 

strain 
Small strain Medium to large strain 

0 < γ ≤ γL γL < γ ≤ γV γV < γ 

Soil response 
Linear 

viscoelastic 

Non-linear 

viscoelastic 

Non-linear elasto-

visco-plastic 

γL – linear threshold strain 

γV – volumetric threshold strain 
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Table 3-1 shows that the dynamic soil behavior can never be perfectly elastic because, 

even at very small strains, energy is dissipated in soil (Lo Presti et al. 1997). In the small 

strain region, the soil experiences permanent deformations; whereas, irrecoverable 

microstructural changes leading to large deformations in the soils occur in the medium to 

large strain range.  

In this study, dynamic soil behavior in very small strain regions will be investigated. The 

term small/low strain is used instead of very small strain in this study. 

Stress/strain duration is another external factor affecting the dynamic properties. 

Stress/strain duration of dynamic loads is equivalent to the number of cycles when the 

dynamic loads are of cyclical nature. The intensity of effects of duration depends on the 

shear strain range. Increase in the strain duration (or the no. of cycles) causes a decrease 

in shear modulus of soils; however, this effect is not significant in the small strain region 

(Shibuya et al. 1995). 

Effects of stress/strain rate (or frequency) of dynamic loads applied on soils also depends 

on the level of shear strains given in Table 3-1. Considerable research has been 

performed for evaluating effects of frequency at strains greater than γL (Lo Presti et al. 

1997; Shibuya et al. 1995). The results from these studies have shown that, in general, 

the increase in excitation frequency causes an increase in shear modulus of the soils, 

especially in the soils with high plasticity. Frequency effects for small strain regions have 

not been characterized well because of the limitations in methods used for measuring 

dynamic properties at these strain levels. These limitations are described in the following 

section 

3.2 Methods for measuring low-strain dynamic properties of soils 

The effects of loading frequency on dynamic properties can be characterized accurately 

if reliable techniques are available to measure these dynamic properties of soils. Dynamic 

properties for small strain regions can be measured using laboratory or field techniques. 

Field techniques provide more representative estimates of dynamic properties; however, 

field measurements are affected by several factors such as non-homogeneity of soil 

layers, radiation damping, and geometric effects. Moreover, all field measurements 

involve the use of wave propagation phenomenon to measure the dynamic properties of 
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soils. The wave propagation phenomenon can get extremely complex because the field 

measurements are performed on large soil mass.  

On the other hand, lab measurements can be obtained in an environment where 

parameters affecting the soil behavior can be controlled. The soil specimens used in a 

laboratory experiment are usually of a regular shape. The laboratory measurements can 

also be validated using analytical theories with certain assumptions; therefore, the studies 

on the effects on dynamic properties can be better conducted using lab techniques. 

However, lab techniques for small strain measurements have limitations and assumptions 

which make it difficult to evaluate the loading frequency effects. Two common lab 

techniques available to measure dynamic properties at small strains (10-7 % to 10-1 %) 

are resonant column (RC) and bender elements (BE). Fig. 3-1 shows the strain levels 

achieved along with the loading frequencies in RC and BE tests compared to those of 

cyclic triaxial (CT) and cyclic direct simple shear (CDSS) tests. Significant gaps in loading 

frequency range can be observed amongst the different techniques in Fig. 3-1. The 

inherent methodology of these techniques does not allow over lapping shear strains or 

loading frequencies.  

 

Fig. 3-1: Induced shear strains in common laboratory tests 
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3.2.1 Resonant Column (RC) test 

RC method is an ASTM standardized method used for measuring shear modulus (G) and 

damping ratio (ξ) at different shear strain levels and confinement stresses. Several types 

of RC devices have been developed which differ based on the boundary conditions and 

modes of vibration. Hardin and Richart (1963) developed a device with free-free boundary 

conditions to measure longitudinal and torsional vibrations; this equipment could only be 

tested in isotropic conditions. Hardin and Music (1965) added the capability of deviatoric 

axial loading to the RC equipment which could be operated at strains around 10-5. Then, 

Drnevich (1967) developed a fixed-free resonant column in which strains up to 10-3 could 

be imposed on the specimen. Several other devices were developed later which 

combined the torsional shear and resonant column techniques to measure dynamic 

properties for strains between 10-6 to 10-1 (Isenhower 1979). 

The configuration of RC test with free-free boundary conditions is difficult to simulate 

because the specimen is never exactly ‘free’. Therefore, fixed-free boundary conditions 

are preferred for RC technique. A solid cylindrical soil specimen is subjected to axi-

symmetric loading from an electro-magnetic system with a driving plate attached to the 

free end; the response is also measured from the free end using accelerometers attached 

to the driving plate. The driving and response measuring system is accounted in 

theoretical derivation by a lumped mass (section 2.1.2). The resonance frequency (ωn = 

2πfn) of the soil specimen is measured from the transfer function obtained by performing 

a sinusoidal frequency sweep of the soil specimen. Random noise has also been used to 

perform the frequency sweep (Cascante and Santamarina 1997). Theoretical transfer 

function for the RC test is expressed as (Khan 2007) 
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where To and   represent the torque (input) and twist angle (output) of the specimen. 

Fig. 3-2 shows a typical transfer function from the RC test results. The solution of one-

dimensional wave propagation (Eq. 2.37) along with Eq. 3.2 can be used to estimate the 

value of Vs. 
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Fig. 3-2: A typical transfer function 

The value of oI I in Eq. 3.2 is obtained by calibrating the RC system with aluminum or 

PVC probes of known resonance frequencies (section 7.6.4). Damping ratio (𝜉) is typically 

obtained independently from the half-power bandwidth or free vibration method; these 

methods are reviewed below. 

Half-power bandwidth method: two frequencies (f1 and f2) corresponding to the half-

power of peak of the transfer function 
2

a   are measured from the transfer function (Fig. 

3-2). Then, the value of ξ is estimated as 

 2 1

2 n

f f

f


−
=   3.3 

 

Free vibration: In this method, damping ratio is computed using the logarithmic 

decrement of the free vibration response of the SDOF system (Fig. 3-3); the free vibration 

response is induced by an initial condition (displacement or velocity). In RC test, the initial 
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condition is achieved by turning off the driving mechanism which will stop the dynamic 

excitations. The maximum amplitudes of two cycles are used with Eq. 3.4 below to 

estimate the logarithmic decrement (δ) (Clough and Penzien 2003) 

 

Fig. 3-3: SDOF system response 
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where an and an+1 are obtained from the time domain response (Fig. 3-3). 

 

3.2.2 Bender Element (BE) testing 

BE are electro-mechanical transducers capable of converting electrical energy to 

mechanical and vice versa. A bender element is made up of two thin piezo-ceramic plates 

bonded together with conducting surfaces in between and outside (Lee and Santamarina 

2005). These plates are covered with epoxy material to avoid short-circuiting the 

transducers. An electrical voltage is applied on to the bender element; due to the 

polarization of the ceramic material, this voltage elongates one plate and shortens the 

other. The opposite movement of the plates causes the bender element to bend. On the 

contrary, when the bender element is mechanically forced to bend, one plate is stretched 
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while the other is compressed; an electrical voltage is generated as a result of this 

bending. Fig. 3-4 shows the element in straight and bent positions. 

 

Fig. 3-4: BE in relaxed and excited positions (after Dyvik and Madhsus, 1985) 

Bender elements (BE) have been widely used with dynamic geotechnical equipment such 

as cyclic triaxial and resonant column (Schultheiss 1981); they are attached to the 

pedestals of these geotechnical equipment and inserted into the soil specimen (Fig. 3-5). 

BE test method was first proposed by Shirley (1978) and Shirley and Hampton (1978), 

and has been very popular over the years because of its simple operation. A pair of BE 

are used where one is the BE transmitter (Tx) and other is the receiver (Rx). The BE 

transmitter at one end generates a shear wave due to the perturbation caused by the 

input voltage (Fig. 3-5). This wave propagates along the length of the soil specimen and 

bends the BE receiver. The electrical voltage generated by the receiver movement is 

recorded, and the arrival time of the shear wave is determined. The travel time of the 

shear wave along a known length of specimen gives a direct measure of Vs of the soil 

specimen (Eq. 2.15). The travel distance of the shear wave is typically the tip-to-tip 

distance between the BE (Lee and Santamarina 2005). 
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Fig. 3-5: BE with dynamic geotechnical equipment 

3.3 Limitations in RC and BE tests 

Soil behaves as a visco-elastic medium at small strains for which the dynamic properties 

should be evaluated simultaneously (Lai et al. 2001). Conventional RC test does not allow 

simultaneous measurements of G and ξ. Moreover, dynamic properties evaluated using 

RC test correspond only to the resonance frequency of the specimen; measurements at 

other loading frequencies are not possible.  

The operation of BE test is simple; however, BE testing has not been standardized yet 

because of difficulty in interpreting BE test results. The difficulty is mainly because, when 

BE are inserted in the soil specimen, the actual behavior of BE is unknown which makes 

it challenging to determine accurately the arrival time of the perturbation. Moreover, the 

frequency of vibration of BE in the soil cannot be determined. 

The limitations highlighted above in BE and RC tests make it difficult to evaluate the 

loading frequency effects on the dynamic properties of soils. An experimental program is 

proposed in this study to address some of these limitations to allow the evaluation of 

loading frequency effects on dynamic properties in small strain range. A set of RC tests 

on Leda clays is performed along with measuring the actual vibrations BE in different 

media.  
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4 Novel evaluation of bender element transmitter response  

4.1 Introduction 

 Shear wave velocity of soil (Vs) is an important parameter for seismic characterization of 

sites and dynamic analysis of structures. The bender element (BE) method is widely used 

to measure Vs in laboratory specimens (Shirley and Hampton 1978). In this method, two 

piezo-ceramic transducers (the bender elements) are inserted at the opposite ends of a 

soil specimen and an input voltage signal is applied to one of the transducers (the 

transmitter). This signal generates a disturbance in the soil sample, and the mechanical 

energy from the shear wave propagating through the soil sample is converted to an output 

voltage signal upon reaching the other transducer (receiver). The distance between the 

transmitter (Tx) and receiver (Rx), and the shear wave travel time ts from Tx to Rx are used 

to estimate Vs (Dyvik and Madshus 1985). Despite its popularity, no standardized 

procedure is available for the BE method mainly because the response of the BEs inside 

the soil specimen has not been characterized experimentally.  

A few experimental studies have been performed to hypothesize the actual behaviour of 

BEs inside the soil specimens. Rio (2006) measured, using a laser velocimeter, the 

response of transmitters in air and under embedded conditions inside a synthetic rubber 

specimen. Rio (2006) showed that, when bender elements are embedded in synthetic 

rubber specimens, the natural frequency and damping ratio of transmitter vibration are 

greater and the amplitude of vibration is less than the corresponding quantities measured 

when the bender elements are in air. The first mode resonance frequency in air of one of 

the benders (dimensions 1.5 mm x 6 mm x 8 mm) studied by Rio (2006) is 3.4 kHz. Rio 

(2006) estimated that the maximum shear strain from the peak BE displacements was of 

the order of 10−3%, which is inconsistent with the maximum shear strain in BE testing 

given by previous researchers (Camacho-Tauta et al. 2015; Leong et al. 2005; 

Pennington et al. 2001). Pallara et al. (2008) used a laser vibrometer to study the 

response of a transmitter in air and showed that the shape of the transmitter response is 

different from the shape of the input signal. These studies provide a preliminary insight 

into the response of BEs inside the soil specimen; however, because of the use of 
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synthetic rubber specimens in these studies, the response of BEs embedded inside a soil 

specimen is still not well understood.  

A novel experimental program is described in this study in which the actual transmitter 

vibrations inside a transparent soil specimen are measured using a state-of-the-art laser 

vibrometer. The transparent soil used in this study has mechanical properties similar to 

those of granular soils with angular particles (Ezzein and Bathurst 2011). First, the effects 

of input excitation on transmitter response in air is measured by subjecting the transmitter 

to sine, step, and square pulse excitations. This exercise is done in two steps: first, 

measurements are taken at one point located at the centre of the free end of the 

transmitter surface, and then measurements are taken at several points on the transmitter 

surface. Then, the effect of voltage amplitude applied on the transmitter response is 

measured by exciting the transmitter with increasing voltage amplitude of input pulses 

and measuring the peak displacement using the laser. The effects of mass density and 

viscosity on the transmitter response are evaluated by measuring the transmitter 

response in water, sucrose of different concentrations, and mineral oil mixture (liquid used 

for making the transparent soil). Finally, the transmitter response is measured inside a 

transparent soil specimen and compared with the input excitation. The effects of applied 

vertical stress in the transparent soil on transmitter response are also evaluated. The 

effects on the transmitter responses are characterized using changes in peak 

displacement amplitude, natural frequencies, and damping ratios, which are obtained 

from the displacement responses of the transmitter and their frequency spectra. In 

addition, the effect of input excitation frequency on the relative time shift between input 

excitation and transmitter responses in air, mineral oil, and soil is studied by analysing 

the transfer functions between the sine-sweep input excitations and the transmitter 

responses. 
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4.2 Background 

4.2.1 Estimation of arrival time 

In a conventional BE test, the shear waves travel time ts is computed as the time 

difference between the input signal x(t) from the transmitter and the output signal y(t) from 

the receiver (Fig. 4-1). The travel time is associated with the transfer function HSoil which 

is calculated as the ratio between the frequency spectrum of the output signal Y(𝜔) and 

the input signal X(𝜔). However, time delays are introduced at different stages in a BE test 

because of multiple transfer functions involved (Wang et al. 2007). Fig. 4-1 shows the 

multiple time delays in a BE test and their associated transfer functions; t1 is the time 

delay between the input voltage and the transmitter response with the transfer function 

HTx; t2 is the delay between the transmitter and receiver responses with the transfer 

function HRx; and t3 is the delay between the receiver response and the output voltage 

with the transfer function Ho. Most of the studies in BE testing have focused on improving 

the accuracy of ts because of the difficulty in measuring t1, t2, and t3 and their transfer 

functions; therefore, the reliability of conventional BE test results has been dependent on 

the accuracy of the measured ts. Several factors affect the accuracy of the measured ts 

such as quality control in manufacturing of BEs (Lee and Santamarina 2005), coupling 

and alignment of BEs in the soil specimen (Gohl and Finn 1991), near-field effects (Arroyo 

et al. 2003), and type of input excitation pulse (Brignoli et al. 1996; Jovicic et al. 1996; 

Lee and Santamarina 2005).  
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Fig. 4-1: Shear wave arrival times and transfer functions at different stages in a 

conventional BE test setup 

Different time and frequency domain methods have been proposed for accurate 

measurement of ts. In the simplest time domain method, the first arrival from the output 

signal (receiver end) is selected with the assumption that no refracted or reflected waves 

are present. Individual judgement is used in this method because no agreeable 

recommendations are available for identification of the first arrival. Measurement of time 

Input signal x(t) 

Tx response y1(t) 

R
x response y2 (t) 

ts 

t1 

t2 

T
x  

R
x  

Soil  

t3 Output signal 
y(t) 

  

  

  

 

  

  



29 
 

difference between characteristic points (such as peaks and troughs) of the input and 

output signals is also sometimes used in the time domain. An important drawback of this 

method is the assumption of plane wave propagation without the consideration of 

reflected or refracted waves. Viggiani and Atkinson (1995) proposed a method of 

computing cross-correlation between input and output signals. All these methods depend 

on the assumption that the frequency contents of the input and output signals are the 

same; however, this assumption is idealistic because input and output signals in soils can 

never have the same frequency content as the output signal is influenced by the soil and 

other electronic devices in a BE test. Arulnathan et al. (1998) and Lee and Santamarina 

(2005) proposed the use of second arrival of the output signal that occurs when the shear 

wave from the receiver reflects back to the transmitter and then again reflects back to the 

receiver. However, the second-arrival based methods depend on a particular travel 

distance and boundary characteristics of the sample; because the boundary conditions 

and travel distance vary from one BE test setup to another, the second-arrival based 

methods cannot be generalized to all BE test setups. Further, the second arrival is often 

very weak to be reliably detected. The existence of different methods for the evaluation 

of ts is a direct consequence of the current lack of understanding of the actual response 

of the BE inside the soil, which the present work addresses. 

 Several frequency domain methods have been proposed for estimation of ts because of 

the limitations of the time domain methods. Discrete π-point identification is a method in 

which a sinusoidal sweep is performed manually (Sachse and Pao 1978) . The input sine 

frequencies that result in a perfect phase shift between the signals are picked as the π-

point frequencies. Then, Eq. 4.1, which relates input sine frequency f, wave velocity V, 

wave length λ, travel length of the wave L, and phase angle φ, is used to estimate the 

phase angle 

 2
L

V f f 


= =   4.1 

The plot of phase angle versus frequency is a straight line, and the slope of this line gives 

an estimate of ts according to Eq. 4.2: 
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This frequency domain method is more systematic, but manual sweeping to identify the 

π-points is time consuming and only a limited number of π-points can be recorded. 

Greening and Nash (2004) enhanced this method by proposing a setup to perform a 

continuous and automatic sine sweep rather than discrete and manual; the results from 

this method include unwrapped phase and coherence plots against the frequency. Viana 

da Fonseca et al. (2009) used the moving windows algorithm in which the unwrapped 

phase is plotted for different frequency bandwidths. Alvarado and Coop (2012) used the 

transfer functions between different voltage inputs and measured voltage outputs to 

evaluate the performance of the BE system. Camacho-Tauta et al. (2016) estimated Vs 

using a modified frequency domain method for BE tests and compared the results with 

those of resonant columns (RC) tests.  

Notwithstanding several research studies performed on the estimation of ts, both the time 

and frequency domain methods have not provided conclusive recommendations for 

estimating ts because the actual behaviour of the BEs inside the soil specimen is not well 

understood. As the accuracy of all methods depends on the input and output signals, it is 

important to obtain the actual signal generated by the transmitter and the actual signal 

received by the receiver for estimation of t1, t2, and t3 (Fig. 4-1).  Because the actual 

signals are not explicitly known, estimation of ts is approximate even if better methods of 

estimation are used. Therefore, the actual transmitter and receiver responses must be 

characterized and estimates of t1, t2, and t3 must be determined along with their transfer 

functions. This study focuses on characterizing the actual transmitter response under 

different conditions by putting the transmitter in air, in different liquids, and, especially, in 

transparent soil, and investigating the variation of the measured time t1 as function of 

frequency.  
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4.2.2 BE vibration  

Vibration characteristics of a BE is assumed to be similar to those of a cantilever beam 

(Lee and Santamarina 2005). The resonance frequency of the nth mode of vibration of a 

BE in air can be estimated from Eq. 4.3 (Clough and Penzien 2003) 
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where kLn is a characteristic number that depends on n and the boundary conditions; Lb, 

Ib and ρb are the length, area moment of inertia (Ib = b h3/12), and mass density of BE, 

respectively; h, b, and Ab (Ab = Lb h) are the thickness, width, and cross-sectional area of 

the BE, respectively; Eb is the Young’s modulus of the piezoceramic element; α is the 

effective length factor with α = 1 when the BE is perfectly fixed to the base and α > 1 when 

there is flexibility in connection between the BE and the base. 

The resonance frequency of the first mode of vibration of a BE when embedded in soil 

can be estimated from Eq. 4.4 (Lee and Santamarina 2005) 
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where ρs and Es are the mass density and Young’s modulus of soil, respectively; β is the 

experimental factor related to the volume of soil affecting the vibration of BE; and η (≈ 2) 

is the mean displacement influence factor at the soil-BE interface (Poulos and Davis 

1974). 
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4.3 Materials 

Responses of BEs while inserted in multiple liquids including water, sucrose solutions, 

and mineral oil, and in transparent soil sample made with fused quartz and mineral oil are 

investigated in this study. These materials in which the BEs are inserted are described in 

this section.  

4.3.1 Sucrose solution 

Sucrose solution made with two levels of sugar concentration, 20%, and 40% by weight, 

are used in this study in addition to pure water (which acted as a base case with 0% sugar 

concentration).  This gives the opportunity to investigate the transmitter response in 

liquids with different densities and viscosities (different sugar concentrations produced 

different densities and viscosities) the details of which are presented in Table 4-1. The 

choice of sucrose is made based on the fact that sucrose can be readily used for making 

a transparent soil specimen (Guzman and Iskander 2013) and that the effects of different 

sucrose concentrations on the transmitter response would help in analysing the 

measurements in transparent soils. 

4.3.2 Mineral oil and transparent soil 

The mineral oil mixture used in this study is prepared with two mineral oils, namely, 

Krystol-40 and Puretol-7 (Ezzein and Bathurst 2011; Weast et al. 1981). The mixture is 

colourless, odourless, and chemically stable. The viscosity and density of this oil mixture 

are presented in Table 4-1. 

Transparent soils have been developed and used in the past for studying many 

geotechnical problems (Ezzein and Bathurst 2011; Iskander 2010). In this study, the 

transparent soil developed by Ezzein and Bathurst (2011) is used, and is made up of 

fused quartz and mineral oil mixture described above. Fused quartz is a noncrystalline 

form of quartz sand (with silicon dioxide [SiO2] as the main mineral present), which is 

widely used in semiconductors, solar cells, and telescopes. The transparency in the soil 

specimen occurs because of similar refractive indices of fused quartz and the mineral oil 

mixture. The mechanical properties (such as the shear strength) of this transparent soil 

are comparable to cohesionless soils of angular shaped particles (Ezzein and Bathurst 
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2011). The grain size distribution of the fused quartz used in this study is shown in Fig. 

4-2. 

Table 4-1: Properties of liquids used in this study 

Liquid Viscosity  μ (cP) Density ρ (g/mL) 

Mineral Oil 8.2 0.8 

Water 1 1 

Sucrose – 1 (20% by weight) 1.7 1.1 

Sucrose – 2 (40 % by weight) 5.2 1.2 

 

Fig. 4-2: Grain size distribution of fused quartz used to prepare transparent soil 

specimens 
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4.4 Experimental setup and specimen preparation 

A novel experimental setup consisting of a BE transmitter, peripheral electronics, a laser 

vibrometer, liquids (as described above), and a transparent soil specimen is used in this 

study. A typical transmitter is used in this study which is rectangular in shape with surface 

dimensions of 6 mm  14 mm, and a thickness of 1.5 mm, and is attached to a steel base 

plate. A schematic of the transmitter cross-section and experimental setups in air, in soil 

without confinement, and in soil under confinement are shown in Fig. 4-3. 

The laser vibrometer used in this study is a single point vibrometer developed by Polytec 

Inc. (Polytec 2013). This device operates on the principle of heterodyne interferometer to 

obtain the characteristics of the mechanical vibrations (Polytec 2013). The laser beam 

emanating from the laser head is pointed at the target (transmitter in this case) which 

reflects back the laser beam. A phase/frequency modulation of the laser light is generated 

by the displacement/velocity amplitudes of the target because of Doppler effect. Then, 

the vibration decoder recovers this modulation and converts it into signals that can be 

displayed on a computer screen. Phase modulation of the Doppler effect is used for 

displacement information while frequency modulation is used for velocity information. The 

laser vibrometer is capable of measuring displacements with frequencies up to 24 MHz 

(Polytec 2013).  

 A function generator (FG) (model HP33120A) is used to generate an input voltage 

signal to the transmitter through the steel base; this input signal is monitored on an 

oscilloscope (HP-54645A) and stored in a computer. The transmitter response to the input 

voltage is measured by the laser head (LSH) (OFV-5000), which is fixed to an aluminium 

plate; the laser head measurements are decoded by the vibration controller and the 

output signal from the vibration controller is also monitored on the oscilloscope and stored 

in the computer. The steel base is fixed to a positioning stage which allows controlled 

movements of the steel base along the horizontal plane (moving left/right and into/out of 

the plane of the paper in Fig. 4-3.). The positioning stage allows transmitter vibrations to 

be measured at different points on the transmitter surface. The positioning stage can also 

be moved in the vertical direction manually. The positioning stage and the aluminium plate 
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are fixed on an isolation table (manufactured by NewPort) to prevent the ambient 

vibrations from affecting the laser measurements. 

The equipment setup for measurements in liquids and transparent soil is similar to that of 

measurements in air and includes a plexiglass box to hold the liquids and transparent soil 

in place (Fig. 4-3). A groove in the steel base is used to place an o-ring to prevent the 

liquid from leaking. The plexiglass box is polished with a polishing liquid to ensure 

maximum transparency for penetration of laser beam. The liquid is poured in the box 

gently until the transmitter gets completely submerged. For preparing transparent soil 

specimen, the mineral oil mixture is poured in the box until the transmitter is fully 

submerged and then fused quartz particles are placed by wet-pluviation. The application 

of vertical stress around the transmitter in the transparent soil is made by placing dead 

weights on top of the transparent soil specimen with the help of a plastic cylinder (Fig. 

4-3c). 

A reflecting paper is glued on to the transmitter surface to enhance the signal quality of 

the laser vibrometer, as recommended by Polytec Inc. The distance x between the laser 

head and transmitter is maintained at 0.5 m for all the tests (Fig. 4-3). All time signals are 

recorded for a total time of 5 ms with a time interval of 3.2  10−5 ms.   
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Fig. 4-3: Schematic of measurements (a) in air, (b) in soil without confinement, and (c) 

in soil with confinement 
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4.5 Experimental procedure 

Actual vibrations of the BE transmitter are measured in different media. For each 

measurement, an average of 500 time signals is saved as the representative time signal. 

The standard deviation of the 500 time signals varied from 0.14 to 0.2 for length of the 

time signals  

4.5.1 Measurements in air 

Different input excitations have been used in the past in conventional BE testing; the most 

common excitations are sine, step, and square pulses (Jovicic et al. 1996; Rio 2006).  

These input excitations are used here to evaluate the effects of different input excitations 

on the actual transmitter response in air. The central frequency used for the sine and 

square pulses is 9 kHz because it is close to the first natural frequency of the transmitter 

used in this study. This first natural frequency is determined from the transmitter response 

to a frequency sweep (discussed below). First, the effects of input excitations are 

evaluated at a single point, which is at the centre of the free end of the transmitter (shown 

in Fig. 4-3 as a solid circle on Tx cross-section). Then, the effects of input voltage 

amplitude applied on the transmitter response at that single point in air are evaluated. The 

transmitter is excited with input excitations of different amplitudes and the peak 

displacements of the transmitter response are measured. Subsequently, the effects of 

input excitations are evaluated at 102 points on the transmitter surface; thus, for this case, 

the response of the transmitter is represented by 102 degrees of freedom.  The responses 

of these points are used to simulate the motion of the transmitter, which shows the 

movement of the transmitter in real time.  

4.5.2 Measurements in liquids 

Transmitter responses in different transparent liquids are obtained to evaluate the effects 

of density ρ and dynamic viscosity μ of the liquids on the transmitter response. The effect 

of plexiglass box is assessed first by measuring the transmitter response with the 

transmitter placed inside the box without the liquids.  Water, sucrose solutions with 

different concentrations, and the mineral oil mixture are then poured separately to 

measure the transmitter response at the single location shown in Fig. 4-3 in each of these 

solutions. After each measurement, the steel plate is unbolted from the positioning stage 
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to discard the solutions. The box is washed thoroughly before reassembling, and 

measurements of the response with plexiglass box alone are repeated to ensure 

repeatability.  

4.5.3 Measurements in transparent soil 

The transmitter response is measured in the transparent soil specimen (prepared by 

pluviation of quartz in mineral oil) at the point shown in Fig. 4-3. This measurement 

represents the case of at rest condition because no weight is placed on the transparent 

soil.  The effect of additional confinement on the transmitter response is evaluated by 

measuring the transmitter response in the transparent soil after subjecting the soil 

specimen to different levels of vertical stresses by adding weights on top of the 

transparent soil specimens in increments of 0.8 kg to generate vertical stresses up to 35 

kPa. The applied vertical stress is calculated as the load over the circular area of the 

plastic cylinder used to transfer the load from the weights to the soil.    

4.5.4 Transfer functions in different media 

The transfer function of the transmitter is calculated as the ratio of the frequency spectrum 

of the transmitter response over the frequency spectrum of the input voltage signal. First, 

the transfer functions of the transmitter responses in air to a sine pulse, a square pulse, 

and a sine sweep (frequency bandwidth = 0-50 kHz) are calculated. These transfer 

functions are used to identify the modes of vibration of the transmitter response in air. 

Then, the transfer function of the transmitter response to a sine sweep in transparent soil 

is calculated and compared with the transfer function in air. The point on the transmitter 

where these measurements are made is marked with a solid circle on the transmitter 

cross-section in Fig. 4-3. The transfer function from the sine sweep is calculated in real 

time using a dynamic analyser, while the transfer functions from the sine and square 

pulses are calculated using the frequency spectra of the input and output signals. The 

frequency spectra of the input and output signals are calculated using MATLABTM.  
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4.6 Results and discussion 

4.6.1 Verification of laser measurements 

4.6.1.1 Code test 

The reflected laser light from the test object contains the velocity and displacement 

information. The accuracy of these signals is evaluated here by measuring one set of 

displacement and velocity response of the bender element in air and compared to 

displacement and velocity signals using theoretical calculations.  

First a set of theoretical displacement and velocity functions are used to verify the 

MATLABTM code that is used for evaluating the accuracy of laser measurements. Eq. 4.5 

shows the displacement function (x) with two sinusoids which is used for verification.  

 
   

 
− −

= +1 1 2 2
1 1 2 2

( ) sin( ) sin( )
i t i t

x t A e t A e t   4.5 

Where the amplitude of the sinusoids are A1 = 1 and A2 = 0.2, the angular frequencies 

are ω1 = 2π x 7000 Hz and ω2 = 2π x 20000 Hz and the damping ratios are ξ1 = 0.03 and 

ξ2 = 0.05. The values for these parameters are arbitrarily selected with the amplitude of 

the second sinusoid (mode) less than that of the first and the angular frequency and 

damping ratio of the second mode larger than those of the first. Fig. 4-4 partially shows 

the plot of Eq. 4.5 against time; although the signal looks like a response of the single-

degree-of-freedom system with a single mode, the indications of the second mode are 

that the maximum amplitude of the signal is less than 1 (maximum amplitude of the first 

mode is A1 = 1) and the other indication is circled in Fig. 4-4.  

Fig. 4-5 shows the frequency spectrum of the displacement signal x(t). The presence of 

two sinusoids in x(t) is clearly observed from the frequency spectrum. The estimated 

values of the frequencies (f1 and f2) and damping ratios (ξ1 and ξ2) are very similar to 

those that are used to create x(t) (Eq. 4.5); however, the relative amplitude of the second 

sinusoid in the frequency spectrum is significantly less that used in x (0.04 compared to 

0.2). This difference is because of the loss of energy (leakage) to the higher frequencies 

because of a sudden increase in the displacement at around time = 1 ms (Fig. 4-4) 

(Santamarina and Fratta 2005) 
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Fig. 4-4: Plot of displacement amplitude vs time of Eq. 4.5 

 

Fig. 4-5: Frequency spectrum of the displacement signal shown in Fig. 4-4 
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The theoretical velocity of the two sinusoids in Eq. 4.5 obtained by differentiating the 

displacement function x is given in Eq. 4.6 below

1 1 1 1 2 2 2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2

cos( ) sin( ) sin( ) cos( )
t t t t

x A e t A e t A e t A e t
       

         
− − − −

= − − +  

 4.6 

This equation and the estimated velocity obtained by differentiating the function x(t) from 

Eq. 4.5 is presented in Fig. 4-6; the estimated velocity is in excellent agreement with the 

theoretical velocity.   

 

Fig. 4-6: Normalized velocity amplitude against time from Eq. 4.6 
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The frequency spectra magnitude of the two velocity signals are shown in Fig. 4-7; these 

figures also corroborate the conclusion that the numerical differentiation performed using 

MATLABTM to estimate the velocity signal from the displacement function x(t) works well.  

 

Fig. 4-7: Frequency spectrum magnitude and unwrapped phase of the two velocity signals 

The velocity function ( x ) in Eq. 4.6 is numerically integrated and compared with the 

theoretical displacement function (Eq. 4.5); this comparison is shown in Fig. 4-8. This 

figure also shows that the numerical integration code used in MATLABTM works well to 

estimate the displacement from a velocity signal.  
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ξ1 ≈ 0.03  
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ω2 ≈ 20 kHz 
ξ2 ≈ 0.05  
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Fig. 4-8: Theoretical and estimated displacement against time 

4.6.1.2 Verification of the bender response  

A pair of typical bender transmitter displacement and velocity responses (at the same 

location on transmitter surface) in air to a sine pulse of central frequency (fc) = 26 kHz are 

shown in Fig. 4-9 and Fig. 4-10 along with the sine input pulse (10 VPP). Note that fc = 

26 kHz is used because it is close to the second mode of vibration of the transmitter in 

air. This input pulse results in greater participation of the second mode of the transmitter 

along with the first mode of vibration. The maximum displacement amplitude is 13 nm 

and the maximum velocity amplitude is 2.1 mm/s.  
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Fig. 4-9: A typical bender transmitter displacement response in air to a sine pulse of 26 

kHz central frequency 
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Fig. 4-10: Bender transmitter velocity response in air to a sine pulse of 26 kHz central 

frequency 

Fig. 4-11 shows the frequency spectra of the displacement and velocity responses of the 

bender transmitter shown in Fig. 4-9 and Fig. 4-10. The resonance frequencies and the 

damping ratios of the two modes of the transmitter estimated from the two signals are 

very similar; however, the magnitudes of the two modes are significantly different. The 

magnitude of the first mode from the displacement response is ≈ 40 % less than that of 

the velocity response; and the magnitude of the second mode of the displacement 

response is ≈ 30 % larger than that of the velocity. Note that the central frequency of the 

input sine pulse is closer to the resonance frequency of the second mode of the 

transmitter; therefore, the energy in the second mode is expected to be higher than that 

in the first mode which means that the frequency spectrum of the displacement response 

is more accurate. Frequency spectra of the velocity response also shows an extra peak 

at low frequency (around 1 kHz) which is not observed in the frequency spectrum of the 

displacement response. 
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Fig. 4-11: Frequency spectra of the measured displacement and velocity of the 

transmitter response to a sine pulse of 26 kHz central frequency 

Fig. 4-12 shows the velocity response of the transmitter in air measured from the laser 

and the velocity response estimated from the displacement response by numerical 

differentiation. The maximum velocity amplitude of the measured laser response is ≈ 14 

% more than that of the estimated velocity response; the frequency content of the 

responses appears to be very different. The displacement response of the transmitter 

measured from the laser is compared to the estimated displacement response (by 

numerical integration) in Fig. 4-13. Although the measured displacement amplitude is also 

higher than the estimated amplitude like the velocity responses, the difference between 

the maximum amplitudes is greater than the difference between the maximum amplitudes 

of the velocity responses. The maximum displacement amplitude of the measured 

response is ≈ 17% greater than that of the estimated displacement response. The 

frequency content between the measured and estimated displacement responses are 

also very distinct. In both these comparisons, the measured velocity response from the 
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laser appears to be incorrect. This conclusion is further investigated by estimating the 

frequency spectra of the estimated displacement and velocity responses and compared 

with the frequency spectra of the measured displacement velocity and laser responses. 

 

Fig. 4-12: Transmitter velocity response measured from the laser and the velocity 

estimated from the laser displacement response 
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Fig. 4-13: Transmitter displacement response measured from the laser and the 

displacement response estimated from the laser velocity response 

Fig. 4-14 shows the frequency spectra of the estimated displacement and velocity 

responses. The magnitude of these spectrum are normalized to the magnitude of the 

second mode of the measured displacement shown in Fig. 4-11. Resonance frequencies 

and damping ratios of the two modes of the transmitter estimated from both velocity and 

displacement responses are similar to those of the measured responses shown in Fig. 

4-11; however, the magnitudes are different. The frequency spectrum of the velocity 

estimated from the measured displacement response again shows high energy in second 

mode of vibration as is shown for measured displacement response in Fig. 4-11. Lastly, 

the displacement frequency spectrum shows leakage of energy to the lower frequencies 

which is not observed in the frequency spectrum of the measured displacement response 

in Fig. 4-11. These results suggest that the velocity measurements from the laser 
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vibrometer are inaccurate; hence, the focus of the measurements in this study will be on 

the displacement responses of the transmitter. 

 

Fig. 4-14: Displacement and velocity responses of the transmitter estimated using 

numerical integration and differentiation respectively: normalized to the maximum 

magnitude of the frequency spectrum of the measured displacement response 

4.6.2 Measurements in air 

Fig. 4-15 shows the transmitter displacement in air as a function of time for different input 

excitations. The displacements are normalized with respect to the peak displacement of 

the transmitter response to the square pulse in air. The three input excitations used are 

9 kHz sine pulse, step pulse (Heaviside), and the 9 kHz square pulse (half cycle) all with 

a voltage amplitude of 10 volts peak-to-peak. The transmitter responses to square and 

step pulses show considerable participation of higher modes during the first 0.3 ms 

compared with the response of transmitter to the sine pulse. After 0.3 ms, the first mode 

of vibration dominates in all the three responses. Participation of the higher modes occurs 
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because of higher energy contents at higher frequencies in step and square pulses. This 

is corroborated by the analytical power spectra of different pulse types presented in Fig. 

4-16, which shows that the energy of the sine pulse (bold line) is less than that of the 

square pulse. Fig. 4-15 indicates that the first negative peak of the transmitter response 

to sine pulse, after the excitation pulse, is less than half of that corresponding to the 

square pulse while the first positive peak of the transmitter response to sine pulse, after 

the excitation pulse, is close to half of that of the response to the square pulse. The 

difference in the amplitudes of transmitter response to sine and step pulses is negligible 

(3% difference in the negative peak amplitudes and 6% difference in the peak 

amplitudes). The energy in the response to sine pulse is similar to that of the response to 

step pulse. This similarity is likely because the central frequency of the input sine pulse 

matches the first mode resonant frequency of the transmitter (f1). These results show that 

the type of input excitation does influence the bender behaviour, contrary to that reported 

by others (Alvarado and Coop 2012). 

 

Fig. 4-15: Transmitter input and corresponding output responses in air for three input 

excitations – sine, step, and square; the first positive and negative peaks after input 

pulses are marked. 
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Fig. 4-16:  Power spectra of sine and square pulses (after Tallavo et al. 2009) 

Fig. 4-17 shows the frequency spectra of the three displacement responses shown in Fig. 

4-15 with a focus on the first mode of vibration. The first mode resonance frequency f1 of 

the transmitter from all the three responses is the same (≈ 9.7 kHz); however, the peak 

magnitude of the spectrum of transmitter response to sine pulse is 50% of that of the 

square pulse. Fig. 4-18 shows the three frequency spectra with a focus on the second 

mode of vibration of the transmitter responses to the three pulse types. The magnitude of 

the spectrum of the transmitter response to sine pulse is substantially less than those to 

square and step pulses. The difference in the second mode frequency f2 of transmitter 

responses to square and step pulses is less compared with the difference in the 

transmitter responses to square and sine pulses. This occurs because the magnitude of 

f2 for sine response is very low (0.5 of the magnitude of f1 of square pulse) to the extent 

that the Fourier calculations could not distinguish the peak properly (Fig. 4-18). The first 
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mode resonance frequency of the bender used in this study (f1 = 9.7 kHz) is about 3 times 

larger than the corresponding resonance frequency of the bender studied by Rio (2006) 

(e.g., f1 = 3.4 kHz). Thus, the maximum displacements measured in this study should be 

around 3 times smaller than the displacements obtained by Rio (2006) because according 

to equations (3) and (5), the maximum displacement is inversely proportional to the 

resonant frequency. However, the change in resonance frequencies does not justify the 

three orders of magnitude difference in the displacements of the bender used in this study 

and that of Rio (2006). 

 

 

Fig. 4-17: Frequency spectra of the transmitter responses in air to three types of input 

excitations: 1st mode 
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Fig. 4-18: Frequency spectra of the transmitter responses in air to three types of input 

excitations: 2nd mode 

The results above suggest that input pulses of square and step types excite higher 

modes. An input pulse of sine type can be used if participation of higher modes is not 

desirable. However, a higher input voltage might be needed for sine pulses to increase 

the amplitude of the response. Over the years, several uncertainties have arisen in the 

literature concerning the selection of appropriate input excitation pulse in conventional 

BE testing. The discussion presented here and the corresponding results in Figs. 4-16 to 

4-18 help reduce some of these uncertainties. 

Bender elements are small-sized plates and identifying their deformation behaviour is 

crucial for understanding the actual behaviour of the transmitter inside the soils. Based 

on the transmitter displacement readings recorded at 102 points on its surface for input 

sine and square pulses, aggregated responses of the transmitter to the sine and square 

pulses are simulated using MatlabTM. These simulated responses (i.e., deformations of 
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transmitter) are shown in Fig. 4-19 and Fig. 4-20 at 0.32 ms from the start of the excitation. 

The peak amplitude of 57 nm of the square pulse response is more than double the peak 

amplitude of 25 nm of the sine pulse response. Moreover, the square pulse response 

indicates a larger participation of higher modes than the sine pulse response. This result 

corroborates the results of Figs. 4-15 and 4-18 where it is shown that the square pulses 

excite higher modes in the transmitter response. These simulations further show that the 

transmitter response to a square pulse is similar to that of a cantilever plate (with flexural 

response in mutually perpendicular directions), which is in contradiction to the typical 

assumption made in BE tests that the transmitter vibrates as a beam inside the soil (Lee 

and Santamarina 2005). However, the transmitter response in air to a sine pulse can be 

considered close to that of a beam because the first mode of vibration dominates the 

response. The plate behaviour of the transmitter applies to a BE of any typical size as the 

dimensions affect the resonance frequency of the BE but not significantly the shape of 

the vibration modes.   

 

 

Fig. 4-19: Snapshot of the transmitter response in air to a sine input excitation at 0.32 

ms 
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Fig. 4-20: Snapshot of transmitter response in air to a square input excitation at 0.32 ms 

Lee and Santamarina (2005) recommend the use of Eq. 4.3 for approximating resonance 

frequencies of a bender element vibration in air. The measured first mode resonance 

frequency of the transmitter (f1 = 9.7 kHz) can be used to determine the accuracy of this 

recommendation. Properties of the transmitter used in this study are: Eb = 6.3 x 1010
 Pa, 

ρb = 7700 kg/m3, Lb = 6 mm, b = 14 mm, and h = 1.5 mm (Camacho-Tauta et al. 2015). 

Further, the characteristic number kL for the first and second modes of vibration of a 

cantilever beam with fixed-free condition are 1.8751 and 4.69, and these values are used 

in the calculations. Using f1 = 9.8 kHz, the effective length factor α is estimated to be 

1.048. The measured second mode resonance frequency (f2 = 27.5 kHz) of the transmitter 

in air is compared with the value of f2 estimated using Eq. 4.3. The estimated value from 

equation (3) is 60.68 kHz which is very different from the actual measured f2 (= 27.5 kHz). 

This result shows that Eq. 4.3 is not a reliable estimator of the resonance frequency of 

bender element vibration in air.  
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4.6.3 Measurements in liquids 

This section presents the responses of the transmitter submerged in various liquids listed 

in Table 4-1. The effect of the presence of plexiglass box on the penetration of laser beam 

is studied before performing measurements with transmitter in liquids. The effect is 

quantified by calculating the percent difference between signals of the transmitter 

responses in air with and without the presence of plexiglass box for a given input 

excitation. A maximum difference of 2.1% is noted which is rather small and, therefore, it 

is assumed in this study that the presence of plexiglass box has negligible impact on the 

observed transmitter response data. 

The laser beam of the laser vibrometer used in this study is usually affected by the 

refractive index of the medium through which the beam penetrates. To evaluate the 

effects of the refractive indices of different media on the laser measurements, transmitter 

responses are measured in air with different media present in between the laser head 

and the transmitter. The effects of the presence of different media on the transmitter 

response in air were found to be negligible and are not considered further in obtaining the 

results discussed below.  

Fig. 4-21 shows the first 1.1 ms of the displacement responses of the transmitter 

subjected to 9 kHz sine pulse measured in liquids. All the output signals are normalized 

with respect to the negative peak displacement of the transmitter response in the mineral 

oil mixture. The peak displacement of the transmitter response in sucrose-2 is 41% less 

than that in the mineral oil (the peak displacements are shown by solid circles in Fig. 

4-21). In general, a 50% increase in the density ρ of the liquids caused a 40 % decrease 

in the peak displacement at a rate of about 23 nm-mL/g. 
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Fig. 4-21: Transmitter responses to 9 kHz sine pulse in various liquids 

The time signals shown in Fig. 4-21 are used to compute the damping ratio ξ of the 

transmitter in different liquids using the logarithmic decrement method. The first mode 

natural frequencies f1 of the transmitter in these liquids are obtained from the frequency 

spectra of these time signals. Fig. 4-22 presents the variations of f1 and ξ with density ρ 

of different liquids.  Clearly, the presence of liquids has a significant effect on f1 and ξ of 

the transmitter. Addition of water alone reduced f1 by 30% and enhanced ξ by about 120% 

from their corresponding values in air. Both f1 and ξ more or less vary linearly with the ρ; 

with a 50% increase in ρ, f1 decreases by about 12% at the rate of 1.8 kHz-mL/g and ξ 

increases by about 95% at the rate of 10.7%-mL/g. This decrease in f1 and increase in ξ 

is the result of added liquid mass around the transmitter.  
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Fig. 4-22: Natural frequency and damping ratio of transmitter response versus mass 

density of liquids 

The effects of fluid viscosity μ on f1 and ξ are presented in Fig. 4-23.  The first natural 

frequency decreases and damping ratio increases as μ increases from 1 (for water) to 5.2 

cP (for sucrose-2). However, the transmitter response in the mineral oil does not follow 

this trend. This difference occurs possibly because the density of the mineral oil is the 

least amongst the four liquids. Even though the viscosity of oil is the greatest (8.2 cP), the 

change in density from sucrose-2 to mineral oil governs the transmitter behaviour more 

than the change in viscosity. The trend of decreasing f1 and increasing ξ is expected to 

continue if a sucrose solution with a concentration greater than 40% is used.  
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Fig. 4-23: Natural frequencies and damping ratios of the transmitter for different fluids 

with different viscosities 

4.6.4 Measurements in transparent soil 

Fig. 4-24 shows the displacement response of the transmitter embedded in transparent 

soil (with zero applied vertical stress) and subjected to a 9 kHz sine pulse. As expected, 

the presence of transparent soil significantly reduces the displacement of the transmitter 

vibration; the peak displacement is reduced by 70% from its value in air. f1 and ξ of the 

transmitter in the transparent soil are calculated from the frequency spectrum shown in 

Fig. 4-25 (the plot corresponding to 0 kPa stress). The addition of fused quartz results in 

an increase in mass around the transmitter because of which f1 and ξ of the transmitter 

response in transparent soil are respectively about 9% less and 300% more than f1 and 

ξ of the transmitter response in air. These results confirm that the transmitter response in 

transparent soil is completely different from the sine pulse input excitation. The reliability 

of conventional BE test results now becomes highly questionable because the 
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predominant assumption in BE test is that the transmitter response in soil has the same 

shape as the shape of the input excitation (Lee and Santamarina 2005).  

Eq. 4.4 and the resonance frequency f1 of the transmitter in soil (8.3 kHz) are used to 

estimate the coefficient . Youngs modulus Es and mass density s of the transparent soil 

are 72 GPa and 1310 kg/m3 respectively (Ezzein and Bathurst 2011), and  = 1.048 is 

calculated from the measurements in air above. The estimated , for a fused quartz 

transparent soil, is 208 which is about 100 times larger than the values obtained for a 

sand specimen by Lee and Santamarina (2005) and Camacho-Tauta et al. (2015). This 

result shows that the experimentally determined value of  depends not only on the 

volume of the soil mass affected by the bender but also on the soil confinement and 

geometry of the BE.  

 

Fig. 4-24: Transmitter responses in transparent soil with no applied stress and with 

applied vertical stress of 35 kPa 
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Fig. 4-25: Frequency spectra of the transmitter responses in transparent soil under 

different vertical stresses 

4.6.5 Effects of vertical stress 

Fig. 4-24 also shows the normalized displacement signals of the transmitter response for 

an applied vertical stress σv = 35 kPa. The increase in σv from 0 to 35 kPa reduces the 

peak displacement by 67%. The frequency spectra of the signals measured with the 

transmitter under six different vertical stresses are shown in Fig. 4-25 with the peaks of 

the spectra indicated by solid circles corresponding to f1 in each case; these peak 

magnitudes and f1 are plotted against vertical stress in Fig. 4-26.. The peak magnitude 

from the spectra and f1 show approximately linear relationships with logarithm of the 

applied vertical stress. The peak magnitude reduces at a rate of 0.21 unit/kPa and f1 

increases at a rate of 0.06 kHz/kPa. 
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Fig. 4-26: Natural frequency and peak amplitude of the transmitter response versus 

applied vertical stress 

4.6.6 Transfer functions and arrival times 

Multiple modes of vibration participate when the transmitter is excited by an input voltage. 

Identifying these modes of vibration and their levels of participation is important because 

these modes control the characteristics of the perturbation generated by the transmitter 

in a BE test and also contribute in delaying the shear wave arrival at the receiver end 

(Fig. 4-1). Fig. 4-27 shows the transfer functions of the transmitter in air calculated using 

the response to three excitation signals: sine pulse, square pulse, and a 0-50 kHz 

bandwidth sine sweep. Properties of the three modes of vibration identified using the sine 

sweep transfer function are presented on the figure. The natural frequencies of the 

transmitter are f1 = 9.8 kHz, f2 = 27.5 kHz, and f3 = 47.2 kHz. The corresponding damping 

ratios of these modes of vibrations are ξ1 = 2.9%, ξ2 = 4.1%, and ξ3 = 5.9%. The third 

 

 

Frequency: f1 (kHz) = 9.3σv
0.06 

R2 = 0.97 

Magnitude: P = 0.6σv
-0.2  

R2 = 0.95 



63 
 

mode of transmitter vibration cannot be identified from the transfer function of the square 

pulse while only the first mode of vibration is identifiable from the transfer function of the 

sine pulse.  These results show that the transfer function from the sine sweep excitation 

is the most appropriate for identifying the various modes of transmitter vibration.  

 

 

Fig. 4-27: Transfer function of transmitter response in air from sine sweep, sine pulse 

and square pulse 

Fig. 4-28 shows the transfer function of the transmitter vibration in transparent soil from 

the sine sweep excitation. Also plotted in the figure is the transfer function of the 

transmitter vibration in air. There is significant difference in the modal properties of the 

two transfer functions. For example, the peak magnitude corresponding to the first mode 

reduced by about 90%, the natural frequency reduced by about 25%, and the damping 

ratio increased by about 400% when the transparent soil is placed around the transmitter.  
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Fig. 4-28: Transfer function of transmitter response in air and soil to using sinusoidal 

sweep excitation 

Unwrapped phase of the transfer functions can be used to calculate the relative time shift 

between input excitation and transmitter response, and the variation of relative time shift 

with frequency and the properties of the surrounding medium can also be evaluated. Fig. 

4-29 presents the variation of the relative time shift with frequency in air, mineral oil 

mixture, and in transparent soil. The relative time shift in all three media appears to reach 

the same constant value (0.05 ms) at higher frequencies. The relative time shift of 0.05 

ms is larger than the total time delay of BE systems reported in the literature (Camacho-

Tauta et al. 2015; Lee and Santamarina 2005) because it includes the time delay of the 

laser system which has a more sophisticated electronics that the typical BE system (e.g., 

velocity decoder). The estimated average time delay of the laser system used by Rio 

(2006) is in the same order of magnitude (0.04 ms). Fig. 4-29 mainly shows that the 

relative time shift in the BE system is frequency dependent and is affected by the 
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properties of the surrounding medium. These results explain why the frequency methods 

tend to work better at higher frequencies (Camacho-Tauta et al., 2015) when the relative 

time shift converges to a constant value.  

 

 

Fig. 4-29: Relative time-shift as function of frequency between input excitation voltage 

and displacement transmitter response in air, oil, and soil using a sine pulse excitation 

The relative time shift is greater in mineral oil mixture and transparent soil than in air 

because the mineral oil and soil create added mass effect around the transmitter (Sader 

1998). The difference in relative time shifts in mineral oil and transparent soil is not 

significant; this is most likely because no vertical stress is applied on the transparent soil 

for the measurements presented in Fig. 4-29. The results show that the relative time shift 

between input voltage excitation and transmitter response is a function of viscosity and 

density of the medium in which the bender is inserted. Therefore, the commonly used 

assumption in the frequency-based methods that the input excitation voltage is 

representative of the transmitter response is incorrect and requires revision. 
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4.7 Conclusions 

Bender elements (BEs) are commonly used to estimate the shear wave velocity of soil 

samples in laboratories. The BE test remains without a standardized procedure mainly 

because of a lack of understanding of the actual behaviour of BEs inside the soil 

specimen. This chapter presents the results of a novel experimental program in which the 

actual behaviour of a transmitter bender element placed inside a transparent soil is 

studied for the first time using a state-of-the-art laser vibrometer. The transparent soil has 

properties (such as shear strength) close to those of granular soils with angular particles. 

Actual BE vibrations are measured in air, in liquids of different mass densities and 

viscosities, and in transparent soil specimens under different vertical stresses. 

The effects of input excitation pulses in air are assessed by measuring the transmitter 

response to three input pulses: sine, step, and square. The effect of input voltage 

amplitude on the BE response is studied by measuring the transmitter responses to sine 

pulses of different amplitudes. The results clearly show a linear relationship between the 

input voltage and the peak BE displacement in air, confirming the trend predicted by the 

theoretical equation.  The 3D response of the BE transmitter in air to sine and square 

input pulses is measured on a grid containing 102 nodes on the surface of transmitter. 

Natural frequencies and damping ratios of different modes of vibration of the transmitter 

in air are determined by using a sinusoidal sweep excitation. The effect of liquid density 

and viscosity on the transmitter response to sine input pulse is examined by measuring 

the BE displacements in water, sucrose of two different concentrations, and a mineral oil 

mixture. The effects of vertical stress on the BE response to sine input pulses are 

investigated by measuring transmitter response in the transparent soil under different 

applied vertical stresses. Finally, the transfer functions between the BE responses and 

the input excitation are calculated to understand the effects of input excitations and 

surrounding media on the relative time shift between input excitation and transmitter 

response.   

This study shows from actual measurements of transmitter vibrations inside a soil that the 

response of the transmitter embedded in soil is significantly different from the input 

excitation. These results raise serious questions on the reliability of the analysis of BE 



67 
 

tests using frequency methods because these methods assume that the BE response 

has the same shape as the input excitation. Novel results of this study show that the 

square input pulse causes the largest displacement in the transmitter response in air while 

the smallest transmitter displacement is obtained from the sine pulse. The square and 

step input pulses cause greater participation of the higher modes in the transmitter 

response than the sine input pulse.  The simulations of the actual transmitter response to 

sine and square input pulses also corroborate the conclusion that the square pulse 

excites higher modes more than the sine pulse.  

Transmitter responses measured in liquids show that a 50% increase in density causes a 

decrease in f1 by about 12% and an increase in ξ1 by about 95% for the range of liquid 

density (0.8-1.2 g/mL) considered in this study. The investigation of the effect of viscosity 

on transmitter response shows that density governs the transmitter response more than 

the viscosity of liquids.  

The results of transmitter response in transparent soil show that f1 of the transmitter vary 

linearly with logarithm of vertical stress. In order to determine the vibration modes of the 

transmitter, transfer functions of the transmitter are calculated using sine pulse, square 

pulse, and a 0-50 kHz bandwidth sine sweep as the input excitations. Three modes of 

vibration of the transmitter response in air are identified; their natural frequencies are 9.8 

kHz, 27.5 kHz, and 47.2 kHz, and the corresponding damping ratios are 2.9%, 4.1%, and 

5.9%. It is found that the sine sweep is most suitable for calculating the transfer function 

of the transmitter. The transfer function of the transmitter response measured in soil 

shows that, as expected, the modal properties of the transmitter response change 

significantly in soil. The relative time shifts between the input excitation and the transmitter 

responses are the functions of frequency and surrounding media; these differences 

decrease with increase in frequency and approach a constant value of about 0.05 ms. 

This result explains why the frequency-based methods tend to work better at higher 

frequencies. This relative time shift does not represent the actual time delay between the 

input excitation and the transmitter response because it includes the time delay caused 

by the laser vibrometer used in this study. The relatively large time delay of the laser 

system is compatible with reported values in the literature.  
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5 Evaluation of dynamic response of the bender-element system in 

different media 

5.1 Introduction 

This chapter presents the results of experimental modal analysis of a transmitter (Tx) to 

extract modal properties of the transmitter. The aim of this chapter is to advance the 

understanding of the frequency response of the Tx inside the soil by performing the 

experimental modal analysis of the Tx in different media including air, liquids of different 

mass densities, and transparent soil. The experimental modal analysis is necessary for 

understanding the frequency response of the Tx because the method of mechanical force 

exerted by the electrical input voltage on the Tx is unknown. Experimental modal analysis 

allows the determination of the frequency response of the Tx inside the soil without 

knowing the actual force (Avitabile 2001). A new Tx with dimensions different from that 

used in the measurements for Chapter 4 is used. Along with the mode shapes, the study 

of effects of liquids mass density and induced vertical stress in the soil is enhanced by 

testing in liquids of greater density and in transparent soil with higher vertical stress.  

Laser vibrometer is used to measure the Tx response at different locations on the Tx 

surface. A system identification algorithm called the Second-order Blind Identification 

(SOBI) is used for analyzing these laser measurements to determine the frequencies, 

damping ratio, and mode shapes of the Tx inside different media  (Sadhu and Narasimhan 

2014; Sadhu et al. 2017).  

This chapter also presents the results of a numerical study of the transmitter response to 

address the lack of understanding of the complicated interactions between the BE and 

the embedding soil. Robust numerical modeling, and advanced utilization of the laser 

technology are perhaps the only practical techniques – so far – for accurately 

characterizing BE-soil interactions. 
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5.2 Background 

5.2.1 Experimental modal analysis 

A summary of the SOBI method along with a brief introduction of the experimental modal 

analysis are presented; more details can be found in Belouchrani et al. (1997) and Sadhu 

and Narasimhan (2014). SOBI is one of the methods available for solving a class of 

mathematical models associated with experimental modal analysis.  

The process of estimation of the modal parameters of a vibrating system using physical 

responses of that system is called experimental modal analysis (Avitabile 2001). In a 

typical modal analysis, the input force used to excite the system must be known for 

performing the analysis (Ljung 1987). However, advancements in the fields of structural 

engineering and signal processing have led to the development of an analysis called Blind 

Source Seperation (BSS) which circumvents the need for knowing the input force (Sadhu 

et al. 2017); this type of modal analysis is also called output-only modal identification. The 

input force in BE test is unknown; therefore, BSS is best suited for estimation of the Tx 

modal parameters.  

5.2.2 Second-order blind identification (SOBI) 

Blind source separation (BSS) is a signal processing tool that has been abundantly used 

in OMA (Cardoso 1998). This technique is called ‘blind’ because the input forces, i.e., the 

sources that cause the system response are unknown. Modal parameters are determined 

by solving different statistical optimization problems which differ based on the 

assumptions in the mathematical model (Kerschen et al. 2007). In BSS, the matrix of the 

measured system responses is equivalent to the modal transformation matrix times the 

matrix of modal coordinates. This model is analogous to the solution of equation of motion 

of a multi-degree of freedom system. The motivation of BSS is that the matrix of the modal 

coordinates is a special case in which the sources are functions of time (Sadhu et al. 

2017).   

Considering a linear, classically damped, and lumped-mass n-degrees of freedom 

(DOFs) system subjected to an input force F(t), the governing equation of motion is given 

by  
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 ( ) ( ) ( ) ( )Mx t Cx t Kx t F t+ + =   5.1 

where, x(t) is a vector of displacements at the degrees of freedom (DOFs), M is the mass 

matrix, C is the damping matrix, and K is the stiffness matrix. The solution of Eq. 5.1 can 

be written in matrix form as 

 =x Q   5.2 

where x  is an N  m matrix of measured responses at m locations and N samples of 

each response,   is an N x N modal transformation matrix of the Tx , and Q  is an N x 

n matrix of n vectors of modal coordinates. The mathematical form of the BSS model 

which SOBI solves (approximately) is 

 x=As+b   5.3 

where b  is the matrix of the uncorrelated measurement noise, s  is a matrix (N x n) of 

unknown source signals, and A is the mixing matrix (N x N) which contains source 

contributions. It can be clearly observed that Eqs. 5.2 and 5.3 are analogous with 

equivalent to A and Q equivalent to s . Q is a special case of s  in which the sources are 

functions of time. SOBI works for ‘over-determined’ models in which the measured 

responses are greater than or equal to the number of DOFs (i.e., m ≥ n) with the 

assumption that the arrival of source signals is instantaneous and the sources arrive at 

the same time at the measurement locations (‘instantaneous’ model). Further, SOBI can 

be applied only for time-invariant systems for which A has time-independent coefficients. 

There are other assumptions associated with SOBI (Belouchrani et al. 1997) that allow 

utilization of matrix diagonalization procedures to identify the sources and solve Eq. 5.3 

to extract the modal parameters of the system. These are:  

• The sources are assumed to be stationary, 

• The sources are spatially uncorrelated but temporally correlated 

• Measurement noise is uncorrelated 

SOBI comes under the class called Second-order methods (SOS) because these 

methods use the auto-correlation matrices (second-order statistics) of the measured 

responses.  
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Mathematically, the starting point of the SOBI solution is construction of covariance 

matrices (0)xR and ( )pxR  at time zero and at an arbitrary non-zero time lag p, respectively, 

using the measured response matrix ( )kx (k is the time sample no. ), as shown below: 

 

(0) ( ) ( ) (0)

( ) ( ) ( ) ( )

T TE k k

T Tp E k k p p

  
 
  

  
 
  

= =

= − =

R x x A R Ax s

R x x A R Ax s

  5.4 

Where  ( ) ( ) ( )Tp E k k p= −sR s s is the covariance matrix comprising of source vectors. 

A numerical procedure called the joint approximate diagonalization along with the use of 

advanced mathematical tools such as whitening, orthogonalization, and unitary 

transformation lead to an estimated matrix Â  of A (Belouchrani et al. 1997). 

Subsequently, the source matrix s , through which the modal coordinates matrix Q  are 

estimated, is obtained using 

 1ˆ −=s A x   5.5 

The source matrix s  is equivalent to the modal coordinates matrix Q . The natural 

frequency and damping associated with each mode are estimated by applying standard 

time domain or frequency domain processes on the modal coordinates from Q (Sadhu et 

al. 2017).  

Despite its relative simplicity, SOBI method has been successfully used in complex 

applications such as retaining walls (Rainieri et al. 2012), underground structure 

(Popescu 2010), dam (Popescu 2011), and in a power system (Seppänen et al. 2015). 

On the other hand, SOBI method has a few limitations which are listed below 

• SOBI method cannot be independently applied in an ‘under-determined’ system 

i.e. where m < n and the inverse of matrix A does not exist.  

• SOBI method cannot be used where the input forces and structural responses are 

non-stationary such as in earthquakes, traffic loading and human-induced 

excitations.  
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• SOBI method cannot be applied where the mixing matrix i.e. A has time-

dependent coefficients (time-variant system) 

The BE test system is typically assumed to be a linear-time invariant system; the input 

excitation applied to the Tx can be assumed to be instantaneous (instantaneous model). 

Moreover, the Tx responses at different locations of the Tx surface are equal to the number 

of DOFs of the Tx (i.e., m = n). Therefore, the SOBI method is a suitable option for 

extracting the modal parameters of the Tx. 

5.3 Literature review on numerical studies 

Numerous numerical attempts have been previously made to improve the understanding 

of bender element testing, neither of which focus on transmitter-medium interactions. 

Jovicic et al. (1996) performed two-dimensional (2D) plane-strain finite element (FE) 

analyses for estimating the shear wave arrival time in which a soil node was forced to 

oscillate transversely in a single sinusoidal pulse. Arulnathan et al. (1998) presented a 

2D plane-strain FE analysis to evaluate the sources of errors in determining the travel 

time. A sinusoidal wave bending moment uniformly distributed along the length of the 

transmitter was used as the input excitation (alternative to a displacement at the bender 

tip). Arroyo et al. (2002; 2006) created a three-dimensional (3D) numerical model using 

FLAC3D in which an input sinusoidal signal was applied at the bender tip; the response 

displacements were estimated in locations away from the transmitter. Rio (2006) 

presented numerical simulations using FLAC3D in which a partially embedded bender in 

a half cylindrical sample was simulated; springs were simulated at the nodes of the 

embedded bender. However, in both the studies of Rio (2006) and Arroyo et al. (2006), 

the characteristic parameters and the proposed models were not calibrated/verified 

against experimental data. Cheng and Leong (2018) presented a three-dimensional finite 

element model to interpret damping ratios from bender element tests. The bender 

element was replicated by a row of nodes located on the surface of a cylindrical sample, 

where a sinusoidal horizontal displacement was introduced.  A key limitation in current 

numerical models is the lack of understanding of the relationship between the input 

voltage and the actual transmitter displacements inside the soil. The excitation wave 

generated from the transmitter has been replicated in different forms, e.g. displacement 
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time histories assigned on nodes on the transmitter tip or along the length of the 

embedded transmitter. Another common method, which ignores bender-soil sample 

interaction, is to assign displacement time histories directly on the sample surface. The 

accuracy of these methods has not been established yet in the literature. 

The numerical study is aimed at accurately characterizing the interactions of the BE-

transmitter with the medium in which it is embedded. Experimental measurements of the 

transmitter displacements are obtained in different media (air, liquids, and transparent 

soil) and under different conditions such as in liquids of different mass densities and in 

transparent soil under different vertical stresses. Numerical model of the transmitter is 

calibrated using experimental transmitter response in air. Then, the numerical model is 

customized to match the transmitter response in liquid and transparent soil; the changes 

needed in the numerical model to match the experimental transmitter response are 

analyzed to understand the BE-soil sample interaction. Finally, a parametric study is 

performed to evaluate the effects of different sample properties on the transmitter 

resonance frequency and damping ratio. The resonance frequency varies linearly with all 

the elastic parameters studies (ν, G, K) while the damping ratio does not follow the regular 

trends. (Atefi-Monfared, K. 2019).  

 

 

5.4 Experimental setup 

The experimental setup used for this chapter is similar to the one used for measurements 

in Chapter 4. However, there is a small difference; the plexi-glass box used for holding 

the liquids/transparent soil is replaced by a smaller plexi-glass tube of 1.5 inches x 1.5 

inches x 3 inches with a wall thickness of 0.125 inches (Fig. 5-1). This tube is used to 

minimize the quantity of the transparent soil through which the laser penetrates to reach 

the transmitter and because the transparency of the transparent soil is much better with 

this smaller tube.  
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Fig. 5-1: Plexi-glass square tube used for holding the transparent soil 

A schematic of the setup with the new plexi-glass tube is shown in  Fig. 5-2. Note that the 

bender transmitter (Tx) used in this study is different from the one used for chapter 4. The 

dimensions of this new Tx are 13 mm x 5 mm x 0.5 mm. The weights used for inducing 

the vertical stress in the transparent soil are placed on a steel rod with a rectangular base 

plate instead of the plastic cylinder (Fig. 5-3). Another difference in this setup is the 

addition of a piezo-driver to generate higher input voltages to be applied to the Tx. The 

function generator has a maximum output voltage of 10 VPP; this voltage is insufficient 

for the Tx to respond at higher vertical stresses.  The piezo-driver amplifies the input 

voltage by 25 before applying the input voltage to the Tx. This amplified signal is higher 

than the maximum voltage that can be monitored on the computer or the oscilloscope; 

therefore, the input voltage is reduced within the piezo-driver before the input voltage is 

monitored/stored on the oscilloscope/computer.  

5.4.1 Description of the setup 

The function generator generates an input voltage which is amplified by the piezo-driver 

before applying to the Tx; the amplitude of this input voltage is reduced before monitoring 

and storing on the oscilloscope and computer. The Tx vibrates in response to the amplified 

1.5” 

3
” 
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input voltage; these vibrations are measured by the laser head through the laser beam. 

Note that the laser setup is capable of measuring vibrations of frequencies of up to 25 

MHz. The vibration controller digitizes the laser readings to be monitored/stored in the 

oscilloscope/computer. This process is followed for all measurements i.e. in air, liquids, 

and transparent soil with confinements except that the piezo-driver is not used (needed) 

for measurements in air and liquids because the amplitude of the Tx response in air and 

liquids is sufficient. 

Note that the replacement of the big plexi-glass box with the smaller square tube for 

holding the liquids and soil means the o-ring placed in the groove of the base platen is no 

longer required. However, the base of the square tube has to be sealed to prevent 

leakage of liquids through the base of the square tube; for this purpose, silicon sealant is 

applied at the base of the square tube before placing it around the Tx on the base platen  

The reflecting tape used for laser measurements in liquids/soil in chapter 4 is also 

replaced by a better reflecting tape which is found to give more consistent results; this 

tape (called reflective sheet targets) is typically used with surveying equipment and is 

commercially available (SOKKIATM). The distance between the laser head and Tx (x) is 

required to be at least 250 mm for sufficient laser focus (Polytec 2013); it was maintained 

at 610 mm for all the tests (air, liquids, soil). All time signals are recorded for a length of 

5 ms with a time step of 3.9 x 10-5 ms. An average of 500 signals is measured and stored 

for all measurements to reduce noise contamination in laser measurements.  
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Fig. 5-2: Schematic of the experimental setup for measuring Tx vibrations in liquids and 

transparent soil 
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Fig. 5-3: Weights on the steel rod to induce vertical stress in the transparent soil 

5.4.2 Calibration of piezo-driver 

The piezo-driver is used to amplify the input voltage from the function generator before 

the input voltage is sent to the transmitter (Fig. 5-2). The electrical circuit of the piezo-

driver amplifies the signal by 25 times. The calibration of the piezo-driver is performed to 

ensure that the piezo-driver is amplifying the signals according to the specifications. This 

calibration is done by estimating transfer function of the piezo-driver using a spectrum 

analyzer (HP-35670A). The built-in source of the spectrum analyzer is used to generate 

random noise signals of different voltage levels (from 0.6 VPP to 12 VPP) and input into 

the piezo driver; simultaneously, the input signal is sent to the input channel of the 

spectrum analyzer. The output from the piezo-driver is sent to the output channel of the 

analyzer and the transfer function is estimated.  Fig. 5-4 shows the magnitude plots of the 

transfer functions of the piezo-driver in response to lowest and highest voltage levels 

Steel rod 

Base plate 
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tested. The magnitude plot of higher voltage level is offset by 1 for clarity. Fig. 5-4 shows 

that the piezo-driver amplifies the signal by 25 times as expected; and the magnitude is 

constant across the frequency range of 3-25 kHz. The DC-component noise in frequency 

range of 0 to 3 kHz does not affect the results of this study because the relevant frequency 

range is from 7 kHz to 25 kHz. These results show that the piezo-driver is suitable for use 

with the experimental setup in this study. 

 

Fig. 5-4: Transfer functions of the piezo-driver with different input voltages (offset by 

0.5) 
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5.5 Experimental methodology 

5.5.1 Measurements in air 

The Tx responses at different locations on the Tx surface are required to form the 

operating data for performing the BSS of the Tx. The positioning stage is utilized to move 

the Tx (target) such that the laser is pointed at different locations on the Tx surface and 

the time signals of the Tx response are measured. This set of signals is processed with 

the SOBI algorithm to extract the Tx modal parameters. Fig. 5-5 shows the locations on 

the Tx surface at which the vibrations are measured. The spacing between the locations 

on the Tx is 0.5 mm along the length of the transmitter and 1 mm along the width. An 

average of a total of 500 measurements at each point on Tx surface is used for further 

processing.  

Sine pulse is a suitable input signal for analyzing the Tx response in different media 

(Section 4.5.1). A sine-pulse of 10 volts peak-to-peak (VPP) is used as the input signal 

Vapp to measure the Tx response in air. The first resonance frequency f1 of the Tx response 

in air is selected as the central frequency fc of this sine pulse to maximize the energy in 

the first mode of the Tx response (Section 4.6.2). The resonance frequency f1 is picked 

from the transfer function of the Tx which was experimentally determined using a 

spectrum analyzer (HP-35670A). The input excitation given to the Tx for determining the 

transfer function is a sine-sweep applied from the built-in source of the analyzer; and the 

response of the Tx to the sine-sweep is measured using the laser at the center of the free 

end of the Tx (point 5 in Fig. 5-5, also shown as a dot in Fig. 4-3). 
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Fig. 5-5: Locations of laser measurements on the Tx 

5.5.2 Measurements in liquids 

The locations for measurements with Tx in liquids are the same as that for measurements 

in air (Fig. 5-5). The liquids used for this study are the same as those used for chapter 4 

i.e. mineral oil mixture (least dense), water, sucrose of 20 % and 40 %; however, a 

sucrose of 60 % concentration (ρL = 1.287 g/mL) is added to the list of liquids in which Tx 

response is measured. Densities of the liquids are measured in the lab. The procedure 

followed for measurements in liquids is similar to that of air except that now the square-

tube is placed around the Tx and sealed with the silicon sealant. Silicon sealant is left for 

it be cured for three hours before gently pouring the liquids in the square tube up to 1 inch 

(25.4 mm) level. The silicon sealant is broken and the square tube and Tx with the base 

platen are thoroughly washed in between measurements for different liquids. The effect 

of plexi-glass presence around the Tx has already been discussed to have negligible 

effect in chapter 4; this exercise is repeated (but not presented to avoid repeatability) to 

ensure that the square tube effect can be neglected in the analysis of the measurements 

in liquids. The displacement time signals in liquids are gathered and processed using the 

SOBI algorithms to assess the effects of density on the modal shapes of the Tx. The 

frequency spectra of the transmitter responses in these liquids are used to estimate the 
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resonance frequency and damping ratio of the transmitter in these liquids. The input 

signal used is again the sine pulse signals with a 10 VPP amplitude.  

5.5.3 Measurements in transparent soil 

The measurement locations on the Tx surface for responses in transparent soil are the 

same as those for air and liquids (Fig. 5-5). Fused quartz are air-pluviated in the tube 

after the measurements in the oil are completed to make a soil sample of plan dimensions 

32 mm  32 mm (which are the same as the internal dimensions of the tube) and height 

25 mm. Fig. 5-6 shows a picture of the soil sample around the Tx placed on the base 

platen. The time signals of the Tx responses to a sine pulse input excitation (with Vapp = 

25 VPP and fc = f1) at different locations are processed using the SOBI algorithm to 

estimate the Tx modal parameters in soil.  

The vertical stress σv in the soil is induced by placing dead weights on a steel rod which 

is placed on the soil for transferring the load from the weights to the soil. A rectangular 

base plate with dimensions equal to the internal area of the square tube (32 mm  32 

mm) is glued to the base of the steel rod to ensure uniform load distribution on the soil. 

Then, the vertical stress σv at the top of the transmitter is estimated from the weight and 

internal area of the square tube (load / area).  
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Fig. 5-6: Transparent soil sample around the Tx in the square tube on the base platen  
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Base platen 
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5.6 Numerical analysis 

The commercial software FLAC3D based on explicit finite difference method, is used to 

simulate the BE-transmitter response while embedded in the different materials described 

above (Atefi-Monfared, K. 2019).  The sample size and bender element dimensions are 

those of the experimental setup.  The material properties of the bender element and the 

surrounding medium are determined through rigorous calibration with the laser 

displacement readings obtained from laboratory experiments.  The mesh geometry – 

which has been identified to have a notable effect on a systems’ dynamic response 

(Hardy, 2002 & 2003; Arroyo et al., 2002 & 2006; Rio, 2006) – as well as the manner of 

employing the excitation wave are determined through a rigorous calibration of the 

numerical model with the laser displacement readings obtained from laboratory 

experiments. The primary step for a fundamental assessment of bender-medium 

interaction is to calibrate the bender element. This is achieved through modeling the 

bender element response to a pulse loading in air (free-vibration). The calibrated bender 

element model is subsequently implemented to assess the effects of various materials on 

the dynamic response of the bender. 

For accurate representation of wave transmission through the model in all simulations, 

we assure the spatial element size △L to satisfy the criteria that 10L      (Kuhlmeier 

and Lysmer, 1973)  where ∆L is the spatial element size and λ is the wavelength 

associated with the highest frequency component. 

In FLAC3D, material damping may be specified in various forms: Rayleigh damping, 

which is frequency dependent; hysteretic damping, where damping allows strain-

dependent modulus; and local damping, an approximate method to include hysteretic 

damping. The local damping has been commonly employed for dynamic simulations, also 

adopted by Arroyo et al. (2002 & 2006) and Rio (2006). Local damping enters the dynamic 

equilibrium calculations as a force proportional to the out-of-balance nodal forces and not 

to the nodal velocity. This technique was borrowed from DEM methods (Cundall, 1987). 

Local damping (αL) can be estimated based on the critical damping ratio (D) 
L

D = . D 

varies between 1 % and 5 % for most soils at shear strains mainly induced in pulse tests 

(Santamarina et al. 2001). In this study, both the local Rayleigh damping and the local 
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damping is adopted for simulations. The damping coefficient in different media is 

estimated through calibration of the model with the experimental displacement data set. 

Simulations suggest that both the Rayleigh and local damping give similar results, the 

former however reduced the run time of the model notably. 

Consistent with the experimental setup, the bender is subjected to a horizontal sinusoidal 

velocity pulse, after which it is allowed to vibrate within the given sample. The excitation 

wave in the numerical model is defined such to replicate zero displacements and zero 

velocities on the bender at time t = 0. The horizontal displacement pulse used in the 

analysis is given by:  

 ( )2
1 cos sin 2

10
ft

u A ft



  
  

  
  

= −   5.6 

where A is a displacement coefficient obtained from the laser recording of the input pulse 

at the bender tip. The best replication of the bender response recorded in the laboratory 

was achieved where the excitation pulse was assigned at the center node of the 

embedded bender element tip.  

5.7  Results and discussion 

5.7.1 Transmitter transfer function in air 

Transfer function of the Tx is important to estimate the first mode resonance frequency f1 

of the Tx because f1 is used as the central frequency fc of the sine pulse for Tx responses 

in different media (unless noted otherwise). The spectrum analyzer calculates the transfer 

function in real time; time domain data of this transfer function is monitored and stored in 

an oscilloscope. A sine sweep of frequency range 0.1-50 kHz (spanning over the 

spectrum analyzer range limit) with Vapp = 0.5 VPP is used and the Tx response to this 

sine sweep is measured using the laser vibrometer. A typical pair of input and output time 

signals corresponding to the transfer function of the Tx in air is shown in Fig. 5-7. The 

spectrum analyzer calculates the power spectra of these input and output signals; then, 

the transfer function is calculated by dividing the cross-power spectrum over the input 

power spectrum. The change in wavelengths of the sine waves in the input signal shows 

the change in input frequencies with a constant voltage amplitude. The rise and fall of the 
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output signal amplitude indicates the resonance region. Resonance frequency fo and 

damping ratio ξ of this resonance region can be roughly estimated by this time signal; 

however, a more accurate method to estimate the fo and ξ is to use the frequency domain 

data of these signals (transfer function).  

Fig. 5-8 shows the magnitude of the Tx transfer function in air; two modes of vibration are 

identified in the frequency range of 0.1 to 50 kHz with their corresponding resonance 

frequencies f1 and f2, and damping ratios ξ1 and ξ2. The magnitude of the transfer function 

(TF) shows that the energy in the first mode of vibration is 50% more than that of the 

second mode of vibration, f2 (= 33.9 kHz) is more than double of f1 (= 15.28 kHz), but ξ1 

≈ ξ2. f1 = 15.28 kHz is used as the central frequency fc of the sine pulse to measure the 

Tx response in different media (unless noted otherwise). Note that the resonance 

frequencies and damping ratios of this transmitter are higher than those of the transmitter 

used in chapter 4. The transmitter used in this chapter has smaller dimensions than that 

of chapter 4 which aligns with this result of higher resonance frequencies and damping 

ratios.  

 

Fig. 5-7: Typical pair of time signals used for calculating the transfer function of the Tx in 

air  

 

Resonance  

Output  

Input  
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Fig. 5-8: Transfer function of the transmitter in air 

5.7.2 Mode shapes in air 

The Tx responses in air to a sine-pulse (Vapp = 10 VPP, fc = 15.3 kHz) measured using 

the laser at different locations (Fig. 5-5) are processed using the SOBI algorithm to extract 

the first three mode shapes of the Tx in air (Fig. 5-9). The modal coordinates of the mode 

shapes are estimated using the SOBI procedure described in the background section. 

The peak modal coordinate of each mode shape and the maximum displacement umax of 

the Tx in air corresponding to the peak modal coordinate of the first mode are shown in 

Fig. 5-9. These mode shapes are close to those of a cantilever plate vibration (Leissa 

1969); the first mode shape is a bending mode, the second mode is a plate mode 

(twisting), and the third mode is the second beam bending mode. This result shows that 

the typical model of a cantilever beam used in BE test is not valid (Lee and Santamarina 

2005). The first bending mode is the dominant mode as expected; the peak values 

corresponding to the second and third modes are only 5 % and 1 % of the peak value of 

the first mode, respectively. This result is in agreement with the results of Irfan et al. 

(2019) that the first mode is the dominant mode because the input excitation (sine pulse  

f1 = 15.28 kHz 
ξ1 = 4.18 % 

f2 = 33.9 kHz 
ξ2 = 4.16 % 
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in this case) frequency fc ≈ f1 of the Tx in air. The minor contribution of the second and 

third modes also corroborates the findings of Chapter 4 that the sine pulse input excitation 

introduces lesser energy in higher modes than a square pulse.  

 

 

Fig. 5-9: First three mode shapes of the transmitter vibration in air normalized with 

respect to the peak coordinate value of the first mode (red dot marks the peak 

amplitude; BE base (width = 13 mm) marked by the red line) 

5.7.3 Effects of input voltage amplitude 

Generally, the voltage of the input signal applied to the Tx in BE tests is arbitrarily selected. 

The effect of the input voltage on the Tx behaviour has not been studied because the 

actual Tx displacements cannot be measured in BE test. Leong et al. (2005) proposed an 

equation for estimating the peak-to-peak displacement xp-p of a Tx of length Lb and 

thickness h when the Tx is subjected to an input voltage Vapp: 

 

2
31

2

3

2

appb
p p

L V d
x

h


− =   5.7 

where d31 is the piezoelectric strain constant and   is a constant added in this study to 

represent the effects of liquids ( 1 =  in air). 

The actual displacements of the Tx is measured and checked against Eq. 5.7. The xp-p of 

the Tx in air and in oil are measured in response to a sine pulse (fc = 15.28 kHz) with 

different peak-to-peak input voltages (Vapp); these measurements are plotted with Eq. 5.7 

in Fig. 5-10. The values of the constants to evaluate Eq. 5.7 are: d31 = 390  10−12 m/V 

 

Peak = 0.01 

umax = 240 nm 

Fixed end 
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(Piezo 2005), Lb = 0.005 m (measured), and h = 0.0005 m (measured).  A very good 

agreement is observed between Eq. 5.7 (theoretical) and the experimental displacements 

in air with only a 2% difference in the slopes. The estimated 0.4 =  in oil shows that the 

slope of the experimental transmitter displacements in liquid is 60 % smaller than that in 

air. The effects of liquids other than oil on the transmitter displacements are discussed in 

Chapter 6. 

Rio (2006) also measured the transmitter displacements using a laser vibrometer and 

compared his experimental results with the results obtained using Eq. 5.7; the xp-p in air 

of two Tx tested by Rio (2006) in response to an input voltage with Vapp = 20 V are 

estimated to be 36 μm and 12 μm. These displacements are three orders of magnitude 

higher than those predicted by Eq. 5.7. The corresponding maximum shear strain along 

the BE height based on these peak displacements is of the order of 10−3%; which is 

inconsistent with the results from previous researchers (Pennington et al., 2001; Leong 

et al., 2005; Camacho-Tauta et al., 2015). 
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Fig. 5-10: Peak displacement vs peak-to-peak input voltage amplitude in air and liquid 

along with the equation  

5.7.4 Transmitter displacement response in oil 

The Tx displacement response to a sine pulse (fc = 15.28, Vapp = 10 VPP) measured inside 

the oil (point 5, Fig. 5-5)  is presented in Fig. 5-11. The figure shows that, even inside a 

liquid, the Tx response is similar to the free vibration response of a single-degree-of-

freedom system. The estimated values of fo and ξ of the Tx exponential decay are 11.58 

kHz and 4.40 % respectively. A small mismatch between the displacement response and 

the theoretical decay in the time range < 0.3 ms indicates a minor presence of higher 

modes of vibration in the Tx response. This higher mode presence is also observed in the 

frequency spectra of this time signal (next section).  

The effects of volume of the oil around the Tx inside the tube on the Tx behavior are 

investigated to ensure the measurements are not affected if the liquid volumes change. 

Tx responses in three volumes (20 mL, 50 mL, and 80 mL) are measured (point 5, Fig. 

5-5). Increasing the volume four times (from 20 mL to 80 mL) resulted in no significant 

Air  

Oil 

xp-p = 9.6Vapp 
1 =  

xp-p = 3.9Vapp 

0.4 =  

xp-p = 9.4Vapp 

Eq. 5.7 
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changes in the Tx response shown in Fig. 5-11;  the only change was that the peak 

displacement of the Tx response reduced by 0.02 %. 

 

Fig. 5-11: Normalized transmitter response to a sine pulse input excitation inside the 

mineral oil mixture 

5.7.5 Effects of liquid mass density on transmitter 

Tx responses to a sine pulse in five liquids with different densities ρL are measured using 

the laser vibrometer (at point 5, Fig. 5-5). The frequency spectra of these Tx responses 

are shown in Fig. 5-12 with the first and second mode peaks marked with solid circles. 

With increase of ρL by 50% the magnitude of the first mode decreases by 15% but f1 

decreases only by 5%. The average ratio of the maximum spectral magnitude of the first 

mode over the second mode of vibration (magnitude of f1 over magnitude of f2) of the Tx 

in liquids is about 22, while this ratio in air is about 38.  Therefore, the added mass of the 

liquids reduces the relative participation of the second mode in the Tx response by 44%.  

 

Exponential decay 

Max displacement = 35 nm 

fo = 11.58 kHz, ξ = 4.40% 

Input: 10 VPP 
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Fig. 5-12: Normalized frequency spectra magnitudes of transmitter vibration inside 

different liquids 

Chu (1963) proposed the following equation for estimating the ratio between the radial 

resonance frequency of a cantilever beam in an inviscid fluid (ωfluid) and in vacuum (ωvac):  

 1fluid L

vac b

b

h

 

 
= +   5.8 

where ρL and ρb are the densities of the fluid and beam respectively, b and h are the width 

and the thickness of the beam, and the constant   represents the mode number. Eq. 5.8  

is used to estimate the theoretical f1 of the Tx inside the five liquids using the values ωvac 

= 2π  15.28 kHz (radial resonance frequency in air), ρb = 7700 kg/m3, b = 0.013 m, h = 

0.0005 m, 4 =  along with liquid densities. The resonance frequency in vacuum is 

assumed to be the resonance frequency in air because less than 1 % has been reported 

1  Max = 1.00, f1 = 11.58 kHz  

2  Max = 0.96, f1 = 11.56 kHz 

3  Max = 0.90, f1 = 11.50 kHz 

4  Max = 0.87, f1 = 11.13 kHz 

5  Max = 0.84, f1 = 10.95 khz 

1  Oil, ρL = 0.84 g/mL 

3  S-20, ρL = 1.1 g/mL 

2  Water, ρL = 1.0 g/mL 

4  S-40, ρL = 1.18 g/mL 

5  S-60, ρL = 1.27 g/mL 
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in the literature (e.g. Chon et al. 2000). The theoretical frequencies and the experimental 

resonance frequencies f1 and f2 are plotted in Fig. 5-13 against ρL.   

  

Fig. 5-13: Experimental and theoretical (Eq. 5.8) f1 and f2 of the transmitter in different 

liquids as functions of the liquid density  

The experimental first mode resonance frequencies f1 match very well with the theoretical 

frequencies calculated using Eq. 5.8. The maximum percentage difference between the 

theoretical and the experimental f1 is 3.5% which corresponds to the f1 in oil; the 

theoretical resonance frequency in oil is greater than the corresponding experimental 

frequency. This result is consistent with the reduction in the resonance frequency with 

fluid viscosity μ proposed by Sader (1998) because Eq. 5.8 does not consider the effects 

of fluid viscosity on the resonance frequency.  Secondly, the effect of ρL are stronger than 

the effects of μ as has been shown by previous studies (Sader 1998; Atkinson and Lara 

2007).  

Mode 2 (f2), 4 =  

Mode 1 (f1), 5.8 =  

 

Max % diff. = 3.5% 

Oil Water S-20 
S-40 S-60 

Oil Water S-20 S-40 S-60 
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The theoretical f2 (estimated with the f2 in air and 4 = ) did not match very well with the 

experimental f2. However, by increasing the constant   from 4 to 5.8, a reasonably good 

match between the theoretical and the experimental f2 is achieved (dashed line in Fig. 

5-13). Therefore, Eq. 5.8 can be used for estimating f2 of a cantilever beam in inviscid 

liquids with 5.8 = .  

Fig. 5-14  shows the damping ratios ξ1 and ξ2 (calculated using the half-power bandwidth 

method) for the first and second modes of vibration, respectively, of the Tx inside the 

liquids along with the results of Vazquez et al. (2009) for an atomic force microscope 

(AFM) probe. The Tx results are compared with these AFM probes because: (i) there are 

no other BEs studies which present the results of a Tx response in liquids and (ii) AFM 

probes are piezo-electric microcantilevers (used in the aerospace industry), which are 

expected to have a behavior similar to a Tx. The values estimated by Vazquez et al. (2009) 

have been normalized so that the ξ of the AFM probe in water (7.96%) matches the ξ of 

the Tx in water (4.63%); this difference in ξ is because f0 of AFM probe is an order of 

magnitude higher than that of the Tx. Moreover, the dimensions of the AFM probe are 10 

times smaller than the dimensions of Tx which implies that the estimated ξ would be higher 

as shown in previous studies (Atkinson and de Lara 2007; Sader 1998) 
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Fig. 5-14: Damping ratio of the first two modes of the transmitter inside the liquids vs the 

mass density of the liquids 

The results in Fig. 5-14 are in agreement with the findings of Faria and Inman (2014) in 

that the equivalent damping of a system comprising of a cantilever beam submerged in a 

fluid increases with increase in ρL ⎯ a 50% increase in ρL results in a 56% increase in 

the first mode damping ratio ξ1. However, the trend (e.g. linear or exponential) of this 

increase has not been established yet in the literature. This study shows an approximately 

exponential increase in both ξ1 and ξ2 of the Tx with ρL. The estimated ξ1 and ξ2 of the Tx 

are very similar in oil, water, and S-20; whereas, a difference of 5% and 12% is observed 

between ξ1 and ξ2 of the Tx in S-40 and S-60 respectively. The results of Vazquez et al. 

(2009) also show an exponential increase; however, the rate of increase is much greater 

than the rate of increase in ξ1 and ξ2 of this study. One possible reason for this difference 

is because of the difference in geometry of the AFM probe and the Tx; the dimensions of 

the Tx used by Vazquez et al. (2009) are 0.241 mm  0.364 mm compared with 5 mm  

Modes 1 & 2 
ξ = 2.3(e)0.0007ρ

L
   

AFM probe 
ξ = 0.003(e)0.007ρ

L
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13 mm of the Tx. This interpretation is investigated further in the next section and is also 

in agreement with the results of Chon et al. (2000) and Atkinson and de Lara (2007).  

5.7.6 Effects of transmitter dimensions 

The Tx used in this study has dimensions 13 mm  5 mm  0.5 mm (T1), and the Tx used 

in Chapter 4 with a similar experimental setup is of dimensions 14 mm  6 mm  1.9 mm 

(T2). The estimated theoretical frequencies of the transmitters T1 and T2 calculated using 

Eq. 5.8  are plotted with the experimental frequencies against ρL in Fig. 5-15. This figure 

clearly shows the effect of Tx dimensions on f1 of Tx inside liquid; the ratio b/h (Eq. 5.8) of 

T2 is ≈72% smaller than that of T1 and the f1 of T2 in water (e.g.) is 40% smaller than that 

of T1. The maximum difference between the theoretical and experimental values of f1 of 

T1 in liquid is about 3.5%, while it is about 6.6% for T2. A review of the actual 

displacements of T1 and T2 showed that the T2 base is more flexible that the T1 base 

(manufacturing fault); this greater flexibility is the reason for the larger % difference 

between the T2 experimental and theoretical f1. The differences in theoretical and 

experimental displacements are due to the fact that Eq. 5.8  assumes the fixed end of the 

beam to be completely restrained (i.e., completely rigid). Nevertheless, a good agreement 

between the theoretical and experimental f1 is observed for both T1 and T2. 

Further investigation of the effect of the Tx dimensions on the Tx behavior is done by 

comparing the ξ1 of T-1 and T-2. The estimated ξ1 of T-1 and T-2 are 4.18% (Fig. 5-8) 

and 2.9% (Chapter 4) respectively. This result corroborates the finding in the previous 

section that the damping ratio of a Tx with smaller dimensions is higher than that of a Tx 

with larger dimensions because the resonance frequency of the Tx with smaller 

dimensions is larger than the frequency of a Tx with larger dimensions.  
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Fig. 5-15: Experimental and theoretical (Eq. 5.7) f1 of two transmitters with different 

dimensions as functions of liquid density ρL (T1: 13 x 5 x 0.5 mm, T2: 14 x 6 x 1.9 mm) 

5.7.7 Effects of Reynolds number 

The typical Reynolds number is a dimensionless quantity used in fluid mechanics to help 

predict the fluid flow patterns (high Re → turbulent, low Re → laminar). Sader (1998) 

proposed a modified Reynolds number (Re) definition (Eq. 5.9) for liquids in which a 

cantilever beam of width b vibrates with a radial resonance frequency (𝜔). 

 
2

4
L LbRe

 


=   5.9 

Re is a dimensionless parameter that combines ρL and μ of fluids, and therefore, the use 

of Re helps investigate the combined effects of ρL and μ. Fig. 5-16 shows f1 of Tx plotted 

against Re of different liquids estimated using Eq. 5.9. A power law relationship is found 

to fit the experimental data well (R2 = 0.98). An outlier in this curve-fit is the f1 in oil. Re of 

the oil is the least amongst the five liquids because its μ is ≈ 10.22 cP whereas its ρL is ≈ 

Oil Water S-20 
S-40 S-60 

Oil 
Water 

S-20 S-40 

 

Max difference = 3.5% 

T1 

T2 

 

Max difference = 6.6% 
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0.84 g/mL such that its density is less than and viscosity is greater than those of water; 

this combination of ρL and μ is in contrast with combination of other liquids used in this 

study. The power law curve-fit matches very well for f1 of the Tx in liquids whose ρL 

increases proportionally with the μ (unlike the oil). Fig. 5-16 shows that the Re estimated 

using Eq. 5.9 increases as the μ decreases; the largest estimated Re is of water which 

has the least μ amongst the liquids used in this study.  

 

Fig. 5-16: Resonance frequency of the first mode of vibration of the transmitter in 

different liquids versus the Reynold’s number of the liquids 

Fig. 5-17 shows the variation of ξ1 of Tx with Re with an excellent power-law curve fit 

without the damping ratio of the Tx inside the mineral oil (R2 = 0.99). This result is in 

agreement with the findings of Chon et al. (2000) in that the equivalent damping of a 

system (represented by the quality factor in Chon et al. 2000) with a cantilever beam 

immersed in a fluid decreases as Re increases. Figs. 5-16 and 5-17 also show that the 

ρL controls the Tx behavior inside the oil rather than its μ. This finding is deduced from the 

Oil Water 
S-20 

S-40 

S-60 

f1 = 8.1(Re)0.024 

 R2 = 0.99 
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fact that f1 of the Tx in oil is higher than that in water (f1 decreases with increase in ρL) and 

the ξ1 is lower (ξ1 increases with increase in ρL). The ρL of the oil is 0.84 g/mL and ρL of 

water is 1.0 g/mL; whereas the μ of the oil (10 cP) is 10 times higher than that of water (1 

cP).       

 

Fig. 5-17: Damping ratio for first mode of vibration of the transmitter in different liquids 

versus the Reynold’s number of the liquids 

5.7.8 Mode shapes in liquids 

The Tx responses in five liquids at different locations on the Tx surface (Fig. 5-5) are 

processed using the SOBI algorithm to extract the mode shapes of the Tx in these liquids. 

The first three mode shapes of the Tx in liquids are shown in Fig. 5-18 presented in the 

order of increasing ρL (e.g. Fariah and Inman 2014). The Tx mode shapes in S-60 are not 

shown because of inaccurate results. The maximum displacement umax of the Tx response 

in the liquids are shown in nanometers. The mode shapes are normalized with respect to 

the peak values of the first mode shape in each liquid. These results show that umax of the 

Oil 
Water 

S-20 

S-40 

S-60 

ξ1 = 26.5(Re)−0.12 

 R2 = 0.99 
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Tx decreases as the ρL increases because of the added mass effect on the Tx. All three 

mode shapes in all the liquids are similar to the mode shapes in air. This result is in 

agreement with the findings of Fario and Inman (2014) in that the presence of the added 

mass does not affect the first three mode shapes.  

The peak modal coordinate of the second mode shape in oil is different from the peaks 

of the second mode in all other liquids. The peak coordinate in oil is 10% more than the 

first mode peak coordinate, which shows that the second mode participation of the Tx 

response in oil is higher than the first mode. In contrast, the second and third mode 

participation in the Tx response in water, S-20, and S-40 is significantly less compared 

with the first mode participation. The second mode peak coordinates in water, S-20, and 

S-40 are in the range 2-7% of the first mode peak coordinate, and the third mode peak 

coordinates are in the range 0.5-1% of the first mode peak coordinate. These results show 

that the first mode controls the Tx response despite the added mass effect of the liquids 

except in the case of oil. The Tx mode shapes in oil require further investigation to 

understand the reason for greater participation of the second mode.  
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Fig. 5-18: First three mode shapes of the transmitter in different liquids: (a) oil, (b) water, 

(c) S-20, and (d) S-40 normalized with respect to the max displacement of the first mode 

of vibration (red markers indicate highest amplitude; red line indicates BE base (b = 13 

mm)). 
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5.7.9 Transmitter response in transparent soil with different vertical stresses 

The results of measurements in transparent soil in Chapter 4 are limited to a vertical 

stress (σv) of 35 kPa; in this chapter, the vertical stress (σv) reached is up to 400 kPa. The 

Tx response to a sine pulse (fc = 15 kHz, Vapp = 25 VPP) are measured in the transparent 

soil specimen under different confinements (represented by the applied vertical stress 

σv). Fig. 5-19 shows the displacement responses with umax of the Tx under five vertical 

stresses. The umax decreases with increase in σv as expected; the reduction in the number 

of cycles in the time signals also shows that the damping ratio of the Tx increases with 

increase in σv. Moreover, the higher frequencies start to dominate the Tx response as σv 

increases indicating that higher modes participate with greater energy at greater values 

of σv.   

 

Fig. 5-19: Transmitter response to a sine pulse inside transparent soil under different 

vertical stresses 

 

σv = 41 kPa, umax = 28 nm 

σv = 114 kPa, umax = 21 nm 

σv = 260 kPa, umax = 18 nm 

σv = 406 kPa, umax = 9.2 nm 

σv = 0 kPa, umax = 48 nm 
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The frequency spectra of the displacement responses of the Tx inside the soil with vertical 

stresses are shown in Fig. 5-20. Fig. 5-20 corroborates the results of the displacement 

responses; the magnitude of the first mode of vibration is decreasing with increase in 

vertical stress. Moreover, the resonance frequency of the first and second modes of 

vibration of the Tx are increasing with increase in vertical stress. Note that the energy in 

higher modes of vibration is also increasing as the vertical stress is increasing which 

shows that higher modes become increasingly important as vertical stress increases.  

 

Fig. 5-20: Frequency spectra of the displacement response of the transmitter inside the 

soil at different vertical stresses 

The fo a soil sample is proportional to the Vs, which has a power-law relationship with the 

isotropic confining stress in soil (Santamarina et al. 2001). The logarithm of f1 is plotted 

against the logarithm of σv in Fig. 5-21 and there is a good linear fit (R2 = 0.92), which 

implies that f1 is related with σv through a power-law relationship with the parameters  = 

2.1 and β = 0.1 (Santamarina et al. 2001). This estimate of β is lower than the typical β 

(= 0.25) generally obtained for sands; a possible reason for this difference is that the 

σv = 41 kPa 

σv = 114 kPa 
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σv = 0 kPa 
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3  f1 = 10.94 kHz 

4  f1 = 11.65 kHz 
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fused quartz with angular particles is three times stiffer than sands (Ezzein and Bathurst 

2011) and the β-exponent decreases with increase in the stiffness of the material 

(Santamarina et al. 2001; Weast et al. 1981).  

 

Fig. 5-21: Resonance frequency of the first mode of the transmitter inside the soil vs the 

vertical stress 

The first mode damping ratio ξ1 of the Tx at different vertical stresses are plotted in Fig. 

5-22. The ξ1 increases linearly up to about σv = 120 kPa and then stays more or less 

constant. The linear trend in damping ratio suggests that the damping ratio caused by 

friction between the fused quartz is prevalent in the Tx behavior over the damping ratio of 

the soil specimen. The first mode damping ratio of the Tx corresponding to the σv > 120 

kPa is about 30% which is much higher than typical low strain damping ratios (<3 %) of 

soil samples (Cascante et al. 1997, Khan et al. 2008). 

Several studies have attempted to estimate damping ratio using BE test without 

considerable success (Brocanelli and Rinaldi 1998); one of the possible reasons for these 

0.1

1 2.1 vf =
  

R2 = 0.92 
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unsuccessful attempts is the difficult to measure the damping ratio of the soil specimen 

when the damping ratio of the transmitter is much higher than that of the soil specimen 

 

 

Fig. 5-22: Damping ratio of the transmitter inside the soil against the vertical stress 

5.7.10 Mode shapes in soil 

Fig. 5-23 shows the first three mode shapes of Tx inside the soil sample at σv = 0 and σv 

≈ 41 kPa. The peak ordinates values of the mode shapes are normalized with respect to 

the peak ordinate value of the first mode shape. The mode shapes under σv = 0 are very 

similar to the mode shapes in liquids (Fig. 5-18); however, the second and third mode 

shapes show the presence of higher modes, which indicates mode coupling in Tx 

behavior. Similarly, all three mode shapes under σv = 41 kPa indicate the presence of 

mode coupling. These mode shapes show that, as the confinement around the soil is 

increased, mode coupling in the Tx vibrations increases.  
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The peak values of the second and third modes under σv = 0 show that the contribution 

of the second and third mode shapes in the Tx response are 0.7% and 2%, respectively. 

This result indicates greater nonlinearity in the Tx behavior because of larger participation 

of the third mode. This nonlinearity increases for σv = 41 kPa because the contribution 

from the second and third modes increase to 24% and 16%, respectively. These results 

show that increase in σv in the soil around the Tx increases the participation of higher 

modes in the Tx response and the mode coupling.  

 

    

     

Fig. 5-23: Mode shapes in (a) soil without stress and (b) soil with stress 
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5.7.11 Comparison of experimental and numerical input signals 

Fig. 5-24 shows a comparison between the input excitation signals of the experimental 

study and the numerical analysis. The first cycle of Eq. 5.6 is used as the input function 

for the numerical study and is compared with the sine pulse used as the input signal in 

the experimental study. These input signals are plotted using the following amplitudes 

and frequencies: A = 3.6  10−7 m, f = 16.5 kHz for Eq., and A = 7.2  10−9 m (selected to 

match the energy in Eq. 5.6)  f = 16.5 kHz for sine pulse. The time signals are normalized 

to the maximum amplitude of 7.2  10−9 m of the sine pulse.   

Fig. 5-24a shows that the maximum amplitude of Eq. 5.6 is about 2% less than that of the 

sine pulse while the minimum amplitude of Eq. 5.6 is about 83% less than the minimum 

amplitude of the sine function. The shapes of these time signals are very similar, which 

implies that the frequency contents of the signals are similar. Fig. 5-24b shows the 

frequency spectra of the two input signals along with the theoretical power spectrum of a 

single cycle sine pulse (Tallavo et al. 2009). The frequency spectrum of the experimental 

sine pulse and the theoretical power spectrum match very well even though the maximum 

magnitudes are very distinct. There is an order of magnitude difference in the maximum 

magnitudes of the theoretical power spectrum and the frequency spectrum of the sine 

pulse because one is a linear spectrum while the other one is a power spectrum.   

The maximum magnitude of the frequency spectrum of Eq. 5.6 is about three times that 

of the experimental sine pulse. The maximum magnitude of the sine pulse occurs at the 

normalized frequency of 0.84, which is precisely the same normalized frequency of the 

theoretical power spectrum (Tallavo et al. 2009). But the maximum magnitude of Eq. 5.6

occurs at a normalized frequency of 0.7, which is 14 % less than that of the experimental 

sine pulse. Moreover, subsequent peaks in the frequency spectrum of Eq. 5.6 are not 

distinguishable unlike the frequency spectrum of the sine pulse. These differences 

occurred because of the non-symmetry of Eq. 5.6, i.e., the maximum amplitude is 70 % 

less than the absolute value of the minimum amplitude. 

Although there are differences in the magnitudes of the frequency spectra of the input 

functions used for numerical and experimental studies, the numerical response of the 

transmitter with Eq. 5.6 as the input function matches very well with the experimental 
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transmitter response in air. Therefore, Eq. 5.6 with a central frequency of 16.5 kHz is 

found suitable for evaluating the numerical response of the transmitter in different media. 

 

 

Fig. 5-24: Input function (Eq. 5.6) and sine pulse (a) time signals; (b) frequency spectra 

compared with the theoretical power spectrum of a sine pulse (after Tallavo et al. 2009). 

Sine: 1 = 5.8 x 10-6, fs = 0.84f 
Theoretical: 1 = 6.3 x 10-5

, ft = 0.84f 

Num: 1 = 1.9 x 10-5 
fs = 0.7f 
 

Numerical 

Sine & theoretical 

Num. max = 0.02 
(a) 

(b) 
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5.7.12 Transmitter calibration 

The transmitter is modelled as an elastic cantilever plate with an equivalent density as a 

typical bender element is a composite section consisting of piezo-ceramic sheets and 

epoxy-resin which is used as coating on the bender-element. Following the approach of 

Rio (2006), 70% of the BE volume is taken to be of epoxy and 30% of which to be 

composed of piezo-ceramic. For attaining the bender’s resonant frequency (fn) from 

laboratory data, the elastic modulus of the bender is computed using  Eq. 5.10 

 
2

22 ( )

n b bL
n

b bb

E Ik
f

AL  
=   5.10 

where kLn is a characteristic number which depends on n (mode number) and the 

boundary conditions; Lb, Ib and ρb are the length, area moment of inertia (Ib = bh3/12), and 

mass density of BE, respectively; b, h, and Ab (Ab = bh) are the width, thickness, and 

cross-sectional area of the BE, respectively; Eb is the Young’s modulus of the 

piezoceramic element;  is the effective length factor with  = 1 when the BE is perfectly 

fixed to the base and  > 1 when there is flexibility in the connection between the BE and 

the base. 

Next, the grid geometry and the damping ratio of the transmitter are adjusted to match 

the experimental transmitter response in air. The matched damping ratio of the transmitter 

in air is found to be 4.1%. The calibrated parameters and the geometry of the transmitter 

are presented in Table 5-1. Fig. 5-25 illustrates a snapshot of the BE response in air. 
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Table 5-1: Transmitter geometry and calibrated parameters  

Geometry Material Properties 

Bender height, h (m) 

Bender width, w (m) 

Bender thickness, t (m) 

Moment of inertia, Ib  (m4) 

Surface area, Ab  (m2) 

Bender volume, Vb (m3) 

Epoxy volume, Ve (m3) (= 70% of 

Vb) 

Piezo-ceramic volume Vp (m3) (= 

30% of Vb) 

 

0.005 

0.013 

5.5  10−4 

1.9  

10−13 

7.7  10−6 

3.9  10−8 

2.7  10−8 

1.2  10−8 

 

Elastic modulus, Eb (GPa) 

Bulk modulus, Kb (GPa) 

Shear modulus, Gb (GPa) 

Poisson ratio, ν 

Epoxy density, ρepoxy 

(kg.m−3) 

Piezo-ceramic density, ρpi 

(kg.m−3) 

Equivalent density, ρeq 

(kg.m−3) 

51.6 

34.3 

20.6 

0.25 

1100 

7800 

3110 

 

 

Fig. 5-25: Snapshot of the numerical transmitter response in air 
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5.7.13 Experimental versus numerical response in air 

Fig. 5-26 shows the time signals and frequency spectra of the transmitter response in air, 

as obtained from the experimental study, along with the corresponding response obtained 

from the numerical simulation of the transmitter. The experimental and numerical 

response match very well, which implies that a robust calibration of the numerical model 

has been achieved. The difference in peak displacements of the time signals is about 6%, 

and the difference in the peak magnitudes of the frequency spectra is less than 0.01%. 

The reason for larger difference in the time signals is that the time signals usually have 

slight influence of higher modes while the frequency spectra are estimated after filtering 

the time signals to remove the higher frequencies. The resonance frequency of the first 

mode of the transmitter in both experimental and numerical responses are almost 

identical. These results indicate a thorough calibration exercise based on the actual 

transmitter response in air. Moreover, these results show that a single pulse of 

displacement excitation is generating the same response of the transmitter as that 

generated by the sine pulse input voltage in the experimental measurements. The 

displacement excitation is applied at the tip of the transmitter in the numerical simulation 

while, in the laboratory experiment, the input voltage is applied arbitrarily to the 

transmitter.  
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Fig. 5-26: Experimental and numerical transmitter responses in air (a) Time signals; (b) 

Frequency spectra 

5.7.14 Experimental versus numerical responses in soil 

A comparison of the input excitations used for the numerical transmitter response inside 

air and soil sample is presented in Fig. 5-27. The figure shows the time signals along with 

their frequency spectra. These input excitations are the first cycle of Eq. 5.6 with values 

of A = 3.6  10−7 m and f = 16.5 kHz used for air and A = 2.6  10−7 m and f = 12 kHz 

used for soil. The peak value of the input excitation time signal for soil response is 28% 

less than the that in air. The minimum value of the excitation used in air response is about 

150% larger than that in soil. These differences suggest a displacement excitation with 

lesser energy than that in air is applied at the peak of the numerical model of the 

transmitter inside the soil. This difference in the peak amplitudes of the time signals is not 

observed in the peak magnitudes of the frequency spectra of the two excitations. The 

reason for this inconsistency is that the peak magnitudes of the frequency spectra do not 

correspond to the input central frequency (fc) of the input excitations. In fact, the frequency 

spectra peak at frequencies = 0.7fc (air = 16.5 kHz, soil = 12 kHz) as is observed in the 

input function analysis in section 5.7.11. 

(a) (b) 

Exp: peak = 1 
f1 = 15.28 
 
Num: peak = 0.996 
f1 = 15.31 

Exp:1 = 46 nm 
Num:1 = 43 nm 
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Fig. 5-27:  Input excitations used for numerical transmitter responses in air and in soil 

The calibrated parameters shown in are kept constant during the numerical simulation of 

the transmitter excitation in soil. The elastic properties of the soil sample are modified in 

FLAC until a reasonable match of the numerical and experimental responses is achieved. 

The soil is modelled as a cubic sample with the dimensions based on the internal 

dimensions of the square tube used to contain the transparent soil. The finalized soil 

properties and the soil dimensions are presented in Table 5-2. 

Fig. 5-28 shows a comparison between the transmitter responses, as obtained from the 

experiment and the numerical analysis, inside the transparent soil without induced vertical 

stress. The soil sample density used for matching the experimental response with the 

numerical response is ρs = 1200 kg/m3; this density is only 2.5% less than the density of 

the transparent soil (1230 kg/m3) comprising of fused quartz and the mineral oil mixture 

(Ezzein and Bathurst 2011). The comparison of the experimental and numerical 

transmitter responses inside the soil shows a very good match. The time signals in Fig. 

5-28 match very well after the first cycle (≈ 0.2 ms). The lack of agreement observed in 

the first cycles of the two time signals is because of the nonlinear behavior of the 

transmitter inside the unconfined soil; moreover, participation of higher modes of 

transmitter vibration is more inside the soil. The numerical model is developed based only 

Air: peak = 1 
f1 = 11.6 
 
Soil: peak = 0.993 
f1 = 8.4 

Air: peak = 1 
Soil: peak = 0.72 
 
 

 
Frequency (kHz) 
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on the first mode of the transmitter vibration. The frequency spectra of the signals show 

that the energy in the first mode of the numerical response is only 8 % less than that in 

the experimental response; similarly, the resonance frequency of the numerical response 

is only 1 % more than that of the experimental response. 

These results show that the numerical model developed in FLAC3D calibrated based on 

the experimental measurements in air is able to predict well the transmitter response in 

air with only 2.5 % difference in the density of the surrounding soil.  

Table 5-2: Dimensions and elastic properties of soil sample used for matching the 

numerical transmitter response inside the soil 

Geometry Material Properties 

Soil sample height, h (m) 

Soil sample width, w (m) 

Soil sample length, L (m) 

 

0.05 

0.032 

0.032 

Bulk modulus, Ks (MPa) 

Shear modulus, Gs (GPa) 

Poisson ratio, ν 

Sample density, ρs (kg.m-3) 

0.38 

0.23 

0.25 

1200 
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Fig. 5-28: Experimental and numerical transmitter responses inside the soil 

5.7.15 Parametric study of numerical transmitter behavior 

The soil sample parameters (ν, G, K) in the numerical model have been customized () to 

match the resonance frequency and damping ratio of the experimental transmitter 

response in the transparent soil. A parametric study investigating the effects of changes 

in these soil parameters is performed. Effects of bulk modulus (K), shear modulus (G), 

and Poisson’s ratio (ν) on the resonance frequency and damping ratio of the transmitter 

are evaluated. The resonance frequency and damping ratio are estimated using the half-

power bandwidth method performed on the frequency spectra of the numerical transmitter 

response.  

Fig. 5-29 shows the variation of the resonance frequency against the bulk modulus with 

the initial bulk modulus labelled. The resonance frequency increases linearly with the bulk 

modulus of the soil sample; this increase is as expected because the bulk modulus is 

proportional to the vertical stress in the soil. However, the relationship between the 

numerical transmitter resonance frequency and the bulk modulus is linear unlike the 

power-law relationship between the resonance frequency and the vertical stress (Fig. 

5-21). The slope of this increase in resonance frequency with bulk modulus is 0.13 

kHz/MPa.  

Exp: peak = 1 
f1 = 10.71 
 
Num: peak = 0.92 
f1 = 10.82 
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Fig. 5-29: Resonance frequency of the transmitter against the bulk modulus of the soil 

sample 

Fig. 5-30 shows the variation of the damping ratio of the transmitter against bulk modulus. 

Except for the damping ratios at 0.7 MPa and 3.8 MPa (Kinitial), the damping ratio increases 

linearly with the bulk modulus at a rate of 0.19 % / MPa. The damping ratio of the 

transmitter ranges between 10 to 20 % in the bulk modulus range between 2 to 40 MPa; 

this damping ratio is much higher than the damping ratio of the typical soil samples. 

Therefore, with these damping ratios of the transmitter, estimation of the damping ratio of 

the soil sample using BE test will be difficult; this result explains the unsuccessful attempts 

of estimating the damping ratio of a soil specimen using BE test (Cheng and Leong 2018). 

Kinitial = 3.8 MPa 

Slope = 0.13 kHz/MPa 



116 
 

 

Fig. 5-30: Damping ratio of the transmitter against the bulk modulus of the soil sample 

Fig. 5-31 shows the variation of the resonance frequency of the transmitter with the mass 

density of the soil sample. The effect of the mass density is similar to the bulk modulus 

i.e. the resonance frequency changes linearly; however, the resonance frequency 

decreases, rather than increases, with increase in the mass density of the soil samples. 

A very good linear relationship is observed between resonance frequency and mass 

density of the soil sample similar to the relationship between the resonance frequency 

and the mass density of the liquids (Fig. 5-13). The slope of the decrease in resonance 

frequency with the sample mass density is 1.8 kHz.mL / g.  

  

Kinitial = 3.8 MPa, ξ = 7.95 %  

Slope = 0.19 % / MPa 
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Fig. 5-31: Resonance frequency of the transmitter against the mass density of the 

sample 

Fig. 5-32 shows the variation of the damping ratio of the transmitter against the mass 

density of the soil sample. The effect of the mass density on the damping ratio is similar 

to the effect of the bulk modulus i.e. except for the damping ratio at the initial mass 

density, the damping ratio increases linearly with the increase in mass density with a 

slope of 2.7 %mL/g. However, this linear relationship is different from the exponential 

relationship observed for the damping ratio of the experimental transmitter response 

against the mass density of the liquids.  

Slope = -1.8 kHz.mL / g 

ρinitial = 1.2 g/mL, f1 = 10.8 kHz  
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Fig. 5-32: Damping ratio of the transmitter with the mass density of the soil sample 

The effects of the Poisson’s ratio (with constant bulk modulus and changing shear 

modulus) on the resonance frequency and damping ratio of the transmitter are depicted 

in Fig. 5-33a and b. Similar to the above results, the resonance frequency decreases 

linearly with the Poisson’s ratio at a rate of 0.13 kHz/unit; the initial resonance frequency 

measurement is an outlier of this linear trend. No trend is observed in the damping ratio 

against the Poisson’s ratio of the soil sample.   

When the bulk modulus and the shear modulus is kept constant, the resonance frequency 

increases linearly, rather than decrease, with increase in Poisson’s ratio at a rate of 0.96 

kHz/unit. Again, the damping ratio of the transmitter does not follow a specific trend with 

the Poisson’s ratio.  

Slope = 2.7 %mL / g 

ρinitial = 1.2 g/mL, ξ1 = 7.8 %  
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Fig. 5-33: (a) Resonance frequency and (b) damping ratio of the transmitter against the 

Poisson's ratio with a constant bulk modulus 

 

Fig. 5-34: (a) Resonance frequency and (b) damping ratio of the transmitter against the 

Poisson's ratio with a constant shear modulus 

 

 

(a) (b) 

(a) (b) 

νinitial = 0.25, f1 = 10.77 kHz  

νinitial = 0.25, ξ1 = 7.95 %  

νinitial = 0.25, f1 = 10.77 kHz  

νinitial = 0.25, ξ1 = 7.95 %  

Slope = 1.26 kHz / unit 

Slope = 0.96 kHz / unit 
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The above results suggest that the damping ratio of the transmitter, like the damping ratio 

of the soil sample, is not directly related to the elastic parameters of the soil sample. The 

resonance frequency of the transmitter follows regular trends with the different elastic 

parameters. This result suggests that the damping ratio estimation using the BE test is a 

complex problem which will be difficult to solve.  

5.8 Conclusions 

This chapter is part of a novel experimental program in which the actual vibrations of the 

BE inside the soil are measured using a state-of-the-art laser vibrometer and a recently 

developed transparent soil. In this study, results of an experimental modal analysis of the 

transmitter are analyzed. Resonance frequencies, damping ratios, and mode shapes of 

the transmitter are determined by calculating the frequency spectra of the transmitter 

response time signals and processing the laser-vibrometer measured time signals with a 

curve-fitting algorithm called the Second-order Blind Identification (SOBI) method. These 

properties of the transmitter are determined in air, in liquids of different mass densities, in 

transparent soil and in transparent soil with induced stress. The effects of input voltage 

on peak displacement of the transmitter are evaluated in air and in mineral oil mixture. 

The effects of mass density of liquids on the natural frequency and damping ratio of the 

transmitter are evaluated. The effects of induced vertical stress on the natural frequency 

and damping ratio of the transmitter are evaluated. Finally, the mode shapes of the 

transmitter in air, liquids and in soil are presented.  

The numerical section of this study presents the results of a numerical study in which a 

FLAC3D model of the transmitter is developed based on measurements of actual 

vibrations of a transmitter (Atefi-Monfared, K. 2019). First, the transmitter model is 

robustly calibrated using the experimentally measured transmitter response in air. A 

displacement function applied at the tip of the transmitter is found to be suitable for 

inducing a transmitter response that matches very well with the experimental response of 

the transmitter. First cycle of the displacement function is applied as a velocity function in 

FLAC3D. The difference in the peak displacement of the experimental and numerical time 

signals is less than 5%.  
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The transparent soil sample dimensions used in the experimental section are used in the 

numerical model and the soil sample properties are modified until the numerical 

transmitter response inside the soil matches the experimental response. The modified 

soil density of the numerical model matches very well with the mass density of fused 

quartz surrounding the transmitter; however, the estimates of bulk and shear moduli of 

the numerical sample are very low compared to those of the fused quartz. The mismatch 

in the moduli is due to the non-homogeneity of the fused quartz soil sample which is not 

incorporated in the numerical model. Moreover, the non-linearity of the transmitter 

response inside the soil is also not yet incorporated. These changes will be executed in 

future when this numerical study will be completed.  

The input excitation in a conventional BE testing is an electrical voltage the nature of 

application of which is unknown. However, it is known that the voltage is 

applied/distributed over the surface of the transmitter. In this numerical study, a 

displacement input function applied at the tip of the transmitter model is sufficient to 

replicate the experimental transmitter response 

The results from this study show that a 50% increase in liquid density causes only a 5% 

decrease in the first resonance frequency but a 56% increase in the damping ratio. 

Similarly, a 35% increase in first resonance frequency is observed when the applied 

vertical stress in soil specimen is increased from 0 to 400 kPa; the corresponding increase 

in damping ratio is 30%. These results are key to understanding the BE-soil sample 

interaction because the frequency of vibration of the transmitter dictates the wave-length 

of the shear wave excited from the transmitter and affects the estimation of Vs. The wave-

length of the shear waves must be, at maximum, equal to the length of the soil specimen; 

the recommended wave-length, to avoid near-field effects in the BE test, is less than one-

fifth the length of the soil specimen. The damping ratio results of this study have 

highlighted the possible reasons for unsuccessful attempts on the estimation of damping 

ratio of soil specimens using the BE test.  

Operational modal analysis (OMA) is performed on the transmitter response to estimate 

the modal parameters of the transmitter. The measured time signals of the actual 

transmitter vibrations are used with a mathematical solution for OMA called the second-
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order-blind-identification (SOBI) method. Further, the effects of input voltage, mass 

density, Reynolds number, and applied vertical stress on the transmitter behavior are 

evaluated.  

The study shows that the transmitter displacements in air and in oil are linearly related to 

the input voltage with a slope of 9.4 nm/V in air and 3.9 nm/V in oil. The experimental 

measurements of this study are in excellent agreement with a proposed theoretical 

equation available in the literature. First mode resonance frequencies of the transmitter 

in liquids match very well with a theoretical equation (available in the literature) with a 

maximum difference of 3.5%. Damping ratio of the first two modes increase exponentially 

when the mass density of liquids increases; this result is also in agreement with the 

findings in the literature. The first three mode shapes of the transmitter in air and in liquids 

are those of a typical cantilever plate; the presence of a liquid does not affect the mode 

shapes of the transmitter, which is in agreement with the related results available in the 

literature. The first resonance frequency and damping ratio have a power-law relationship 

with the Reynolds number of the fluid with exponents of 0.024 and 0.12, respectively. The 

β-exponent of the power-law relating the first mode resonance frequency and the applied 

vertical stress is 0.1 which is lower than the typical β values of sands. Lastly, the first 

three mode shapes of the transmitter in soils under vertical stress show that the 

participation of higher modes and mode coupling increase as the applied vertical stress 

is increased. The peak values of the second and third mode shapes are 0.7% and 2% of 

the first mode peak coordinate for the case of soil specimen without applied stress; these 

values increase to 24% and 16% under applied vertical stress of 41 kPa. 

The parametric investigation using the numerical model of the BE-transmitter showed that 

there are significant effects of the elastic parameters on the resonance frequency of the 

transmitter. The resonance frequency varies linearly with all the elastic parameters. The 

resonance frequency increases with bulk modulus at a rate of 0.13 kHz/MPa and 

decreases with density at a rate of 1.8 kHz.mL/g. The resonance frequency increases at 

a rate of 1.3 kHz/unit with the Poisson’s ratio when the bulk modulus is kept constant 

while it decreases at a rate of 0.96 kHz/unit when the shear modulus is kept constant.  
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However, the damping ratio of the transmitter does not follow regular trends. This result 

suggests that estimating the damping ratio using the BE test is a complex problem which 

is the reason for the unsuccessful attempts to estimate the damping ratio using BE tests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

6 Novel evaluation of the transmitter-receiver bender-element 

system behavior  

6.1 Introduction 

Bender elements (BE) test is widely used in research and industrial laboratories for 

measuring the shear wave velocity of materials (Vs) such as soils, cemented soils and 

asphalt. BE test is simple to perform and is cheaper than other tests such as the resonant 

column and ultrasonic tests. Although BE test is simple, the interpretation of its results is 

not. The results interpretation is difficult because interaction between BE and soil when 

the BE are inserted inside the soil is not known. Many studies have attempted to present 

recommendations for correct interpretation of BE test results; however, there is no 

agreement on a single interpretation procedure.  

This chapter presents the results of a novel experimental program in which BE and soil 

interaction is characterized using actual measurements of vibrations of the bender 

element transmitter and receiver inside the soil specimen. Laser vibrometer is used to 

measure the actual vibrations of the transmitter and receiver in air, liquids of different 

mass densities, and in a transparent soil specimen under different confinements. Different 

input excitations are used to understand the effects of input frequency content on the 

transmitter and receiver behavior in different media. Vibrations of the receiver measured 

using the laser vibrometer are compared to the output voltage of the receiver.  

6.2 Experimental setup 

Fig. 6-1 shows the schematic setup used in this chapter to measure the actual vibrations 

of the transmitter and receiver in different media. The setup is similar to what has been 

used in previous chapters except that now the receiver is added to the experimental 

setup. The transmitter and receiver used in this study are of a rectangular shape with 

surface dimensions of 14 mm x 5 mm x 0.5 mm (cross-section shown in Fig. 6-1).  

A plexi-glass square tube with dimensions 38 mm x 38 mm x 75 mm inches (height) is 

used for measurements in liquids and soil; this tube is placed around the transmitter on 

the steel platen. The base of this tube is sealed with silicon sealant to prevent leakage. 

Upon filling the tube with liquid, the receiver casing is placed upside down on the top of 
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the square tube with the receiver submerged in the liquid to measure receiver vibrations 

in the liquid using the laser. A similar setup is used for receiver vibrations measurements 

in the transparent soil; however, the receiver casing is now placed directly on the 

transparent soil rather than on top of the square tube. To generate vertical stress in the 

soil, a hollow steel rod with a rectangular base of dimensions of 31.25 mm x 31.25 mm 

(internal dimensions of the square tube) is placed on the receiver casing; then, dead 

weights are stacked on the steel rod. 
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Fig. 6-1: Schematic of the setup used for (a) measurements in air, (b) measurements in 

liquids/soil, and (c) measurements in soil under stress 
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6.3 Experimental methodology 

Unless noted otherwise, the vibrations of the transmitter and the receiver are measured 

at the center of the peak (free end) (shown on the transmitter cross-section in Fig. 6-1). 

A total of 500 iterations are run for each measurement, and an average of these 500 

iterations is calculated to ensure minimization of noise presence in the signals.   

6.3.1 Experiments in air 

The transmitter and receiver vibrations are measured for different input excitations and at 

different locations on the surface. First, the transmitter response to a sine pulse of an 

arbitrary central frequency is measured. The frequency spectrum of this transmitter 

response is calculated to determine the resonance frequency of the first mode of the 

transmitter. This resonance frequency is used as the central frequency of a sine pulse 

which is used as the input pulse applied to the transmitter. The transmitter responses to 

this sine pulse are measured at multiple points; locations of these points are shown in 

Fig. 6-1. The receiver vibrations are measured with the laser beam pointed at the receiver. 

The transmitter is excited with the same input excitation as that used for measuring 

transmitter responses. Locations of receiver responses are also the same as those of the 

transmitter. 

The transmitter and receiver responses are analyzed to determine time delays between 

the transmitter and receiver responses and to evaluate the effects of different input 

frequency content on the transmitter and receiver behavior. The output electrical voltage 

at the receiver end is also compared to the laser response of the receiver in air to estimate 

the transfer function of the electrical components between the receiver and the 

oscilloscope.  

6.3.2 Measurements in liquids 

The liquids of different mass densities (water, sucrose-30 %, and sucrose-60 %) are 

poured in the square tube to measure the transmitter and receiver responses in these 

liquids. After measurements in air, the square tube is placed on the steel platen and silicon 

sealant is applied at the base of the square tube; the sealant is left for three hours to cure.  

Then, the transmitter response in air with the square tube is measured and compared to 
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the response without the square tube to ensure that no errors are made during square 

tube placement. The diameter of the receiver casing is 25 mm i.e. slightly smaller than 

the width of the square tube; the casing holder of 38 inches width is used to ensure that 

the receiver casing does not fall into the tube. The liquid is gently poured until the tube is 

filled; then the receiver casing holder is bolted on top of the square tube with the receiver 

submerged in the liquid. Then, the transmitter and receiver responses to different input 

excitations to the transmitter are measured by moving the laser head vertically. The 

output electrical voltage from the receiver end is also measured using the oscilloscope 

and stored in the computer. Between the measurements in different liquids, the square 

tube is thoroughly washed to minimize the measurements errors due to mixture of liquids.  

6.3.3 Measurements in soil 

Upon completion of testing with the mineral oil mixture, a little portion of the mixture is 

removed from the tube because the liquid would overflow out of the square tube when 

the fused quartz are dropped in the tube. The fused quartz are gently air-pluviated into 

the square tube until the tube is filled with a transparent soil specimen; a short space is 

left at the top of the tube to avoid any leakage. The receiver casing holder is removed 

and only the receiver casing is placed upside down on the transparent soil specimen such 

that the receiver is submerged in the transparent soil specimen and the casing is resting 

freely on the soil. The transmitter and receiver responses with different input excitations 

are measured with the laser vibrometer, and the output electrical voltage on the receiver 

end is also saved.  

The vertical stress in the soil is induced by placing dead weights on top of the receiver 

casing with the help of a hollow cylinder placed on top of the receiver casing. Vertical 

stresses are estimated using the Boussinesq’s theory for vertical stress under a 

rectangularly loaded area. The effects of vertical stress on the transmitter and receiver 

responses are evaluated using the time signals and frequency spectra measured using 

the laser vibrometer.  
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6.4 Results and Analysis 

6.4.1 Evaluating compressional wave interference 

One of major problems associated with the bender elements test is the interference of 

compressional (p) wave with the shear (s) wave, especially with the soils with low effective 

stress (Lee and Santamarina 2005). The p-wave interference at the receiver end is 

coming either directly from the transmitter or the reflections from the wall. In partially 

saturated/saturated soils, the p-waves arrive much earlier than the s-wave which 

sometimes is helpful in distinguishing between p and s waves. However, there is no 

definitive guidance about how much percentage of saturation is sufficient for clear 

distinction between p and s waves; this makes this problem unresolved.  

With the novel experimental setup of this study, the presence and interference of p-

waves in the receiver response is evaluated. First, the measurements in air are studied.  

Fig. 6-2 shows the transmitter and receiver responses in air to a sine pulse of 12 kHz 

input excitation. The novel experimental setup of this study allowed for the simultaneous 

measurement of the actual transmitter and receiver responses in air. These results are 

for vibrations measured at the tip of both the transmitter and receiver. The first mode 

resonance frequency of the transmitter used in this study is ≈ 12.5 kHz. 

The peak displacement of the transmitter response is 56 nanometers and the peak 

displacement of the receiver response is ≈ 1.7 nm. This difference is expected because 

of significant attenuation of the waves as the wave travelled in air from the transmitter to 

the receiver. 

Fig. 6-2 shows that there is a clear time delay between the transmitter and receiver 

responses. This time delay is estimated to be ≈ 0.21 ms; the tip to tip distance between 

the transmitter and receiver is ≈ 7 cm. Using this length and time, the wave velocity based 

on the first arrival is ≈ 333 m/s; this velocity is very close to the velocity of sound in air. 

These calculations confirm the presence of compressional wave interference in the 

bender elements even in air.  
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Fig. 6-2: Transmitter and Receiver responses in air to a sine pulse of 12.5 kHz (∆t = 0.87 

ms) and the frequency spectra of the responses 

Fig. 6-2a shows that the receiver is still vibrating with relatively larger amplitudes (at 

around 2 ms) even though the transmitter response has decayed to relatively low 

amplitudes; these vibrations are found to be the reflections of the p-waves from the plexi-

glass. These reflections are also observed in the transmitter response (between 1.5 to 

2.5 ms); however, the amplitude of these vibrations is very small compared to the actual 

transmitter response which leads to an apparent conclusion that the transmitter vibrations 

have completely diminished after about 1.5 ms. These reflections are further investigated 

using the frequency spectra of the transmitter and receiver responses which are shown 

in Fig. 6-2b 

Tx max = 56 nm 

Input start 

∆t ≈ 0.21 ms 

∆t  

∆f ≈ 1.24 kHz 
f1 ≈ 12.5 kHz 

Rx max = 1.7 nm 

f1 ≈ 12.5 kHz 

f2 ≈ 13.52 kHz 
 

Wall reflections 

f1 ≈ 12.5 kHz 

(a) (b) 
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.  

The first peak observed in the frequency spectra of both transmitter and receiver 

responses is at a frequency of ≈ 12.5 kHz (resonance frequency of the transmitter). The 

other two major peaks in the frequency spectrum of the receiver response are the 

reflections of this resonance frequency. One of these reflections is also observed in the 

transmitter response as seen in the small peak in the frequency spectrum).  

The time intervals between peaks of the reflections seen in Fig. 6-2a  is ∆t ≈ 0.87 ms; the 

corresponding frequency is ∆f ≈ 1 / 0.87 = 1.24 kHz. This frequency is very similar to the 

frequency interval observed frequency spectrum (labelled on Fig. 6-2b).  

Further study is done to evaluate the presence of these reflections by measuring the 

displacements on the wall of the acrylic tube which is filled with water. Then, the response 

is compared to the receiver response (BE-Rx) in water at the peak of the receiver. These 

responses are obtained for a sine pulse of 12.5 kHz with an input voltage of 25 VPP. Fig. 

6-3 shows the two-time signals with the response wall offset for clarity. The wall 

displacements are actually in the range of the response of the receiver tip; in fact, the 

peak displacement of the wall response is ≈ 3 nm compared to ≈ 2.3 nm of the receiver. 

Nevertheless, the wall is vibrating in air while the receiver is inside the water. Besides the 

amplitude, the frequency content of the two signals is also similar which shows that the 

square tube wall is also contributing in the interference in the receiver response caused 

by the reflections 

These calculations show that there are reflections are also affecting the receiver response 

besides the actual compressional waves. The interference of these compressional waves 

and its reflections must be addressed in the conventional BE testing for a reliable BE test 

interpretation.  
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Fig. 6-3: Comparison of BE-receiver response in water at the tip with the vibrations of 

the acrylic tube wall 

6.4.2 Comparison of laser response and output voltage 

In conventional BE testing, the output electrical voltage is measured and stored at the 

receiver end; however, it is not possible to measure the actual receiver response because 

the receiver is inside the soil. Fig. 6-4a shows a comparison of the receiver response 

measured using the laser and the receiver output voltage in air; a shorter length of the 

time signal is shown for clarity. The results clearly show that the laser response is almost 

identical to the output voltage. Three outcomes can be observed from this figure:  

(i) The peak amplitude of the laser response is one order of magnitude higher 

than that of the output voltage; this result is expected because the laser 

measures the actual receiver response and the output voltage is a result of the 

vibration of the receiver system.   

Wall 

BE-Rx 
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(ii) There is a time delay of ≈ 0.008 ms between the laser response and the output 

voltage; the laser response is delayed because there are more electrical 

peripherals between the receiver and the oscilloscope on which response is 

measured and stored. The receiver output voltage is measured directly from 

the receiver system.   

(iii) The fact that the laser response is very similar to the output electrical voltage 

is a proof of the validity of the laser measurements. The output electrical 

voltage is measured independently from the laser system. Therefore, this result 

helps in calibration of the laser vibrometer.  

 

 

Fig. 6-4: (a) Receiver response from laser (solid line) and the output electrical voltage 

(dashed) and (b) Frequency spectra of the receiver response from the laser and the BE-

receiver output voltage 

The results from the time signals in Fig. 6-4a are further verified using the frequency 

spectra of the two signals shown in Fig. 6-4b; the time signals are normalized to each of 

its maximum before computing the frequency spectra; the energy in the frequency range 

of interest i.e. 10 to 20 kHz is very similar. Transfer function between the laser response 

and output voltage is computed and the transfer function dB magnitude is presented in 

Laser max = 
1.7 nm 
Rx max = 5.8 
mV 
 

Laser max = 5.1 
Rx max = 0.9 
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Fig. 6-5. The transfer function magnitude in frequency range of interest i.e. 10 to 18 kHz 

is well within the acceptable range of ±3 dB. 

Another conclusion from the comparison in Fig. 6-4 is that the theoretical relationship 

between the bender displacement and the voltage applied/generated proposed by Leong 

et al. (2005) (Eq. 5.7), is not only valid for the peak-to-peak displacements, in fact the 

relationship can be used to correlate the whole of receiver output voltage to the receiver 

displacement. As observed in Fig. 6-4, the laser response of the receiver is related to the 

output voltage through a scaler value of ≈ 5.  

 

Fig. 6-5: Transfer function between the frequency spectra of laser response and the 

output voltage 

The relationship between the laser response and the output voltage is further investigated 

by measuring the peak-to-peak (P-P) displacement from the receiver laser response and 

BE-output voltage at different input voltage amplitudes applied to the transmitter; these 

measurements show that the slope between the laser displacement and the BE-output 

± 3 dB 
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voltage is increasing with the input voltage amplitude at a rate of 130.6 nm/V i.e. the ratio 

of 5 between the laser displacement and the output electrical voltage is dependent on the 

input voltage amplitude.  

 

6.4.3 Effects of input frequency on receiver response in liquids 

The central frequency of the input pulse (fc) affects the energy of high frequencies in the 

receiver (Rx) response; higher fc results in more energy in high frequencies. Moreover, 

the compressional waves in liquid will travel faster than in air. This section presents a 

comparison of the transmitter (Tx) and receiver (Rx) responses in water (ρL = 1.0 g/mL) 

and sucrose of 60 % (ρL = 1.14 g/mL) concentration measured with sine pulse input 

excitations of different frequencies.  

The Tx and Rx responses to fc = 10, 20, and 50 kHz in water and sucrose-60% are shown 

in Figs. 6-6 and 6-7 respectively; the time window is restricted to 1.6 ms for clarity. The 

first arrival times are labelled for all signals using the solid dot; with the tip-to-tip distance 

between the benders ≈ 7 cm, the wave velocities in the two liquids are estimated to be ≈ 

1483.1 m/s and ≈ 1647.1 m/s. These velocity estimates are similar to the sound velocity 

estimates in the three liquids (water = 1482 m/s, sucrose – 60 % = 1710 m/s ) (Pryor and 

Roscoe 1954). 

The effects of fc on the receiver responses are clearly visible from the two figures. The 

amplitude of the high frequencies observed in between the time range of 0.4 to 0.8 ms 

increases as fc increases. The receiver responses at frequencies 10 and 20 kHz are 

contaminated by the input signal because the wave arrival occurs before the input signal 

is completed. The response to fc = 50 kHz in both liquids is not affected by the input signal 

contamination; the time of arrival in both liquids are also estimated using the responses 

to the 50 kHz sine pulse.  
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Fig. 6-6: Tx and Rx responses in water to input sine pulse of different frequencies 
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Tx-20 kHz 
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Rx-50 kHz 

∆t = 0.0472 ms 
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Fig. 6-7: Tx and Rx responses in sucrose-60% to input sine pulse of different 

frequencies 

6.4.4 Effects of input voltage amplitude 

The effects of input voltage amplitude on the peak-to-peak displacements of the 

transmitter (Tx) in air and in the mineral oil mixture have been studied in Chapter 5. In this 

chapter, this study is extended to liquids of different mass densities and in transparent 

soil to evaluate the effects of the density on the slope of the linear relationship between 

the peak-to-peak (P-P) displacement and the input voltage amplitude (Vapp). Fig. 6-8 

shows the variation of the P-P displacement with Vapp in air, mineral oil mixture (oil), water, 

sucrose of 30 (S3) and 60 % (S6) concentration and in the transparent soil specimen (Soil 

Rx-10 kHz 

Tx-10 kHz 

Rx-20 kHz 

Tx-20 kHz 

Tx-50 kHz 

Rx-50 kHz 

∆t = 0.0425 ms 
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with σo = 0 kPa). The experimental data in all medium except in air is fitted with linear 

trendlines; the solid line corresponding to the data in air is the theoretical relationship (Eq. 

5.7) between the bender displacement and the voltage applied/generated proposed by 

Leong et al. (2005). The theoretical relationship with a slope of 9.4 nm/V matches very 

well with the air data (9.6 nm/V). The variation of the slope of the experimental data with 

the density of the surrounding medium is observed as expected; with increase in density, 

the slope reduces. The rate of reduction in the slope with density is ≈ -6.8 (nm.mL / g.V).  

The displacement at the tip of the bender (piezo electric transducer) is proportional to the 

induced strain which in turn is proportional to the electric field generated in the 

piezoelectric material when a voltage is applied to the transducer (Yuan 2016). This 

relationship between the peak displacement of the bender and the input voltage applied 

to the bender is observed not only in air, but also in liquids of different mass densities and 

soil without confinement (σo = 0 kPa). 

 

Fig. 6-8: Peak-to-peak displacement of the Tx against the input voltage amplitude in 

different media 

 

Air  Oil Water S3 

S6 

Soil 
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6.4.5 Measurements in soil 

First, a sine sweep is used to estimate the resonance frequency of the transmitter. A sine 

pulse input excitation with the central frequency equal to the resonance frequency of the 

transmitter is applied to the transmitter again; the transmitter and receiver responses to 

this sine pulse are measured at the tip of the transmitter and receiver inside the 

transparent soil. 

Fig. 6-9a shows, for the first time in BE test literature, the transmitter and receiver 

responses to a sine pulse inside an unconfined soil. The estimated first arrival time is also 

indicated on the figure. Based on this arrival time and the tip-to-tip distance between the 

benders (L t-t = 0.07 m), the wave velocity estimated is ≈ 1505 m/s. The shear wave 

velocity (Vs) and compressional wave velocity (Vp) in fused quartz are much lower than 

this value (see resonant columns tests results below). On the other hand, the wave 

velocity in the mineral oil mixture is ≈ 1200 m/s. The wave velocity estimated from the first 

arrival in Fig. 6-9 is a result of a combination of the compressional wave velocities of the 

fused quartz and mineral oil mixture. Another possibility could be the attenuation of the 

wave velocities of fuzed quartz because of the zero confinement on the fused quartz 

transparent soil specimen. The energy in the oil wave velocity has masked the arrival of 

the fused quartz wave velocity. The wave velocities of the fused quartz are measured by 

performing conventional bender elements and resonant column tests on the dry fused 

quartz (section 6.4.6). 

The frequency spectra of the transmitter and receiver signals are estimated by first 

normalizing both responses by their peak amplitude and then performing the FFT 

calculations. Fig. 6-9b shows the magnitude of the frequency spectra of the two signals. 

The magnitudes of each of the frequency spectra are normalized to their own maximum. 

The reflections from the receiver and the system affects the transmitter response as well; 

the figure shows that the modes of the transmitter in the frequency range less than 20 

kHz are apparently coupled because of the high energy reflections in the system. The 

peaks in the receiver frequency spectrum in the range between 0 to 20 kHz also verify 

this observation. Nonetheless, the transmitter frequency spectrum shows three modes in 

the frequency range of 0 to 50 kHz. The higher modes with peaks at around 30 and 42 
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kHz in the transmitter frequency spectrum are in line with high energy observed in the 

receiver frequency spectrum.  

  

 

Fig. 6-9: (a) Transmitter and receiver responses to a sine pulse input excitation (σo = 0 

kPa) and (b) their frequency spectra 

Transmitter: Max = 42 nm 

Receiver: Max = 2.1 nm 

∆t = 0.0418 ms 

(b) 

(a) 
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Fig. 6-10 shows the Tx and Rx responses inside the transparent soil for a confining stress 

(σo) = 20 kPa. The time delay between the Tx and Rx responses at σo = 0 kPa is similar 

to that at σo = 20 kPa. This result shows that an increase in pressure of 20 kPa on the 

transparent soil specimen does not induce sufficient energy in fused quartz waves to 

appear in the time signals. The estimated velocity based on this time delay corresponds 

to the wave velocity of a liquid rather than the fused quartz. The frequency spectra of the 

Tx and Rx responses at the two different confinements (Figs. 6-11b and 6-12b) also are 

very similar as shown by the frequencies corresponding to the peaks of the frequency 

spectra. These results are limited to the confining stress of 20 kPa; further study will be 

required to evaluate the transmitter and receiver responses at higher confining stresses.  
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Fig. 6-10: (a) Transmitter and receiver responses to a sine pulse input excitation (σo = 

20 kPa) and (b) their frequency spectra 

(a) 

(b) 

Tx: Max = 20.6 nm 

Rx: Max = 1.1 nm 

∆t = 0.0416 ms 
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6.4.6 Wave velocities of fused quartz 

Shear wave (Vs) and compressional wave (Vp) velocities of fused quartz are measured 

using BE and RC tests under different confinements. Fig. 6-11 and Fig. 6-12 shows the 

time signals in response to two input frequencies (10 and 50 kHz) used to estimate the 

Vs and Vp using BE tests under seven different confinements; the arrival times of p-waves 

and s-waves from BE test and s-waves from RC tests are also marked on the figures. 

The p-wave arrivals are selected based on the first arrival method; and the s-wave arrivals 

for BE tests are selected as the first arrival of the event with more energy (larger 

amplitude). The back-calculated RC arrival times are different from the s-wave arrivals 

from BE for two possible reasons; (i) frequency effects on the shear wave velocity 

because the loading frequency range of benders is 1 to 15 kHz while the range in RC test 

is 20 to 200 Hz (Meng and Rix 2000) and (ii) the s-wave arrival selected might still be 

influenced by the p-wave arrival. The p-wave presence becomes more significant as the 

confinement in the soil increases as seen by the amplitude of the wave after the p-wave 

arrival marks.  

Comparison of the two figures also shows that the p-wave arrival becomes more apparent 

when the input frequency is increased from 10 to 50 kHz. This result is corroborated by 

the conventional BE test results from dry sands obtained by Ferreira and da Fonseca 

(2019). These results show that a relatively reliable estimate of shear wave velocity (Vs) 

is possible by evaluating the compressional wave velocity (Vp) based on the first arrival 

using high input frequency (e.g. > 50 kHz) and Poisson ratio of the soil sample.  

The wave velocities estimated based on these arrival times and RC-Vs at different 

confinements are plotted in Fig. 6-13 with the experimental data fitted with power-law. 

The power law parameters for different wave velocities are also shown. This figure 

corroborates the results shown in Figs. 6-11 & 6-12; there is a ≈ 15 % difference between 

the Vs from RC and BE tests. The increase in input frequency increases both Vs and Vp 

at all confinements showing the effects of loading frequency on the wave velocities.  
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Fig. 6-11: Bender element output voltages inside the fused quartz at different 

confinements with p and s wave arrivals and RC time arrivals labelled (Input frequency = 

10 kHz)  
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Fig. 6-12: Bender element output voltages inside the fused quartz at different 

confinements with p and s - wave arrivals and RC time arrivals labelled (Input frequency 

= 50 kHz) 
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Fig. 6-13: Compressional wave velocity of the fused quartz at different confinements 

using BE (10 and 50 kHz input frequencies) and shear wave velocity using RC tests 

 

 

 

 

Vp (50 kHz) b = 0.25, a = 182.5 

Vp (10 kHz) b = 0.24, a = 204.5 

Vs (RC) b = 0.23, a = 83.88 
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6.5 Conclusions 

In this chapter, results of actual BE-receiver response, measured for the first time in BE 

literature, are presented. BE transmitter and receiver vibrations are measured in air, 

liquids of different mass density, and in transparent soil using input excitation of different 

central frequencies and voltage amplitudes. The transmitter and receiver responses are 

measured at the peak of the benders except in the case of the effect of input voltage on 

the receiver response in which the response is measured at the center.  

The results of this chapter have given several important insights on BE testing. From the 

measurements in air, it is concluded that there is a significant presence of compressional 

waves in BE testing. Since the target in conventional BE testing is to identify the shear 

waves arrival, presence of compressional waves will be treated as noise which must be 

distinguished from the shear waves. This problem is enhanced in short soil specimens 

and in saturated soils as has been predicted before (Lee and Santamarina 2005). This 

conclusion of compressional wave interference is corroborated from the results in water, 

sucrose-30 %, and sucrose-60 %. The compressional wave velocity estimated from the 

first arrival method in air and in liquids are similar to those in the literature.  

Comparison of the receiver response measured from the laser at the receiver tip and the 

output electrical voltage in air from the receiver showed that the receiver response at the 

tip and the output voltage are very similar. Frequency spectra of the two signals showed 

that the frequency components in the two signals match very well. However, the 

amplitude of the laser measurement is higher than the output electrical voltage and there 

is a lag in the laser response because of the presence of more electrical peripherals 

between the laser beam and the data acquisition system. The laser response at the tip is 

≈ 5.8 times higher than the output electrical voltage and there is a time delay of ≈ 0.005 

ms. The effect of input voltage amplitude on the receiver response showed that this ratio 

between the laser response and the output electrical voltage has a standard deviation of 

≈ 0.07. Moreover, the mean value of this ratio over an input voltage amplitude range of 

0.1 to 200 V is 2.65 which is < 5.8 because the laser response is measured at the center 

for the study of effect of input voltage amplitude on the receiver displacement. The 

conclusion of a scalar relationship between the laser response and the output voltage is 
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further corroborated by the transfer function calculations. This scalar relationship also 

means that the theoretical relationship between bender displacement and voltage 

amplitude proposed by Leong et al. (2005) is valid for the whole of the displacement signal 

rather than just the peak-to-peak displacement of the bender.  

The input excitation frequency also affects the frequency response of the receiver. The 

amplitude of high frequencies in the initial time range of the receiver response increases 

as the input excitation frequency is increased from 10 to 50 kHz. This exercise showed 

that the first arrival is easily detected by using a 50 kHz input excitation because the 

receiver response is not contaminated by the input signal especially if the wave velocity 

is more than 2000 m/s. Increase in mass density of the medium surrounding the benders 

also decreased the energy in the high frequencies compared to the energy in the 

resonance frequency of the transmitter.  

The tests for effects of input voltage amplitude on the transmitter displacement in air, 

liquids, and in soil show that the slope of the linear relationship between the displacement 

and input voltage amplitude is linearly related and indirectly proportional to the mass 

density. The slope of the decrease in displacement with mass density is estimated to be 

≈ 6.8 nm.mL / V.g based on six data points.  

Finally, the measurements in soil showed that the wave velocity of fused quartz or the 

mineral oil mixture could not be estimated with the first arrival method because of the 

attenuation of compressional waves and low energy in the shear waves. Higher 

confinement and longer samples will be needed to be able to detect and distinguish the 

compressional and shear wave arrivals in the transparent soil specimen.   
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7 Small-strain dynamic characterization of Leda clay 

7.1 Introduction 

 Marine silts and soft clays are known to significantly amplify seismic ground 

motions because of the large impedance contrast between these soils and the bedrock. 

For example, the amplification of seismic waves during the 1985 Mexico earthquake was 

found to be five times the ground motion at the bedrock (Celebi et al. 1987). These types 

of soils are abundantly found in many areas of the St-Lawrence River valley, Ottawa River 

valley, Saguenay-Lac-St-Jean, a part of the north-west of Quebec, eastern and northern 

Ontario, and some regions of the eastern provinces in Canada (Leroueil et al. 1983).  

The Canadian bridge and building codes (e.g. CHBDC 2015, NBC 2015) have 

recently updated the seismic design requirements for Canada. The soil response during 

earthquakes (e.g. dynamic response) is an important part of seismic design. The dynamic 

response of soils during earthquakes is characterized by small-strain properties of soils 

such as the shear wave velocity (Vs), the shear modulus (G), and the damping ratio (ξ). 

Resonant column (RC) and bender element (BE) tests are the two main laboratory tests 

used to measure these properties. Many important structures in Canada such as bridges 

and dams are located on sites with ample presence of soft clays. The low-strain dynamic 

response of soft clays in Canada is not well understood because of the limited number of 

studies performed (Bouchard et al. 2017; LeBoeuf et al. 2016). The main reason for this 

shortage in studies is that undisturbed samples from these types of soils are very 

expensive to extract. The lack of understanding of the low-strain dynamic behavior of soft 

clays has led to over conservative seismic designs and safety evaluations of important 

structures (e.g. Leroueil et al. 1990).   

The present study is part of an experimental program led by a team at Laval 

University to investigate the dynamic response of Leda clays found in Eastern Canada 

(LeBoeuf et al. 2017). Advanced in-situ extraction was performed to obtain the 

undisturbed Leda clay samples for laboratory tests. The objective of this study is to 

advance the understanding of the small-strain behavior of the Leda clays found in Eastern 

Canada. Resonant column and bender elements tests are performed on four Leda clay 

samples collected from two sites (site-1 and site-2) located near the St. Lawrence river 

valley in Quebec, Canada. Three samples (s1, s2, and s3) are from site-1 and one sample 
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(s4) is from site-2. Limited number of samples are used because of the expense (≈ 

$20,000 per borehole) involved in the extraction of these unique Leda clay samples. The 

effects of shear strain, confinement and frequency on shear modulus and damping ratio 

of these soil samples are evaluated. The effect of shear strain on shear modulus and 

damping ratio is evaluated for a strain range of 10−4 - 10−2 %, while the effect of 

confinement on shear wave velocity is evaluated for a stress range of 50-400 kPa. The 

effect of frequency is evaluated using a recently proposed methodology called the ‘carrier 

frequency’ (CF) method, which is used with the RC setup (Khan et al. 2008). BE tests are 

also performed and the results are compared with the RC test results to evaluate the 

effect of frequency on shear modulus because the loading frequency ranges in BE and 

RC tests are significantly different. The CF and the equal strain (ES) methods are used 

to compare the results of effects of shear strain to the results obtained using conventional 

RC methodology. The results show that the stiffest sample amongst the four (s4) 

degrades the most with increase in shear strain; although, the modulus reduction rate of 

s4 decreases with increase in confinement. Only 5% difference is observed between the 

shear velocity estimates from RC and BE tests. The damping ratio estimates from the CF 

method are the lowest at mid to high strains because of the low participation of the random 

noise in the transfer function. Further, the shear modulus and damping ratio of the Leda 

clay samples appear to be not affected by the loading frequency.  

7.2 Literature review on Leda clays 

Leda clay (also called Champlain Sea clay) is a type of sensitive clay found in abundance 

along the St. Lawrence river and the Ottawa river valleys in Eastern Canada (Penner 

1965). Leda clays are comprised of plagioclase, quartz, microcline, hornblende, dolomite 

and calcite (Locat et al. 1984). They are strongly bonded and their sensitivity increases 

with depth (Crawford 1963).   

Several natural disasters (such as landslides) in Eastern Canada have resulted because 

of the presence of Leda clay in soil deposits (Eden and Mitchell 1969). These events have 

diverted the attention of many researchers towards studying the behavior of Leda clays 

in different conditions. Eden and Mitchell (1969) studied the drained shear strength of 

Leda clays to understand the mechanics of landslides in Leda clay. Drained and 
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undrained triaxial tests and simple shear tests have been conducted on Leda clay soil 

specimens to understand its shear strength characteristics (Lee 1979; Lefebvre and 

Leboeuf 1987). Cyclic shear strength characteristics of Leda clay have also been the 

focus of a few studies in which cyclic simple shear tests (Lefebvre and Pfendler 1996) 

and cyclic triaxial tests (Javed 2011) were conducted with Leda clay soil samples.  

Although considerable research has been performed on understanding the static and 

cyclic shear strength characteristics (at high strains) of Leda clay, no study to date has 

been performed to investigate the low-strain behavior of Leda clays. Low strain behavior 

of other soft clays such as Detroit clay, Ford clay, Eaton clay, and San Francisco Bay 

Mud has been investigated (Anderson and Woods 1975; Lodde and Stokoe 1981; 

Kokusho et al. 1982). Analysis on a collection of experimental data on these soft clays by 

Dobry and Vucetic (1987) has shown that modulus reduction and damping ratio variation 

with shear strain of soft clays mainly depends on the plasticity index and void ratio of soft 

clays. Soft clays behave more linearly compared to the less-plastic clays and sands. This 

linear behavior of soft clays played a significant role in the large amplification of ground 

motions in the Mexico City earthquake. Linear behavior of Leda clays has the potential to 

cause large site amplification and huge destruction. Despite this concern with Leda clays, 

there are no studies which have investigated the low-strain behavior of Leda clays. The 

objective of this study is to investigate the low-strain behavior of Leda clays by performing 

resonant column and bender element tests on Leda clay soil samples extracted from two 

sites near St. Lawrence river and Ottawa valley.  

7.3 Site description 

The soil samples tested in this study are from two sites near the St. Lawrence River valley 

in Quebec. The sample named TM4a is from a 2013 site investigation performed at a site 

near the intersection of the St. Lawrence and Outardes river in Quebec (Duguay-

Blanchette 2016b). The right side of the site is mostly bedrock, the center is dominated 

by clay and sand deposits, and the left side is mostly peat bog.  

Following is a brief description of the geology of this site (Duguay-Blanchette 2016b): The 

littoral region of the North Shore of the St. Lawrence River is located in the Grenville 

Geological Province. The bedrock of this region is made of metamorphic rocks. Loose 
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silt, clay, and sand deposits of varying thicknesses formed in the Goldthwait sea after 

melting of glacier. A total of six samples of 200 diameter and 390 mm height were 

extracted from layers between 8 m to 21 m; the sample used in this study is from a sample 

between the depth of 14.73 and 15.13 meters.  

The samples named s1, s2, and s3 are from the site investigation performed at a site 

located on the east of the Beauharnois canal just before the St. Lawrence river crossing 

(SM LABO INC. 2014). Mostly, herbaceous vegetation and agricultural crops cover the 

land. The bedrock is formed of quartzite sandstone belonging to the cairnside formation. 

A total of 21 samples, each of 200 mm diameter (using Laval University sampler) and 580 

mm height, were extracted from a 14.8 m thick layer of silty clay of very soft to stiff 

consistency with sand traces and gray in color. The samples tested in this study are from 

3 of those 21 samples.  

 

7.4 Experimental setup 

Fig. 7-1 presents the schematic of the test setup with resonant column and bender 

elements equipment. A modified Stokoe-type resonant column is used with a fixed-free 

configuration. The built-in source in the spectrum analyzer (HP-35670A) is used to apply 

a sinusoidal sweep input voltage which is amplified by a power amplifier (Bogen GS-250) 

because the output voltage amplitude of the built-in source is limited. The amplified input 

voltage is used to induce alternating current in the coils which are mounted on the driving 

plate. This alternating current causes the magnets to vibrate which in turn cause torsional 

excitations on the soil sample. The response of the specimen to these torsional 

excitations is characterized in terms of the acceleration of the accelerometers (PCB 

353A78 and PCB 353B65) mounted on the driving plate. The current in the coils and the 

acceleration are amplified and filtered (200 Hz low pass) using a filter amplifier (Krohn-

Hite 3384) before being sent to the spectrum analyzer for transfer function calculations; 

the spectrum analyzer calculates the transfer function in real time. Resonance frequency 

and damping ratio of the soil specimen are estimated from the transfer function.  

The RC driving system with the soil specimen is placed in a confinement chamber. A 

pneumatic pressure panel (Brainard and Kilman), which has a maximum confinement 
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capacity of 700 kPa, is used to exert the confinement on the soil sample. Axial strain of 

the specimen is monitored using a Linear-Voltage-Displacement-Transducer (LVDT) 

(Trans-Tek, 0242-0000 D-6) which is mounted on the driving plate.  

 

Fig. 7-1: Schematic of resonant column and bender element tests 

7.5 Sample preparation  

The soil samples received at the University of Waterloo geotechnical laboratory 

were large in size. Sample s4 was received in a cake form covered with wax, and was 

200 mm in diameter and 135 mm in height. Samples s1-s3 were received in three 

specially manufactured boxes that contained the waxed soil samples with dimensions of 

200 mm diameter and 355 mm height. These samples were stored in a refrigerator to 

maintain the moisture content. The sample dimensions required for RC test are 70 mm 

diameter and 140 mm height. The procedure for specimen preparation for RC test is 

described next. 

The wax covering for a portion of the soil sample is first peeled off and a chunk of 

soil larger in volume than the required sample dimensions is cut.  The remaining sample 

is re-covered with wax and stored back in the refrigerator to avoid sample disturbance. A 

wire saw is used to cut-off some part of the chunk of clay before placing it on a sample 

pedestal; then, the sample is trimmed to a diameter of 70 mm. Fig. 7-2a shows one of the 
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trimmed soil sample on the sample pedestal. The top cap of the pedestal is gently pulled 

up to release the sample before using a split mould (approximate dimensions: 70 mm 

diameter and 140 mm height) to hold and release the sample from the pedestal. A wire 

saw is used to cut the clay sample to a height close to 140 mm before using a scraper to 

trim the sample to 140 mm height. With the known mass of the split mould, the split mould 

with the clay sample is weighed and the mass of the clay sample is calculated. About 200 

g of sample from the wasted clay chunk is used for water content measurement using the 

oven-dried method. Indentations are created on one side of the clay sample to facilitate 

the insertion of bender elements and the blades for improved coupling (Ali et al. 2016). 

Finally, the sample is placed on the bottom platen of the resonant column setup (Fig. 

7-2b). Vacuum grease is applied on the top and bottom platens. Then, the soil sample is 

covered with a latex membrane with the help of vacuum and a cylindrical pipe. The 

membrane is gently pulled to remove any air bubbles between the sample and the 

membrane. Finally, gaskets are placed on the top and bottom platens on top of the 

membranes to ensure minimum air flow. 
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Fig. 7-2:(a) Trimmed soil sample on a pedestal; (b) Sample on the resonant column 

base platen.  

7.6 Experimental methodology 

7.6.1 Calibration of the power amplifier 

The power amplifier is used to amplify the input voltage used for inducing current in the 

coils of the RC driving system. The power amplifier also has a frequency range in which 

its response is non-linear; it is important to ensure that the amplifier has a linear response 

in the frequency range that will be encountered in the RC tests. This process of ensuring 

linear response in the working frequency range is called the calibration of the power 

amplifier. This calibration is performed by evaluating the transfer function of the power 

amplifier at different amplification levels using the spectrum analyzer. Fig. 7-3 shows the 

schematic used for calculating the transfer functions. The ‘source’ feature of spectrum 

analyzer is used for sending an input voltage to the power amplifier; this input voltage is 

simultaneously sent to channel 1 of the analyzer as the input for the transfer function of 

the power amplifier. This input voltage is amplified by the power amplifier; then, the 

voltage across a 10 Ohm resistor for different frequency ranges is measured and sent to 
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channel 2 of the spectrum analyzer as the output for the transfer function. A 10 Ohm 

resistor is used because the impedance of the outlet of the power amplifier is different 

from the impedance of the spectrum analyzer.  

The input voltage from the source to the power amplifier is fixed at 25 mV; the frequency 

ranges for which the transfer functions are evaluated are 0-200 Hz and 0-50 Hz. The 

range of 0 to 200 Hz is more than sufficient because the maximum resonance frequency 

of any soil would not be more than 200 Hz (Rix and Meng 2005); frequency range of 0 – 

50 Hz is selected to focus the transfer function in a range which is more commonly utilized 

in this study. The amplification level of the power amplifier is varied from 2 to 25.  

 

Fig. 7-3: Schematic of the setup to calculate the transfer function of the power amplifier 

Selected transfer functions for different amplification levels are shown in Fig. 7-4 

(frequency range = 0 - 200 Hz) and Fig. 7-5 (frequency range = 0 - 50 Hz). The maximum 

amplification level that will be used in the RC testing is 20. The transfer functions at all 

the amplification levels are flat i.e. the power amplifier behaves linearly except at 

frequencies lower than 13 Hz. However, the lowest resonance frequency of any soil 

sample in a RC test is 20 Hz (Rix and Meng 2005); therefore, this power amplifier is 

suitable to be used for frequency range between 20 – 200 Hz and for amplification levels 

from 2 to 25.  
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The maximum magnitudes of these transfer functions are plotted against the amplification 

levels of the power amplifier in Fig. 7-6. Note that the no. of transfer functions in Fig. 7-4 

and in Fig. 7-5 are less than the experimental points shown in Fig. 7-6; this difference is 

because selected transfer functions are plotted for clarity. The magnitude vs amplification 

clearly has a trend i.e. the magnitude increases exponentially with the amplification level. 

This information is important in the RC test to ensure that the power amplifier is 

performing the amplification as is expected.  

  

Fig. 7-4: Transfer functions of the power amplifier at different amplification levels (0 -200 

Hz) 

Level = 25 

Level = 20 

Level = 10 

Levels = 2 & 5 
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Fig. 7-5: Transfer functions of the power amplifier at different amplification levels (0 - 50 

Hz) 

f = 13 Hz Level = 25 

Level = 20 

Level = 10 

Levels = 2 & 5 
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Fig. 7-6: Maximum magnitudes of the transfer functions of the power amplifier against 

the amplification levels 

7.6.2 Calibration of the filter amplifier 

Filter amplifier is used for filtering the extraneous frequency components from input and 

output voltages while performing the sine-sweep in the RC test. The cut-off frequency of 

the filter amplifier is set at 200 Hz because most soils have resonance frequencies less 

than 200 Hz (Rix and Meng 2005). The dB-amplification is set at 20 dB for strains in the 

range of 10-2 to 10-3 % and 10 dB for strains close to 10-2 %.  

The filter amplifier is a system with transfer function like any other electrical component. 

To ensure accuracy of the resonant column results, the filter amplifier should be a linear-

time invariant system. Linearity of the filter amplifier is investigated here using the transfer 

function which is calculated by the spectrum analyzer. First, the transfer function is 

estimated with a cut-off frequency of 20 kHz with no amplification and compared to the 

analytical transfer function of a low-pass filter (Eq. 6.1). Then, the transfer function of the 

m = 1.06e0.16a 

R2 = 0.99 
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four channels of the filter amplifier is estimated with 20 dB amplification and a cut-off 

frequency of 200 Hz.  
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Where G0 is the DC gain, fc is the cut-off frequency, f is the frequency, and n is the order 

of the filter. 

 

 

Fig. 7-7: (a) Experimental and analytical transfer functions of the filter amplifier; (b) 

Experimental transfer functions (offset for clarity) of the four channels of the filter 

amplifier with resonant column conditions 

Fig. 7-7a shows the analytical and experimental transfer functions; the analytical transfer 

function is calculated with fc = 20 kHz, n = 4, and G0 = 1 (no amplification). The 

experimental transfer function matches very well with the analytical transfer function with 

an estimated attenuation slope of ≈ 20 dB / octave for both. This result means that this 

filter amplifier is suitable for use with the resonant column test. Fig. 7-7b shows the 

transfer function estimated with the settings used for a typical resonant column setup: fc 

(a) (b) 

Ch. 1 Ch. 2 
Ch. 4 Ch. 3 
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= 200 Hz and amplification of 20 dB. There are four channels in the filter amplifier which 

can be used for filtering and amplifying electrical signals; transfer functions of all four 

channels (with 0.5 magnitude offset added for clarity) are shown. The dB magnitude at 

the cut-off frequency (200 Hz) is -3.06 which is approximately the well-known theoretical 

dB magnitude of a Butterworth low-pass filter. 

7.6.3 Calibration of the accelerometer conditioning unit 

The accelerometers’ signal used for measuring the response of the soil specimen in a 

resonant column setup (PCB 353A78 and PCB 353B65) is usually affected by noise 

because of the low amplitudes of the signals. The accelerometers’ responses are 

conditioned by a PCB conditioning unit which is specifically designed for accelerometers 

of the type used in this study. This conditioning unit has to be calibrated to ensure its 

usability with the resonant column setup. The spectrum analyzer is used to estimate the 

transfer function of the two channels used for the two accelerometers. Fig. 7-8 shows the 

transfer functions of the two channels (one transfer function offset for clarity). Magnitudes 

of both transfer functions are constant (≈1) at all frequencies between 0 – 200 Hz which 

means the output signal is equal the input signal coming from the accelerometers. This 

result shows that this conditioning unit is suitable for use.  
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Fig. 7-8: Transfer function of two channels of the accelerometer conditioning unit 

7.6.4 Calibration of RC system  

The shear modulus (G) of the soil sample is estimated using Eq. 2.2 where the shear 

wave velocity of the soils (Vs) is estimated using Eq. 3.2.  Eq 3.2 requires the estimate of 

the moment of inertia of the sample (I) and the moment of inertia of the driving plate and 

resonant column top cap (Io). I is simple to estimate based on the geometry of the soil 

sample (cylinder); however, the driving system in the RC setup has a complex geometry 

which makes it difficult to estimate the Io; therefore, Io is typically estimated 

experimentally. An aluminum probe with a known resonant frequency (fo) is used for this 

purpose along with a measured mass assuming a single-degree-of-freedom system with 

total mass equal to the mass of the driving system plus the additional measured mass. 

The aluminum probe is made from a pipe section which is attached to the rectangular 

bars at the bottom and at the top. The results Io for the driving plate of RC system used 

in this study is 67.4 g-cm-s2. Details of the calculation of this Io is give in the appendix A. 

Details of the probes used to verify the calibration of the driving system are given in Table 

7-1 

Ch. 1 
Ch. 2 (offset for clarity) 
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Table 7-1: Properties of the calibration aluminum specimens 

Probe 
Outside 

diameter (mm) 
Length (mm) 

Resonance 

frequency  (Hz) 

Damping ratio 

( x 10-3 ) 

AL 1 

AL 2 

AL-3 

AL-4 

AL-5 

19 

25 

10 

6.5 

19 

227 

225 

225 

223 

225 

50.75 

98 

11 

8.3 

81 

1.13 

2.5 

10.7 

11 

3 

 

7.6.5 Linear voltage displacement transducer (LVDT) calibration 

The consolidation of the soil sample is monitored by the change in height of the soil 

sample. When the soil sample is not in the pressure chamber, the height of the sample is 

measured using a Vernier caliber; however, the access to the soil sample is difficult when 

the soil sample is inside the chamber. Hence, a linear voltage displacement transducer 

(LVDT) is used for measuring the change in height inside the chamber.  

The LVDT is mounted on a vertical caliber in a position similar to that in a RC test (Fig. 

7-9). The LVDT rod is let loose on the vertical caliber and an initial voltage reading is 

noted. Then, the measurement of the vertical caliber is changed by a particular 

displacement increment and the corresponding voltage change is noted. This step is 

repeated for multiple displacement increments and the displacement is plotted against 

the voltage; the voltage range in which the slope of the plot is linear is recorded and the 

slope of that linear range is estimated by curve-fitting the experimental data. This slope 

is then used to estimate the actual height of the sample during the consolidation stage 

(section 7.6.6) or during the testing stage (section 7.6.7.2). Moreover, the LVDT 

measurements in an actual RC test are ensured to stay within the linear voltage range. 

The calibration of the LVDT used in this study is presented in the Fig. 7-10 below 
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Fig. 7-9: Schematic of the setup for LVDT measurements 

 

Fig. 7-10: LVDT calibration to estimate the LVDT constant required for estimating the 

height of the sample 

 

y = -0.174x – 0.987 
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Fig. 7-10 shows that the estimated slope of the LVDT used in this study is 0.174 cm/V 

and the linear range of the LVDT is ≈ -9 V to +9 V (total = 18 V). This result means that 

the change in height by 1.74 mm will be indicated by a change in voltage by 1 V in the 

linear range; therefore, the total allowable change in height is 1.74 mm/V x 18 V ≈ 31 mm 

which is more than sufficient for a RC test.  

7.6.6 Consolidation 

The stress increase in saturated clay soils causes a sudden increase in the pore water 

pressure in the soil. Due to the low permeability of the clay soils, the decrease in pore-

water pressure (and thus, the settlement) may take a long time to stabilize although the 

elastic settlement in soils will occur immediately. The volume change associated with the 

pore-pressure decrease over time in a soil sample must be completely (or mostly) finished 

before the RC test can be performed because the geometry of the soil sample is important 

in the estimation of the dynamic properties of soils. This condition means that the primary 

consolidation should be completed before performing the measurements; therefore, at 

every applied confinement, the soil sample is consolidated until the beginning of the 

secondary compression stage as shown in Fig. 7-11. The deformation (axial) of the 

sample inside the pressure chamber during the confinement is measured using an LVDT.  
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Fig. 7-11: Deformation-time plot for a given confinement 

An example of the consolidation plot of one of the soil samples used in this study is 

presented in Fig. 7-12 with the consolidation stages labelled. The confinement on the soil 

sample reduces the sample height; which reduces the gap between the magnets and the 

base of the coils. Therefore, the confinement has to be removed; and the pressure 

chamber has to be opened to realign the magnets of the driving plate to bring the magnets 

in the center of the coils. Upon closing the pressure chamber, the soil sample is subjected 

back to the same confinement. This process is termed as ‘reconsolidation’ in Fig. 7-12. 

Note that the slope of the ‘reconsolidation’ phase is very similar to that of the secondary 

compression stage of the ‘consolidation’ phase; hence, the RC tests are performed on 

this sample without waiting for the time that is spent for the consolidation stage.  
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Fig. 7-12: Example of the consolidation plot of a soil sample used in this study with the 

consolidation stages labelled.  

7.6.7  Sample calculations  

7.6.7.1 Transfer function curve-fit 

The spectrum analyzer performs sinusoidal sweep using burst chirp excitation (Fig. 5-7) 

and calculates the transfer function in real time at each induced shear strain level.  From 

the transfer function, the resonance frequency (fo) of the soil sample and the damping 

ratio are recorded from the analyzer. The analyzer performs this calculation by curve 

fitting the one-dimensional transfer function between the acceleration and the current 

across the coils of the RC driving plate; this transfer function is presented as Eq. 6.2 

below (Cascante et al. 2005) 
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Where B1/M is the magnetic force factor of the coils, Ra is the distance between the 

accelerometer and the center of the specimen, Rm is the distance between the center of 

the magnet and the center of the specimen, ξ is the damping ratio, and β is the ratio 

between the radial frequency (ω) and the radial resonance frequency (ωo) of the 

specimen.  

This curve fitting can be done manually using MathcadTM or MATLABTM to confirm the 

results from the spectrum analyzer. A typical set of calculations for this curve-fit using 

Mathcad is presented below in Appendix B. 

7.6.7.2 Shear modulus and damping ratio from conventional RC test 

The estimated damping ratio (ξ) at a particular shear strain is estimated directly from the 

transfer function curve-fit equation (Eq. 6.2). In the example in Appendix B, ξ would be 

0.7 %.  

The induced shear strain (γ) for each pair of shear modulus (G) and damping ratio is 

estimated using the Eq. 6.3 below (Drnevich et al. 1978) 

 

2 2 20

0.707

16 10

rms out
a

a o

V d g V

R Sens H f





=   6.3 

Where Vrms is the root-mean-square voltage which depends on the input voltage (1 for 

burst chirp), d is the diameter of the specimen, g is the gravitational acceleration, Vout is 

the maximum output voltage from the accelerometer, Ra is the distance between the 

accelerometer and the center of the specimen, Sens is the sensitivity of the accelerometer 

(493.05 mV/g for the accelerometer used in this  study), H is the height of the specimen, 

fo is the resonance frequency from the transfer function, 10a/20 is the gain, and a is the db 

output 

Sample γ calculations for a sample of d = 7 cm, H = 14 cm, and fo = 52.6 Hz are shown 

in Appendix B. The estimate value of γ is 7.5 x 10-4 %.  
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The shear wave velocity (Vs) of the soil specimen is estimated using the Eq. 6.4 (refer 

section 2.1.2) 

 tano o

o S S

H HI
I V V

 
=   6.4 

Where I is the mass moment of inertia of the sample and Io is the mass moment of inertia 

of the driving plate 

Estimate of Vs is obtained by rearranging the Eq. 6.4 and finding the root (β) of the 

rearranged equation (Eq. 6.5)  

 ( ) tan
o

If
I

  = −   6.5 

Where 
2 o

s

f H

V


 =   

Sample calculations for finding the root (named ‘a’) and estimating the Vs using Mathcad 

are presented in Appendix B. The equation of β is used to back calculated the Vs; note 

that 100 is the conversion factor between cm and m to convert the Vs in m/s 
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Vs and G are related through the Eq. 6.6 

 2
max sG V=   6.6 

Where ρ is the mass density of the soil sample which calculated based on the measured 

lab weight and height of the specimen and Gmax is the shear modulus at low strains. Mass, 

diameter and height of the specimen are recorded before the soil sample is subject to 

testing; using these properties, the density of the soil sample is estimated which is then 

used along with Eq. 6.6 to estimate the Gmax. Sample calculation of the Gmax is shown in 

Appendix B.  

Sample calculations for the change in height after performing a test using the LVDT 

constant (section 7.6.5) are presented in Appendix B. Note that the voltage 

measurements in these calculations are exaggerated for demonstration purpose.  

7.6.8 Testing procedure 

The driving plate is attached and levelled to the top platen. The pressure chamber is 

placed around the RC system and the sockets between the driving system and the 

pressure chamber wall are connected. A preliminary RC test is run with the open pressure 

chamber to ensure that the wires are connected correctly. The pressure chamber lid is 

placed and the pressure panel is turned on to generate confining stress in the chamber. 

All soil samples are consolidated until the secondary compression stage. The effective 

confinement stresses (σ’
o) at which the tests are conducted are 50, 100, 200, and 400 

kPa. These stresses are selected such that each of the soil sample tested subjected to a 

confinement above its pre-consolidation stress (σc). The effects of shear strain, 

confinement, and frequency on shear modulus and damping ratio are evaluated. The 

effects of frequency are evaluated using the carrier frequency method, while the effects 

of shear strain and confinement are evaluated using the resonant column, carrier 

frequency and equal strain methods. These methods are described below 
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7.6.8.1 Conventional resonant column technique 

First, a burst chirp (fixed amplitude) of a frequency span of 200 Hz is applied to determine 

the range in which the resonance frequency lies; then, the frequency span is reduced to 

50 Hz with the resonance frequency as the central frequency of the burst chirp. A total of 

10 sine sweeps are performed and the average of the 10 transfer functions is calculated. 

Resonance frequency and damping ratio are estimated from the transfer function using 

the curve-fitting procedure. Peak output voltage (Vout) from the soil response to  sine 

sweep is noted and used with Eq. 6.7 (Cascante and Santamarina 1997) to estimate the 

induced shear strain (γ) in the sample 

 
2 2 20

0.707

16 S 10

rms out
A

a o
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r H f





=   6.7 

Where Vrms is the root mean square voltage factor (1 for burst chirp), d is the diameter of 

the sample, g is the gravitational acceleration, ra is the distance between the center of the 

specimen and the accelerometers, S is the sensitivity factor of the accelerometer, H is 

the height of the sample, fo is the resonance frequency, and A is the amplification factor 

to estimate the gain.  

A total of 9 different shear strain levels (10 minutes apart) are induced by increasing the 

input voltage (loading process), and 5 shear strain levels in the unloading process. Shear 

modulus and damping ratio are estimated and plotted against the induced shear strains.  

7.6.8.2 Carrier frequency (CF) technique 

CF method is proposed by Khan et al. (2011) to evaluate the loading frequency effects 

on shear modulus and damping ratio. In this method, the loading frequency on the soil 

specimen is independently controlled at a fixed strain level. To execute this method, the 

conventional RC technique must be implemented first. The setup for CF method is the 

same as that of the conventional RC method. 
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Frequency effects 

The procedure to evaluate the frequency effects is described here. A sine sweep using 

the conventional RC technique is performed first; then, the induced shear strain resulting 

from this sine sweep is estimated. This strain is used, along with Eq. 6.7 to create a set 

of pairs of frequencies (frequency range = 200 Hz) and voltage outputs. For a single 

measurement, the oscilloscope cursors are fixed to a voltage (from the set of pairs 

determined using Eq. 6.7) and the corresponding frequency is set as the frequency of a 

continuous sine signal in a function generator. The continuous sine signal is applied first; 

and the amplitude of the continuous sine is increased/decreased until the output voltage 

from the soil reaches the voltage set on the oscilloscope. Then, random noise signal with 

an amplitude of 5 % of the amplitude of the continuous sine is added to the input signal 

using the built-in source of the spectrum analyzer. Once the added input and soil 

response signals are stable, the spectrum analyzer is run to calculate the transfer 

function. The resonance frequency and damping ratio from this transfer function 

corresponds to one loading frequency (frequency of the continuous sine signal). This test 

is repeated for different frequencies and the shear modulus and damping ratio are plotted 

against loading frequencies.  

 

Effects of shear strain 

The CF methodology can also be used to estimate shear modulus and damping ratio at 

different shear strains. Instead of using the pairs of frequencies and voltages from Eq. 6.7

, the pair of resonance frequencies and peak output voltages resulting from a full run of 

the conventional RC technique are used. The process described above for effects of 

frequency is repeated with this set of pairs and the corresponding shear modulus and 

damping ratio are plotted against the induced shear strains.  
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7.6.8.3 Equal strain (ES) technique 

The ES method is the method originally used for processing the RC data before the now 

conventional RC technique was proposed (Hardin 1978). In conventional RC method, the 

excitation voltage of the burst chirp is constant but the induced strain is not the same for 

all loading frequencies of the burst chirp.  

The conventional resonant column test is performed and the resulting pair of resonance 

frequency and peak output voltage is used with Eq. 6.7 to generate a set of pairs of 

frequency and peak output voltage for fixed strain. In a typical test, a continuous sine 

signal of a particular frequency from the set generated above is applied and the input 

voltage of this continuous sine is increased/decreased to match the peak output voltage 

of the soil response. Then, the transfer function is calculated and the magnitude of the 

transfer function at the frequency of the continuous sine is noted. This procedure is 

repeated for a variety of frequencies to collect sufficient data using which a transfer 

function is plotted. The resonance frequency and damping ratio estimated from this 

transfer function corresponds to strain through which the set of frequencies and peak 

output voltages were generated above. This process above is repeated for different 

strains to accumulate a data of shear modulus and damping ratio for different induced 

shear strains.  This process is most accurate amongst the three techniques; however, 

this method is also the most time consuming.  

 

7.7 Results and discussion 

Table 7-2 shows the properties of the soil samples tested in this study. The water 

content (w) was estimated using the oven-dried method but the other properties of the 

samples are extracted from the site investigation reports of the Beuharnois canal and 

Outardes river sites (Duguay-Blanchette 2016). There is a significant difference in the 

water content between the samples obtained from the two sites; the water content of the 

sample obtained from the Beauharnois canal site is 150% more than those of the samples 

obtained from the Outardes river site. The void ratio of s4 is also much lower than the 

void ratios of the samples s1-s3 obtained from the Beauharnois canal site. Although the 

unit weights of the three samples from Beuharnois are similar, the pre-consolidation 
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pressure of s3 is more than double that of s1 and s2. The in-situ shear wave velocity 

information is useful for a rough idea about the frequency effects on the shear wave 

velocity of soils. The shear wave velocity in the field is estimated from the seismic cone 

penetration test in which the loading frequencies are less than 10 Hz, which is much lower 

than the loading frequencies of the resonant column and bender element tests.  

 

Table 7-2: Properties of the soils tested in this study (Duguay-Blanchette 2016a; 

SM LABO INC. 2014) 

 

Site Sample Description z 

(m) 

zw 

(m) 

γb 

(kN/m3) 

w 

(%) 

σc 

(kPa) 

e Vs-in (m/s) 

Beauharnois 

s1 Greenish gray 

clay with firm 

consistency 

2.4 

0.0 

15.8  76.7 100 1.94 70 

s2 6.8 15.4 77.3 100 2.11 100 

s3 Brownish-

pinkish gray 

clay with 

fragments 

10.9 17.8 76 225 1.67 150 

 

Outardes s4 
Silty clay with 

sand traces 

14.9 0.0 18.5 27.1 
395 0.74 NA 

dp: depth, γ: unit weight, w: water content, σp
’: pre-consolidation pressure, Vs-in: in-situvelocity using SCPT, e: void 

ratio, zw: water table 
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7.7.1 Effects of shear strain 

Fig. 7-13 shows the normalized shear modulus G/Gmax (Gmax is the maximum shear 

modulus) of the four samples as a function of the induced shear strain at four different 

confinements. The figure compares the reduction of the shear modulus of these different 

samples that have different values of the ratio k between the effective confinement stress 

(σ'
c) and pre-consolidation stress (σ’p) shown in the figure. The figure also shows the 

range of modulus reduction curves from the laboratory tests of Dobry and Vucetic (1987). 

Note that the confining stresses of 50 kPa and 100 kPa are lower than or equal to the 

pre-consolidation stresses of the four samples, while the confining stress of 200 kPa is 

above the pre-consolidation stresses of s1 and s2, and below those of s3 and s4. The 

confining stress of 400 kPa is above the pre-consolidation stress of all the four samples. 

The three samples from the Beauharnois site (s1-s3) show a similar trend of modulus 

reduction at all the confinements while s4 degrades faster than the samples from 

Beauharnais site. This difference is expected because of the low void ratio of s4 (Dobry 

and Vucetic 1987). Moreover, Beauharnois site clays are more structured and sensitive 

as compared to the Outardes site clays. However, this difference in modulus reduction 

rate decreases with increase in the confining stress.  

The induced shear strain in all the samples reduces as the confining stress on the 

sample is increased. The maximum induced strain among all the samples is in s1 ⎯  1.1% 

for σ'
o = 50 kPa and 0.1% for σ'

o = 400 kPa. This difference is expected because increase 

in confining stress reduces the modulus reduction at a particular strain (Santamarina et 

al. 2001). Amongst the three samples of Beaharnois site, the induced shear strain is the 

maximum for s1 considering all samples because s1 was extracted from the shallowest 

depth with the least in-situ stresses. At σ'
o = 400 kPa, the shear modulus of both s1 and 

s4 at all strains are similar; the difference is in the modulus reduction rate which is faster 

of s4.  

All the four samples show that the modulus reduction curves mostly lie within the 

range of the laboratory results of Dobry and Vucetic (1987). The sample s4 is on the lower 

end of the Dobry and Vucetic range of curves while s1-s3 are on the higher end of the 

range. This means that the samples s1-s3 will have more site amplification than s4 

because s1-s3 maintain linearity for larger strain values than s4 (Dobry and Vucetic 
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1987). The reason sample s4 exhibits nonlinearity at smaller strain values is because of 

the low void ratio. The linearity of soft clays increases with increase in void ratio (Dobry 

and Vucetic 1987). At 50 kPa, the modulus reduction behavior of samples s1-s3 are closer 

to those of the Leda clay samples tested by Anderson and Richart (1976).  

   

  

Fig. 7-13: Normalized shear modulus versus shear strain for different samples at 

confining stresses of (a) 50 kPa, (b) 100 kPa, (c) 200 kPa and (d) 400 kPa (k = σ’
o/σc) 

 

(a) (b)

v 

(c)

v 

(d)
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Fig. 7-14 shows the shear modulus, normalized shear modulus and damping ratio versus 

induced shear strain of the sample s1 at four different confining stresses σ'
o. The shear 

modulus ranges from a very low value of 2 MPa at σ'
o = 50 kPa to 66 MPa at σ'

o = 400 

kPa. This result shows that at σ'
o = 50 kPa, the sample s1 is in a rather dangerous state 

because of its extremely low stiffness. The normalized shear modulus plot shows that the 

slope of the modulus reduction curves corresponding to σ'
o = 50, 200, and 400 kPa are 

closer to each other than the slope of the modulus reduction curve corresponding to σ'
o = 

100 kPa 

The maximum induced shear strain of s1 reduces with increase in confinement, as 

is expected, because the increased confinement makes it difficult for the soil particles to 

displace. The shear modulus and damping ratio plots show that the lowest value of the 

induced strain decreases from 0.001% to 0.0003% as the confinement is increased from 

50 to 400 kPa. While the highest value of the induced strain decreases from 1.87 to 0.11 

%.  

The damping ratio of s1 ranges from 1.6 to 8% over the confinement range of 50 

to 400 kPa. The damping ratio of s1 at low strains (10-3-10-2%) for all confinements is 

about 2%. The damping ratio increases with increase in strain, but the difference in the 

damping ratios at different confinements is about 2% for strains greater than 10-1%.   
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Fig. 7-14: (a) Shear modulus (MPa), (b) Normalized shear modulus and (c) Damping 

ratio (%) against the induced shear strain of s1 at different confinements 

Fig. 7-14 also shows the shear modulus versus shear strain for the unloading stage at 

different confining stresses. The unloading shear modulus at all strains and all 

confinements is less than that of the loading stage because of the modulus reduction 

(a) (b)

v 

(c)
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Loading Unloading 
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effects experienced by the sample in the unloading stage.  The difference between the 

loading and unloading shear modulus decreases as the confining stress increases.  

A similar behavior is observed for the samples s2 and s3. However, because these 

samples were extracted from greater depths, the shear modulus and damping ratio 

ranges of these samples are different than those of s1. The shear modulus and damping 

ratio ranges of s2 are 5.3-28 MPa and 0.7- 6.8%, respectively (for σ'
o = 50-200 kPa), over 

the shear strain range of 0.00075-0.38%. The shear modulus and damping ratio ranges 

of s3 is 11-44 MPa and 0.73-3.7%, respectively (for σ'
o = 50-200 kPa), over the shear 

strain range of 0.0003-0.16%.  

Fig. 7-15 shows the shear modulus, normalized shear modulus and damping ratio of 

sample s4 as functions of the shear strain for applied confining stresses of 50, 100, 200, 

and 400 kPa. The shear modulus and damping ratio ranges of s4 are 32-228 MPa and 

1.04-17%, respectively (for σ'
o = 50-400 kPa), over the shear strain range of 0.0002-

0.07%. The lower end of the strains induced in the sample reduces as the confining stress 

is increased. The slopes of the modulus reduction and damping ratio curves decrease 

with increase in confinements at higher induced shear strains. The shear modulus at a 

strain of 0.07% increased by 35% while the damping ratio decreased by 14% as the 

confining stress increased from 50 to 400 kPa.  

The unloading results of shear modulus show that the shear modulus degrades 

more as the confinement increases. The maximum difference between the loading and 

unloading shear moduli is about 2% at σ'
o = 50 kPa and it increases to about 4 % at σ'

o = 

400 kPa. 
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Fig. 7-15: (a) Shear modulus, (c) Damping ratio, and (c) Norm. shear modulus against 

the induce shear strain of TM4a at different confinements 
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7.7.2 Effects of confinement 

The shear wave velocity of soils (Vs) and isotropic effective confining stress (σ’
o) in soil 

are related through a power-law expressed as (Santamarina et al. 2001) 

 ( )osV 
 =   6.8 

where α and β are power law parameters. The parameter α is related to the packing of 

soil particles while β is related to the contact behavior between the soil particles. For 

dense sands, over-consolidated clays, and soft rocks, the parameter α is relatively high 

and the exponent β is relatively low. For loose sands, normally consolidated clays, and 

high plasticity clays, the parameter α is relatively low and the exponent β is relatively high. 

The samples s2 and s3 are tested at confining stresses of 50, 100, and 200 kPa; 

and the samples s1 and s4 are tested at an additional confining stress of 400 kPa.  The 

shear wave velocities in these samples are estimated using the resonant column (RC) 

test and the bender element (BE) test. Fig. 7-16 shows the effects of confinement on the 

shear wave velocity of these soil samples estimated from RC tests. The experimental 

data is fitted with the power law equation given by Eq. [6.8] with values of the power-law 

parameters indicated for each soil sample in the figure. Fig. 7-17 shows the Vs estimated 

using both RC and BE tests; the solid experimental data points represent the estimated 

values from the RC test and the hollow data points represent the results from the BE test. 

The maximum difference between the RC and BE test results is ≈ 15% which occurs for 

the shear wave velocity of the sample s3 at a confining stress of 200 kPa. These results 

show that, although the excitation frequency of the BE test is in kHz and the excitation 

frequency of the RC test ranges between 20 to 220 Hz, the difference in excitation 

frequency does not significantly affect the shear wave velocity of the soft clay samples. 

The small difference between the RC and BE techniques can be attributed to the 

subjective selection of the shear wave because of the p-wave interference (see section 

6.4.6). The time signals used to estimate the BE Vs are presented in Fig. 7-18 

Santamarina et al. (2001) estimated the β value for soft clays to be 0.32; the 

experimental values of β for s2 and s3 are relatively closer to the values obtained by 

Santamarina et al. (2001).  Note that the coefficient of determination (R2) for all the power-

law curve-fits are greater than 0.95.    
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`   

Fig. 7-16: Shear wave velocity versus isotropic effective confining stress of the four 

Leda clay samples as obtained from resonant column (RC) tests with curve fit of Eq. 6.8 

(Note: β  = 0.4 for s1, s2, and s3) 

 

Fig. 7-17: Shear wave velocity versus isotropic effective confining stress of the four Leda 

clay samples as obtained from resonant column (RC) and bender element (BE) tests  
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Fig. 7-18: BE time signals for the sample ‘s1’ used to estimate the Vs at different 

confinements (Note: excitation frequency = 10 kHz) 

The shear wave velocity of soils (Vs) is related to the maximum shear modulus 

(Gmax) through Eq. 2.20; Gmax is used in site response analysis which is part of the seismic 

design process. Therefore, it is interesting to study the relationship between Gmax and 

preconsolidation stress (σc) of Leda clays. Fig. 7-19 shows the measured Gmax of the four 

Leda clay samples as a function of σc for different effective confining stresses (σ’
o). The 

plot corresponding to σ’
o = 400 kPa is not shown because the measurements for two of 

the four samples are not available. The experimental data is curve-fitted with the 

exponential equation and a very good match is observed for the plots corresponding to 

the three confining stresses (R2 = 0.97).   

σo = 400 kPa 

σo = 200 kPa 

σo = 100 kPa 

σo = 50 kPa 
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Fig. 7-19: Maximum shear modulus versus pre-consolidation stress for different 

effective confinement stresses 

7.7.3 Effects of shear strain using multiple techniques 

The carrier-frequency (CF) and equal strain (ES) methods are used to estimate 

the shear modulus and damping ratio at different shear strains for the samples tested in 

this study. Fig. 7-20 shows the variation of shear modulus and damping ratio of s3 at σ’
o 

= 200 kPa, with the induced shear strain estimated using the three resonant column 

measurement techniques. The shear modulus and damping ratio of s3 for σ’
o = 200 kPa 

range from 44 MPa to 20 MPa and from 1% to 5.5%, respectively, over the shear strain 

range of 0.0007% to 0.16%. For shear strains below 0.013%, the shear modulus and 

damping ratio from the three measurement techniques are very similar. The difference 

between the results of the three techniques are observed at mid to high strains; the RC 

(conventional resonant column) technique shows the largest reduction in shear modulus 

and largest increase in damping ratio while the CF method shows the least reduction in 

shear modulus and least increase in damping ratio. The shear modulus and damping ratio 
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estimated using the ES method are in the range between the corresponding results 

obtained from the RC and CF methods. These results are similar to those presented by 

Khan et al. 2008 for dry sands where it was shown that the results obtained from ES are 

in between the results obtained from RC and CF methods.  

The equal strain method would be the most accurate amongst the three methods 

because the induced shear strain of the sample is better controlled when estimating the 

transfer function of the sample. The damping ratio of the CF method is lowest because of 

the low amplitude of the random noise added to the continuous sine input used to estimate 

the transfer function. The random noise input voltage is deliberately kept low to minimize 

the effects of the random noise when evaluating the frequency effects on the shear 

modulus and damping ratio. The low damping ratio also correlates well with the least 

reduction of the shear modulus at strains higher than 0.013%. However, the percentage 

reduction in shear modulus over the shear strain of 0.01% to 0.4% (mid to high) is ≈ 42% 

while the percentage increase in damping ratio over the same shear strain range is 130%.  

The changes in both the shear modulus and damping ratio over the analyzed shear 

strain range correlate well for the three techniques; the shear modulus and damping ratio 

using the ES method fall in the mid range between the corresponding results of RC and 

CF methods. This result along with the results of Khan et al. (2008) show that the ES 

technique is the most suitable technique for evaluating the effects of shear strain on the 

dynamic properties of soils using the resonant column equipment.  
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Fig. 7-20: Shear modulus and damping ratio for different shear strains of sample s3 at a 

confining stress of 200 kPa using different resonant column techniques 

 

7.7.4 Effects of random noise in CF method 

Random noise excitation is added to the continuous sine signal in the carrier 

frequency (CF) method to calculate the transfer function of the soil sample. The amplitude 

of the random noise signal is very low compared with that of the sine signal because of 

which the damping ratio of the soil sample estimated using the CF method is the lowest 

amongst the three techniques, as shown in the previous section. On certain occasions, 

the random noise signal amplitude has to be increased for noise-free calculations of the 

transfer functions. However, the aim of the CF method is that the dynamic properties of 

soil are calculated in response to a single frequency. Therefore, the effect of the energy 

of the random noise signal have to be minimized for appropriate use of the CF method. 

In this section, the effect of random noise signal amplitude on the shear modulus and 

damping ratio of a soil sample (s3, specifically) is evaluated. Fig. 7-21 shows the variation 

of the shear modulus and damping ratio of s3 with percentage of random noise (RN) in 

the input signal comprising of a continuous sine and random noise signals. The 

percentage of the random noise is calculated based on the principle explained next: if a 
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1 V peak-to-peak continuous sine signal is used, 10% random noise signal means that 

the peak-to-peak amplitude of the random noise signal is 0.1 V.  

Both the plots of Fig. 7-21 show that, at low shear strain (γ = 10-4 %), the shear 

modulus and damping ratio of the soil are roughly constant over the percentage range of 

random noise from 10% to 90%. However, at high shear strain (γ = 10-2 %), the random 

noise percentage seems to have a slight effect on the shear modulus and damping ratio. 

The curve fitted experimental data shows that the shear modulus reduces roughly linearly 

with a small slope of 0.36 kPa/% of random noise while the damping ratio increases 

roughly linearly with a slope of 0.0032%/% of random noise. However, the percent change 

in damping ratio over the total percentage range of random noise is much higher than the 

percent change in shear modulus. The shear modulus decreases by 0.03% over the 10-

90% range of random noise, while the damping ratio increases by 16% over the same 

range. Thus, the damping ratio is affected more by the increase in random noise energy 

in the input signal because the transfer function of the soil sample becomes wider around 

the resonance.   

 

Fig. 7-21: (a) Normalized shear modulus and (b) damping ratio of s3 versus percentage 

of random noise (RN) in input signal comprising of a continuous sine and random noise 

signals 

(a) (b)  0.0032 1.5y x= +

 0.00036 0.82y x= − +
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7.7.5 Effects of loading frequency 

The effect of frequency on shear modulus and damping ratio is evaluated in this 

study using the carrier frequency (CF) method. The resonance frequency and peak output 

voltage representing a fixed strain from the conventional RC technique is used to develop 

a set of frequencies and output voltages. This set of frequencies is then used as central 

frequency of a continuous sine along with the random noise to calculate the transfer 

function, from which the shear modulus and damping ratio are estimated. The results of 

the carrier frequency method applied to sample s3 at a confining stress of 100 kPa are 

presented in Fig. 7-22. The figure shows the variation of shear modulus and damping 

ratio with frequency at three shear strain levels. The frequency ranges for these strain 

levels are: 20 to 90 Hz at low strain (γ = 10-3 %), 20 to 70 Hz at mid strain (γ = 0.005 %), 

and 10 to 38 Hz at high strain (γ = 0.05 %). Different frequency ranges are used because 

of the limitations of the RC equipment; achieving higher frequency levels requires very 

high input voltages (≈ 50 V) which is not possible with the RC setup because the RC 

setup starts to vibrate and the magnet-coils respond non-linearly to the current. Moreover, 

the power amplifier gives inconsistent power at frequencies less than 20 Hz for low and 

mid strains. 

 

Fig. 7-22: (a) Normalized shear modulus and (b) damping ratio of soil sample s3 at 

different frequencies 
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The shear modulus at low and mid strains are approximately constant in the 

respective frequency ranges tested; the shear modulus at high strain is also constant 

except at 15 Hz. However, there are small variations observed in the damping ratio of the 

soil even at low and mid strains. At high strain, the damping ratio varies more significantly 

than at low and mid strains. There are no clear trends in damping ratio observed at any 

of the three strain levels. The mild variations in the shear modulus and damping ratio 

appear to be the result of the effect of the number of load cycles on the soil sample or 

modulus reduction over time which is observed in the results of the unloading stage in the 

study of the effect of shear strain. 

Similar results are observed for confining stresses of 50 kPa and 200 kPa and with 

the soil samples s1 and s2. These results suggest that the loading frequency of range 10-

100 Hz does not have a significant effect on the shear modulus and damping ratio of the 

soil. This is a tentative conclusion reached with the carrier frequency method applied to 

the Leda clay samples. A thorough study with different types of soil samples such as dry 

and saturated sands and stiff clays has to be performed to evaluate the accuracy and 

reliability of the carrier frequency method. 

 

7.7.6 Effects of loading cycles 

A continuous sine signal along with the random noise excitation with an amplitude of 5% 

of the continuous sine signal is used to evaluate the effect of number of loading cycles on 

the shear modulus and damping ratio of Leda clay. The soil sample s3 is tested for this 

purpose at a confining stress of 200 kPa. Fig. 7-23 shows the variation of shear modulus 

and damping ratio with the number of cycles of the continuous sine signal. The shear 

modulus is constant at all strain levels with the number of cycles up to 60,000. The 

damping ratio is also constant with the number of cycles at low strain level; however, the 

damping ratio varies slightly at mid strain level and fluctuates significantly in an irregular 

manner at high strain level. There is no clear trend in the variation of the damping ratio 
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with the number of cycles; these variations can be attributed to the modulus reduction, 

which is observed in the results related to the effect of frequency as well.   

  

Fig. 7-23: (a) Resonance frequency and (b) damping ratio of sample s3 as functions of 

the number of cycles of a continuous sine signal 

7.8 Conclusions 

Marine silts and Leda clay are known to amplify ground motions to dangerous levels even 

if the earthquakes are of low intensity. Previous case studies related to these types of 

soil, as observed in Mexico City (Celebi et al. 1987) for example, have shown that the 

ground motion intensity can be amplified by up to five times. Despite this vulnerability of 

the marine silts and Leda clay, the dynamic response of these types of soils, is not 

understood well. The objective of the present study was to advance the understanding of 

the small-strain dynamic behavior of Leda clay. Small-strain dynamic behavior of soils is 

characterized by the shear modulus, damping ratio, and shear wave velocity of soils  

The sample s4 from Outardes river site has a much higher preconsolidation 

pressure than all the three samples s1-s3 from Beauharnois canal site.. The initial void 

ratio of s4 is much lower, i.e., 0.74 compared with the void ratios of 1.6-2.11 of the 

samples s1-s3. These properties suggest that the sample s4 is much stiffer than the 

samples from the Beauharnois canal site.  
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The results from the effect of shear strain show that, at a confining stress of 50 

kPa, the rate of modulus reduction of s4 is the maximum among the four samples. Similar 

observations were made for all the cases with different confining stresses; however, this 

difference in the modulus reduction rate decreases as the confinement increases. The 

modulus reduction curves at middle to high strains for the three samples s1-s3 obtained 

from Beauharnois site are very similar.  

As expected, the stiffness range of s2 is lowest amongst the samples s1-s3, i.e., 

2-9 MPa for a confining stress of 50 kPa, 9-15 MPa for a confining stress of 100 kPa, and 

15-28 MPa for a confining stress of 200 kPa. The damping ratio of s1 ranges from 1.6 to 

8% over the confining stress range of 50 to 400 kPa; this damping ratio is highest amongst 

the samples from the Beauharnois canal site.  

The study of effects of confinements shows that the β exponents of the velocity-

stress power-law relationship of the different samples are s1 = 0.4, s2 = 0.36, s3 = 0.3, 

and s4 = 0.25; these results agree to the hypothesis that normally consolidated and loose 

soils have a higher β exponent while over-consolidated and dense soils have lower β 

exponent (Santamarina et al. 2001).  

The study of effects of shear strain using multiple techniques shows that the ES 

method results fall in the mid-range between the results of RC and CF methods. This 

result is expected because the shear modulus and damping ratio estimated with the ES 

method correspond to the actual induced strain of the soil sample because the strain 

remains constant for all frequencies. Damping ratio from the CF method is the lowest 

amongst the three methods at mid to high shear strains because of low amplitude random 

noise used for calculating the transfer function.  

The loading frequency in the range of 10 to 100 Hz does not significantly affect the 

shear modulus and damping ratio of the Leda clay for the shear strain range of 10−3-

0.05%. For strains around 0.05%, there are irregular variations in shear modulus and 

damping ratios; these variations can be attributed to the modulus reduction of the soil 

sample rather than the effects of loading frequency. These reduction effects are also 

observed in the study on the effect of loading cycles on shear modulus and damping ratio.  
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8 Conclusions and future research 

8.1 Conclusions 

A reliable seismic design is important to minimize the large-scale losses caused by 

earthquakes. Evaluation of the low-strain dynamic behavior of soils using properties such 

as shear modulus (wave velocity) and damping ratio is a requirement in modern seismic 

design. These low-strain dynamic properties are mainly measured using laboratory 

procedures such as bender element (BE) and resonant column (RC) tests. BE test is a 

widely used and simple-to-operate laboratory test for measuring Vs. RC test is an ASTM 

standard test widely used for measuring shear modulus and damping ratio of the soil at 

strains between 10-6 and 10-4.  

BE and RC have limitations which reduce the accuracy of the test results which in turn 

reduce the reliability of the seismic design. In addition, the loading frequency range of 

seismic loads (0.1-10 Hz) (Shibuya et al. 1995) is different from that of BEs (e.g. 1-15 

kHz) and RC device (e.g. 20-200 Hz) (Lee and Santamarina 2005; Meng and Rix 2003). 

There is no established guidance on the effects of loading frequency on the dynamic 

properties of soils.  

The main objectives of this study were to better understand the BE-soil sample interaction 

which will provide the basis for developing a reliable standard for BE testing; and to verify 

the BE test results using the standard RC device. A major limitation in BE testing is that 

there is no standard procedure mainly because the BE-soil sample interaction is not well 

understood. In RC testing, the dynamic properties cannot be evaluated simultaneously 

as function of frequency and strain. In a typical narrow-band excitation (e.g. sine sweep, 

random noise), the induced shear strains are different at each frequency component. In 

addressing these and other limitations, several important insights and advancements in 

BE-soil sample interaction are achieved as are listed below: 
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• The measurements of the actual transmitter vibrations show that the transmitter 

response inside the soil specimen is significantly different from the input voltage. This 

result raises questions on the reliability of the BE test analysis using frequency domain 

methods because these methods assume that the transmitter response has the same 

shape as the input excitation. 

• The evaluation of the effects of input excitation on the transmitter response in air 

shows that the maximum displacement of the transmitter response to a square input 

pulse is 50 % more than that of the responses to step and sine pulses. The square 

and step input pulses cause greater participation of the higher modes in the transmitter 

response than the sine input pulse. The simulations of the actual transmitter response 

to sine and square input pulses also corroborate the conclusion that the square pulse 

excites higher modes more than the sine pulse. 

• Transmitter responses measure in liquids show that a 50 % increase in density causes 

a decrease in first mode resonance frequency (f1) by about 12 % and an increase in 

first mode damping ratio (ξ1) by about 95 % for the range medium density considered 

in this study (0.8 – 1.3 g/mL). The first mode resonance frequencies of the transmitter 

in liquids match very well with the corresponding frequencies obtained from a 

theoretical equation with a maximum difference of 3.5%. The damping ratio of the first 

two modes increase exponentially with increase in the mass density of liquids; this 

result is also in agreement with the findings in the literature. The first resonance 

frequency and damping ratio of the transmitter inserted into liquids have a power-law 

relationship with the Reynolds number of the liquids. 

• Three modes of vibrations of the transmitter in air are identified from the transfer 

function of the transmitter calculated using a sine-sweep; their natural frequencies are 

9.8 kHz, 27.5 kHz, and 47.2 kHz, and the corresponding damping ratios are 2.9 %, 

4.1 %, and 5.9 %. Transfer function of the transmitter inside the soil showed that the 

transmitter modal properties changed significantly as expected. BE measurements in 

soil and oil show that the time delay between input excitation and Tx response is not 

constant but it decreases with the increase in frequency. This result also explains why 

frequency-based methods tend to work better at higher frequencies.  
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• Mode shapes of the transmitter show that the BE vibrates as a cantilever plate inside 

a soil specimen; however, the first mode of the transmitter in air and inside the liquids 

is a cantilever beam mode. This result is the reason for inapplicability of the theoretical 

resonance frequency equation to predict the resonance frequencies of the second 

mode of vibration (and beyond) of a transmitter. This result significantly affects the 

reliability of BE test results because the assumption of the BE behaving as a cantilever 

beam is very critical in the interpretation of BE test results. The first three mode shapes 

of the transmitter in air and in liquids are close to those of a cantilever plate; the 

presence of a liquid does not affect the mode shapes of the transmitter, which is in 

agreement with the related results available in the literature. The first three mode 

shapes of the transmitter in soils under different vertical stresses show that the 

participation of higher modes and mode coupling increase as the applied vertical 

stress increases. The peak values of the second and third mode shapes are 0.7% and 

2% of the first mode peak coordinate for the case of soil specimen without applied 

stress; these values increase to 24% and 16%, respectively, under the applied vertical 

stress of 41 kPa. 

• Measurements of the transmitter response inside the soil show that a 35 % increase 

in first resonance frequency is observed when the applied vertical stress in soil 

specimen is increased from 0 to 406 kPa; the corresponding increase in damping ratio 

is 30%. These results are key in understanding the BE-soil sample interaction 

because the frequency of vibration of the transmitter governs the wave length of the 

shear wave generated from the transmitter and affects the estimation of Vs. The wave 

length of the shear waves must be, at the maximum, equal to the length of the soil 

specimen for a good signal-to-noise ratio; the recommended wave-length for the 

optimum signal-to-noise ratio is less than one-fifth the length of the soil specimen, and 

this required to avoid near-field effects in the BE test. The damping ratio results of this 

study have highlighted the possible reasons for unsuccessful attempts on the 

estimation of damping ratio of soil specimens using the BE test. 
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• There is a significant compressional (p) wave interference in the bender vibrations 

which must be carefully evaluated for the correct interpretation of the results. 

Reflections from the transmitter anchor, the acrylic tube wall and other parts of the 

system also affect the transmitter and receiver responses. 

• The p-wave interference increases with increase in confinement and input frequency. 

This interference masks the shear wave arrivals which can cause a 25 % error in shear 

wave velocity estimations. The results from the RC and BE tests on fused quartz 

confirm the conclusion that high input frequencies enhance the generation of p-waves 

• The p-wave arrival can be better identified by using an excitation with input frequency 

greater than 50 kHz. Reliable estimate of shear wave velocities can be obtained by 

first evaluating the compressional wave velocity and using typical Poisson ratios of 

the soil samples.  

• The receiver response measured from the laser is very similar to the BE-output 

electrical voltage. Time signals and the frequency spectra of the two signals showed 

that similar frequency components are present in both the signals, and the amplitude 

of the output electrical voltage is ≈ 5 times smaller than amplitude of the receiver 

response measured using laser at the peak of the receiver. These results show that 

the relationship of Leong et al. (2005) is not only valid for the maximum displacement, 

but for the whole-time signal.  

• The maximum bender displacement is linearly related to the input voltage amplitude 

in air, liquids of different mass density and in the transparent soil sample because the 

maximum displacement in a piezo-electric transducer is proportional to the applied 

voltage. The slope of this linear relationship decreases as the mass density of the 

material surrounding the bender increases. This experimental result also verifies a 

theoretical relationship between the bender displacement and the voltage amplitude 

proposed by Leong et al. (2005). This theoretical relationship linearly relates the 

bender displacement with the voltage amplitude; the bender dimensions and a piezo-

electric constant act as constants.   

• Comparison of results from BE and RC tests at different confinements showed that 

there is a 15 % difference between the shear wave velocities from BE and RC tests; 

this difference might be due to the masking of shear wave arrivals by the 
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compressional wave arrivals. BE tests on Leda clays showed that using high input 

frequencies enhance the generation of p-waves; hence, easier to identify p-wave 

interference 

• The stiffest Leda clay sample showed the highest degradation with increasing shear 

strain; this result is in agreement with sensitive clay behaviour documented in the 

literature 

• The study of effects of confinements on the four Leda clay samples agree to the 

hypothesis that normally consolidated and loose soils have a higher β exponent while 

over-consolidated and dense soils have lower β exponent. 

• The study of effects of shear strain using multiple techniques shows that the ES 

method results fall in the mid-range between the results of RC and CF methods. This 

result is expected because the shear modulus and damping ratio estimated with the 

ES method correspond to the actual induced strain of the soil sample because the 

strain remains constant for all frequencies. Damping ratio from the CF method is the 

lowest amongst the three methods at mid to high shear strains because of low 

amplitude random noise used for calculating the transfer function.  

• While RC tests at frequencies below 100 Hz showed no effect of loading frequency 

on shear modulus and damping ratio, BE tests at frequencies centred at 12kHz 

showed a 15% change in wave velocity; which could be attributed to the loading 

frequency or to the complex interaction of between p-waves and s-wave in BE testing. 

Loading frequency in BE tests does have a significant effect in the results, up to 40% 

error in the estimation of s-wave velocity, as the interaction between p-waves and s-

waves increases with frequency 
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8.2 Future research 

The novel experimental setup used in this study will be important in the process of bender 

element (BE) test standardization. Few areas where further research is required are listed 

below: 

• The induced vertical stress estimated in this study is based on the Boussienesq 

theory. This theory might not be accurate to estimate the actual vertical stress inside 

the soil. Moreover, the effects of isotropic confinement, and not the vertical stress, on 

the actual bender behavior will be critical in characterizing the BE-soil sample 

interaction. A mechanism in which the actual confinement pressure inside the soil can 

be estimated/measured will be important to develop a more comprehensive 

understanding of the effect of confinement pressure. Pressure or strain transducers 

can be fitted close to the benders inside the transparent soil for this purpose. 

• The numerical bender responses in liquids of different mass densities and soil with 

different confinements have to be studied to determine if the numerical model that is 

developed in this study is able to predict the transmitter response in these different 

media.  

• The transmitter and receiver responses in soil with different confinements needs 

further research. The target from this research would be to estimate the shear wave 

velocity of fused quartz using the actual transmitter and receiver responses inside the 

transparent soil. 

• Perform a numerical study with both transmitter and receiver inside different media.  

• Conduct tests on leda clay samples present at the University of Waterloo to establish 

statistical reliability of the low-strain dynamic properties of leda clays and develop a 

firm understanding of the low-strain dynamic behavior of soft clays found in Quebec, 

Canada. 

• A thorough study of the carrier frequency and equal strain methods with different soil 

samples to establish the reliability of these methods to evaluate loading frequency and 

shear strain effects on the low-strain dynamic properties of soils.  
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Appendices 

Appendix A: Calculation of the moment of inertia of the RC driving plate  

Method 1 
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Method 2 
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Appendix B: Sample calculations   

 



214 
 

 

 



215 
 

 

 

 

 

 



216 
 

Appendix B: Computation of Fast Fourier Transform (FFT) 

A time signal is defined as the variation of any variable with time, for example, the 

displacement with time. A signal can also represent a variation with space; however, 

signals with variation in space are out of the scope of this study.  

Signal processing techniques are used to extract important information from time signals. 

Several techniques have been developed over the years. For this study, the technique to 

extract frequency domain information is most relevant. This technique is called ‘Fourier 

Transform’ named after the mathematician Joseph Fourier (1768-1830).  

Fourier transform (FT) 

FT is a process of decomposing a time signal into weighted sums of sines and cosines of 

increasing frequencies. The objective is to match sines and cosines of different 

frequencies and determine the level of presence of those frequencies. Different types of 

FT can be used in theory depending on if the time signal is discrete or continuous and 

periodic or non-periodic (Haykin and Van Veen 2007). However, the FT used in digital 

computers is the Discrete Fourier Transform (DFT). DFT is performed on signals which 

are discrete and (assumed) periodic.  

DFT of a discrete signal x[n] is given by the equation 
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where n = sample no. of the signal, N = total no. of samples of x[n] and i is the sample 

no. representing the frequency. Eq. 7.1 shows that both the time signal (x) and frequency 

function (X) are discrete. If both time and frequency are continuous functions, then the 

equivalent of Eq. 7.1 would be 
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Eq. 7.2 shows that the summation becomes integral in continuous domain; this represents 

another type of FT.  

The exponential in Eq. 7.2 is related to the complex sinusoids through the Euler’s identity 
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 cos sinjxe x j x =    7.3 

DFT computes the inner product of signal x[n] and the complex sinusoids to determine 

the level of presence of these complex sinusoids in the signal x[n]. The resulting values 

of X[i] are complex numbers as a function of frequencies ranging from i = 0 to i = (N-1) 

(2π / N). The magnitude of the complex number at a particular frequency i (2π / N) 

indicates the level of presence of the sinusoid of that frequency; phase angle of that 

complex number represents the phase of the sinusoid. An example using the 

programming language MATLABTM is presented below to explain this concept. The ‘fft’ 

command of MATLABTM computes the magnitude and phase information of any given 

time signal. Note that MATLABTM uses the Fast Fourier Transform (FFT) algorithm to 

compute the DFT of the signal.  

Fast Fourier Transform (FFT): executing the DFT formula on a time signal can be 

extremely slow. Several algorithms have been developed to increase the computing 

speed to calculate the frequency spectrum of a signal; these are called the Fast Fourier 

Transform (FFT) algorithms. The most commonly used FFT algorithm is the Cooley–

Tukey algorithm where Cooley and Tukey showed that the summation in Eq. 7.1 can be 

split in two terms; one for the odd numbered values (n = 2m) and one for the even 

numbered values (n = 2m+1) as shown in Eq. 7.4 below 
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  7.4 

Eq. 7.4 shows that the summation in Eq. 7.1 is simply split into smaller DFTs. Since the 

range of i is 0 ≤ i < N and of m is 0 ≤ m < N/2, the symmetric properties of the summation 

allow the computations to be reduced by half for each sub-summation in Eq. 7.4. 

Therefore, the computations reduced from the order of N2 to the order of M2 where M = 
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N/2. This process can continue as long as the sub-DFT has an even valued M; this 

process continues until the computation reduced to the asymptotic limit of the order of N 

log N.  

For a signal which does not have the required samples for the Cooley-Tukey algorithm to 

be executed, MATLABTM adds the samples of zeros to prolong the signal to a length of a 

power of 2 (zero-padding, see below).  

Consider a time signal x[n] given as 

 
1 2 3

[ ] 3cos(2 0.2) cos(2 0.3) 2cos(2 2.4)x n f n t f n t f n t  =  + +  − +  −   7.5 

where f1, f2, and f3 are 20 Hz, 30 Hz, and 40 Hz respectively and ∆t is the time step. 

Note that the above signal is composed of three sinusoids with the three frequencies f1, 

f2 and f3, each with a magnitude and a phase. The amplitudes of these sinusoids are a1 = 

3, a2 = 1, and a3 = 2 respectively while the phase angles are φ1 = 0.2, φ2 = -0.3 and φ3 = 

-2.4 respectively. The DFT computed for the above signal should show the information 

about the magnitudes and phase angles of the sinusoids in the time signal x[n]. Fig. 8-1 

shows the time signal x[n] plotted against the sample numbers; sampling frequency (fs) 

is taken to be 1000 Hz and the total time for which the time signal is plotted is 1.5 seconds. 

fs is required for evaluating the FFT; and, to avoid aliasing, half of the fs or the Nyquist 

frequency (fnyq) (500 Hz in this case) has to be higher than the largest expected frequency 

in the time signal (40 Hz in our example); 
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Fig. 8-1: Amplitude of the time signal x[n] against the sample number 

Fig. 8-2 shows the FFT magnitude against the frequency bins (frequency samples) of the 

signal x[n] computed using MATLABTM fft function. Note that the ‘fft’ function will result in 

a complex number; and each complex number has a magnitude and a phase angle. The 

magnitude of those complex numbers is what is plotted in Fig. 8-2. Moreover, the length 

of the FFT magnitude is the same as the length of the time signal x[n].  

The original signal x[n] is made up of three frequencies; therefore, three peaks are 

observed on the left and right side of the magnitude spectrum. The three peaks on the 

right are a mirror side of the left peaks because of the symmetric property of the 

summation of the DFT discussed above (Eq. 7.4) . Subsequently, only half of the 

magnitude spectrum is required for further analyses which means that the spectrum up 

to half the fs (500 Hz) is needed to be analyzed.  
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Fig. 8-2: Fast Fourier Transform (FFT) magnitude against the frequency bins (samples) 

 

 

Fig. 8-3: Half of the FFT magnitude spectrum against the frequency bins 

The first half of the FFT magnitude spectrum is shown in Fig. 8-3. Note that the last 

frequency bin (750) in the FFT magnitude spectrum in represents the fnyq (500 Hz); hence, 

frequency bin = 100 will correspond to 500 Hz / 750 bin * 100 bin ≈ 67 Hz. All the three 
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peaks shown in Fig. 8-3  are below 67 Hz which makes sense because all three sinusoids 

in Eq. 7.5 are less than 67 Hz.  Note also that all other frequency bins correspond to zero 

magnitude because there are no other frequencies present in the time signal that is 

analyzed.  

Fig. 8-4 shows the magnitude spectrum up to frequency bin = 100 with labels on the 

peaks of the spectrum. Note that the magnitude of the lowest frequency (f1) is 2250 which 

is twice the magnitude of f3 and thrice the magnitude of f2; this observation corroborates 

the amplitudes of the sinusoids of x[n] in Eq. 7.5 i.e. a1 = 3a2 and a3 = 2a2. This observation 

also infers a rule for computations with fft; the amplitude of the sinusoid of the time signal 

is extracted from the FFT magnitude spectrum by dividing the magnitude of the peak by 

the half of the total no. of frequency bins. In this example, total frequency bins = N = 1500; 

a1 = 2250 / 750 = 3, a2 = 750/750 = 1, and a3 = 1500 / 750 = 2.  

Fig. 8-4 is plotted again in Fig. 8-5 with the actual frequency vector along the x axis; which 

shows that the frequency bin (k) and the frequency at every bin (f(k)) are related through 

the equation  

 ( ) skf
f k

N
=   7.6 

Where N is the total no. of frequency bins. Note that the labels on the peaks in Fig. 8-5 

show the frequencies f1, f2, and f3 which are the same as that used for the time signal x[n]  
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Fig. 8-4: FFT magnitude spectrum for frequency bin from 0 to 100 bins (≈ 67 Hz) 

 

Fig. 8-5: FFT magnitude spectrum with the frequency vector from 0 to ≈ 67 Hz 

The MATLABTM function ‘fft’ also gives the phase angles of the sinusoids. The bins at 

which the magnitude spectrum shows the peaks are used to retrieve the phase angles 

(30, 2250) 

(45, 750) 

(60, 1500) 

(20 Hz, 2250) 

(30 Hz, 750) 

(40 Hz, 1500) 
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at those frequency bins. The corresponding phase angles are φ1 = 0.2, φ2 = -0.3 and φ3 

=  -2.4 which are exactly values of phase angles in in Eq. 7.5 

In conclusion, the DFT of any signal can be calculated using the ‘fft’ function of MATLABTM 

because all time signals are composed of sinusoids. This function has been extensively 

used in this study to understand frequency response of the bender elements in different 

media.  

In the time signal x[n], the total no. of samples (N) were selected at a particular time 

interval (∆t). This time interval has to be selected carefully to prevent loss of important 

information from the signals. This selection of time interval requires understanding of the 

concept of ‘Digitization’.  

 

Digitization 

Proper digitization of a time signal is important for calculating the Fourier transform of a 

time signal (Santamarina and Fratta 2005). For signals to be processed, the signals have 

to be digitized; this digitization is done by sampling values of the time signals at discrete 

time interval (∆t). To avoid losing important information from the signal, a criterion called 

‘Nyquist criterion’ has to be fulfilled. ‘Nyquist criterion’ requires that the sampling 

frequency of the signal (fs) should be greater than the Nyquist frequency (fnyq). The 

equation relating fnyq and fsamp is 

 
1 2

s nyf f
t T

=  =


  7.7 

where T is the smallest period of the signal being analyzed. The consequence of not 

satisfying the ‘Nyquist criterion’ will cause ‘aliasing’ of the signal. Fig. 8-6 shows an 

example to illustrate ‘aliasing’ in a signal of frequency of 10 Hz. The 10 Hz signal is 

sampled at t  which doesn’t satisfy the Nyquist criterion; as a result, the frequency of 

the same 10 Hz signal becomes 2 Hz (apparently). In practice, a minimum of 10 samples 

per cycle are recommended (Santamarina and Fratta 2005).  
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Fig. 8-6: Illustration of aliasing 

Zero-padding 

Zero-padding is a signal processing technique to improve the DFT process. It is a simple 

process of adding zeros to the time signal to improve the resolution of the frequency 

spectrum. Adding the zeros to signal increases the value of N (Eq. 7.4) which in turn 

increases the frequency increment of the frequency vector; this process is performed to 

avoid aliasing in the FFT spectrum. This process is explained by considering a simple 

example below 

Consider a time signal with a single sinusoid given as  

 1
[ ] 0.5cos(2 0.2)x n f n t=  +   7.8 
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Where f1 = 2 Hz i.e. 2 cycles in one second of the time signal. This time signal and its 

FFT magnitude spectrum is presented in Fig. 8-7. The peak magnitude in the FFT 

magnitude spectrum corresponds to 2 Hz as is expected. The amplitude of the sinusoid 

is estimated from peak magnitude as 250 / 500 = 0.5 where 250 is the peak magnitude 

and 500 is half of the sampling frequency. Note that the time signal has 2 cycles in the 

duration.  

 

Fig. 8-7: Time signal x[n] (Eq. 7.8) with f1 = 2 Hz and its FFT magnitude spectrum 

Now, the frequency (f1) of the time signal x[n] is increased to 2.5 Hz. The new time signal 

and its FFT magnitude spectrum are presented in Fig. 8-8. Note the changes in the FFT 

magnitude spectrum; the peak has reduced from 250 to ≈ 180, the frequency at the peak 

magnitude does not exactly equal to 2.5 Hz, and the magnitudes at other frequencies 

have increased. These changes happened because the no. of cycles of the time signal 

became a non-integer value (2.5 from 2). There is no sinusoid in DFT summation (Eq. 7.4

)   which matches perfectly to this new time signal; this, in fact, is the case for typical time 
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signals obtained from experiments. To minimize this effect of non-integer no. of cycles in 

the time signal, zero-padding is applied.   

 

Fig. 8-8: Time signal x[n] (Eq. 2.31) with f1 = 2.5 Hz and its FFT magnitude spectrum 

Fig. 8-9 shows the time signal with added zeros such that the total duration has to 

increase to 10 seconds. Note the changes in the FFT magnitude spectrum; the peak 

magnitude is back to 250 (corresponding to amplitude 0.5 as in the original signal in Fig. 

8-7) and the frequency at the peak magnitude (main lobe) is back to 2.5 Hz. However, 

there is still ‘leakage’ in the energy of the spectrum i.e. the magnitude at other frequencies 

(side lobes) is still high compared to zero in the original signal; this problem is minimized 

by applying the ‘windowing’ process. 
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Fig. 8-9: Zero-padded time signal with its FFT magnitude spectrum 

Windowing 

Windowing process is another signal processing technique used for reducing the effects 

of the problem of energy leakage as shown in the previous section. This process is also 

a simple process where the time signal is multiplied by a function which starts and ends 

with zeros to remove the extraneous parts of a time signal. Fig. 8-10 shows the windowed 

time signal compared to the original time signal along with its FFT magnitude spectrum; 

a windowing type called ‘Hanning’ window is also shown. Different types of windows have 

been proposed in the signal processing literature; all of them with advantages and 

disadvantages; discussion of the types of windows is not in the scope of the study.  

Note that the energy in the side lobes has been minimized and the peak magnitude is 

now equal to 125. The peak magnitude has also been reduced by almost half; the 

amplitude of the sinusoid in the time signal is therefore estimated as 125 / 500 / 2 = 0.5 

where 500 is again fs / 2 and ‘2’ is a factor associated with the ‘Hanning’ window. Different 

windows would have different factors for the amplitude estimation.  

Main lobe 

Side lobes 
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Fig. 8-10: Original and windowed time signal with the hanning window and the FFT 

magnitude spectrum after windowing 

 


