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Abstract

Discontinuous permafrost regions are experiencing a change in land cover distribution
as a result of permafrost thaw. In wetlands interspersed with discontinuous permafrost,
climate change is particularly problematic because temperature increases can result in
significant permafrost thaw, thaw-driven landscape changes, and resultant changes in wa-
tershed hydrologic responses.

The influence of land cover change on the short- and long-term hydrological responses of
wetland-peatland complexes is poorly understood. A better understanding of the impacts
of climate-related land cover evolution on the hydrology of wetland-covered watersheds
requires information about the distribution of hydrologically important lands, their pat-
tern, and the rate at which they change over time. Here, we first developed a machine
learning-based land cover evolution model (TSLCM) to estimate the long-term evolution of
dominant land covers for application to the discontinuous permafrost regions of Northern
Canada. This model is applied to replicate historical land cover and estimate future land
cover scenarios at the Scotty Creek Research Basin in the Northwest Territories, Canada.

A significant challenge when analyzing land cover change effects on hydrological proper-
ties is generating time-dependent classified maps of the region of interest, and the challenges
associated with preprocessing remotely sensed data for discriminating between wetlands
and forest-covered regions. In this work, we focus on two important objectives supporting
the improved classification of wetlands in discontinuous permafrost regions: the exclusive
use of only RGB imagery, and the use of an image segmentation method to accelerate the
automatic classification of land cover. A semantic segmentation neural network, a multi-
layer perceptron (MLP), and watershed function algorithms are applied to develop the
taiga wetland identification neural network (TWINN) for the hydrological classification of
wetlands. TWINN is here demonstrated to accurately classify high-resolution imagery of
discontinuous permafrost regions within the Northwest Territories into the water, forest,
and wetlands, and also able to delineate the runoff area of wetlands.

To study the effect of land cover evolution on runoff generation in the Scotty Creek
basin, the products of TWINN and TSLCM are used to inform a process-based hydrological
model where land cover change is represented explicitly. According to simulation results,
land cover transitions can modify annual mean streamflow by as much as 7%, in addition
to influences due to changing precipitation regimes alone.
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1.1 Introduction

Climate change has yielded numerous environmental changes in the northern hemisphere,
especially in permafrost regions [117]. Rapid warming in permafrost regions is increasing
the output of greenhouse gases [29] and leading to thaw-induced changes to regional hy-
drology [30]. Recent studies in the Arctic and subarctic regions reflect a growing awareness
of changes in permafrost regions; these studies focus on vegetation, wildlife, hydrological
changes in aquatic ecosystems, land use and land cover, and geophysical and geomorpho-
logical changes of the permafrost underlain regions [128].

In the Northwest Territories (NWT), Canada, and elsewhere, the outcome of permafrost
degradation can be observed as land cover and hydrologic change in discontinuous per-
mafrost regions. Lateral permafrost thaw in these discontinuous permafrost regions is
influencing permafrost’s distribution and extent, and intensifying the fragmentation rate
of peat plateaus. The increased permafrost thaw affects the spatial distribution of three key
land cover types (permafrost plateaus, bogs, and fens), and consequently, their hydrologi-
cal responses [105]. Historical remote sensing products report a noticeable transformation
of forest-covered land (permafrost plateaus) into wetland (fens and bogs) [105, 104]. This
transformation is causing restrictions in hydrological interactions between groundwater
and surface water, altering water storage, increasing summer streamflow, and changing
the hydrological role of permafrost [105]. Connon et al. 2014 [30] illustrated that climate-
related changes in hydraulic connectivity are increasing streamflow in the NWT due to
degradation in the lateral extent of permafrost plateaus. Many local factors may influence
vertical and lateral permafrost thaw, including thermal gradient, air temperature, incom-
ing radiation, canopy cover, the lateral movement of groundwater, and the geometry of the
thawing permafrost.

A variety of permafrost models are used in cryosphere science to assess the influence
of permafrost evolution and the rate of vertical permafrost thaw. However, models for
simulating lateral thaw are limited to complex 3D models [63, 101, 78]. These models
are generally too computationally expensive to deploy at large scales. Other means are
therefore needed in order to predict local rates of lateral permafrost loss and corresponding
land cover change. Such predictions of land cover change can then be input into hydrologic
models to determine the potential for hydrologic change at watershed scales. To date, there
is no available predictive model for simulating this spatio-temporal land cover evolution and
its corresponding hydrological impact in discontinuous permafrost zones characteristic of
those found in the NWT. The absence of a predictive model for spatio-temporal land cover
evolution and its corresponding hydrological impact may be due to a number of reasons,
including the complexity of the process, the lack of reliable long-term historical remote
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sensing data sets (particularly classified maps showing the distribution of hydrologically
relevant land cover), and resource constraints. The challenging and time-consuming process
of data processing is another concern when analyzing long-term changes in dominant land
covers in discontinuous permafrost zones.

To analyze the long-term effects of land cover evolution on hydrological properties
of a basin, track the pattern and pace of change, and reduce prediction uncertainties, a
spatio-temporal land cover change model trained by historical observations of land cover
evolution in discontinuous permafrost regions of the taiga plains is needed. There are many
alternative methods available for addressing this need; recent improvements in machine
learning, deep learning, and advanced computer vision techniques have shown a potential
to solve contemporary problems in land cover classification, simulating long-term land
cover evolution, and coupling hydrological models and land cover change models in other
geographic locations [142, 126].

1.2 Aims and Objectives

Permafrost thaw drives the erosion of peat plateaus, leads to the merging of bogs and
fens, influences the wetting-drying cycles of the ground, and changes the primary runoff
characteristics of landscapes. The overarching goal of this research is to study these thaw-
induced land cover change effects on the hydrological properties of systems comprised of
permafrost plateaus, fens, and bogs such as those depicted in Figure 1.1. The research
described herein addresses this goal by:

1. Developing an automatic method for the classification of wetlands and permafrost
plateau from remote sensing products.

2. Developing, training, and testing a machine-learning-based land cover change model
for simulating both long-term and short-term land cover evolution due to lateral
permafrost thaw.

3. Creating a simple wetland runoff contributing area delineation method.

4. Coupling a hydrological model and land cover change model predictions to analyze
the hydrological effects of land cover change and assess the magnitude of land cover
change influence relative to the influence of changing meteorological forcing.
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In this research, a general machine learning-based land cover change model and a deep
learning-based automatic solution were developed to analyze the effects of remotely ob-
servable variables on spatial and temporal patterns of historical change in lowland discon-
tinuous permafrost zones and generate long-term land cover change scenarios for further
analysis. Challenges associated with developing a spatio-temporal land cover change model
include extrapolating the time series change of land cover when the training data set is
limited and the portability of model results to other regions. The temporal extrapolation
and transferability issue can be tackled by implementing and testing machine learning and
data generative methods. An additional concern regarding the application of the developed
land cover change model is the time-consuming and complex input data preparation step,
which can be addressed by developing an automated method for land cover classification.
The final portion of this thesis is focused on using the output of the developed land cover
change model as input to a hydrological model to illustrate the hydrological effects of land
cover evolution in lowland discontinuous permafrost zones. Coupling hydrological models
to land cover change models can help to quantify the contribution of land cover changes
to the watershed properties such as flood potential, soil water availability, or groundwater
recharge. Here, the land cover change model and the Raven [32] hydrological model were
coupled in a data coupling framework, where the results of the land cover change model
were used to inform the hydrological model. Specifically, the simulated land cover pre-
dicted by the land cover change model was used to delineate the primary and secondary
contributing (bog contributing areas) areas by the devised runoff area delineation method
in this research. Discretizing the primary and secondary contributing areas helps to under-
stand how isolated bogs connect over time and how the conversion from isolated bogs to
connected bogs alters the hydrological function of the landscape. The delineated primary
and secondary runoff areas were employed as an input in the Raven hydrological frame-
work [32] to simulate the likely future hydrological impacts of the landscape changes and
investigate the effects of this parameter on the hydrological responses.

The explicit objectives of this research are to:

1. Iteratively develop and test a machine learning geospatial model that can estimate
the conversion between the three primary land cover types at SCRS and in other
similar discontinuous permafrost regions of the discontinuous permafrost zones in
the taiga plains (Chapter 4).

2. Use historical remote sensing imagery products to evaluate long-term changes to the
land cover characteristics of discontinuous permafrost zone’s wetlands by incorporat-
ing deep learning-based algorithms (Chapter 3 and Chapter 4).
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3. Simulate the likely future hydrological impacts of thaw-induced landscape changes
based on the predicted land cover evolution from the machine learning-based model
using a hydrological model (UWFS method) implemented in the Raven hydrological
framework (Chapter 3, Chapter 4, and Chapter 5).

Figure 1.1 portrays the flowchart of this thesis.

1.3 Thesis structure

This thesis is organized as follows:

Chapter 2 examines the impacts of permafrost thaw on land cover and hydrological pro-
cesses in discontinuous permafrost regions. It also discusses the use of machine learning
and deep learning algorithms to detect thaw-induced changes and evaluates the dynamic
feedback between land cover change models and hydrologic models for more accurate quan-
tification of catchment ecosystems in permafrost regions. The overall goal of the chapter is
to provide a comprehensive understanding of the complex interactions between permafrost
thaw, land cover change, and hydrological processes in discontinuous permafrost regions.

Chapter 3 includes a paper submitted to the International Journal of Applied Earth
Observation and Geoinformation [3], co-authored by myself, Dr. Laura Chasmer, and my
supervisor, Dr. James R. Craig, with author efforts noted in the statement of contribu-
tions. In this paper, we applied a semantic segmentation-deep learning model and a Multi
Layer Perceptron (MLP) method to develop the TWINN for the classification of isolated
wetlands. In order to improve upon other methods used for identifying wetlands in dis-
continuous permafrost regions, we focused on two important objectives: using only RGB
images and using a method of image segmentation to speed up the processing of data for
the classification of wetlands and permafrost plateaus.

Chapter 4 corresponds to a paper published in Remote Sensing Applications: Society
and Environment (2022) [4], co-authored by myself and my supervisor, Dr. James R.
Craig. In this paper, we discussed the development of a machine learning-based model to
estimate the evolution of the key hydrologically-important land cover types in discontinuous
permafrost regions of the taiga plains. The model was derived, trained, and tested against
historical observations of landscape change. Simulating land cover transitions and patterns
using the TSLCM was demonstrated to be effective against historical observations. This
study concluded that ensemble learning models are weak in forecasting time series changes
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Figure 1.1: Flow chart representing the objectives of this thesis.
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and capturing spatial-temporal correlations, but still produce better results than MLR
methods in replicating historical land cover changes.

In Chapter 5, we examined the potential long-term impacts of thaw-driven land cover
evolution on the hydrological response of the gauged Scotty Creek basin in the Northwest
territories. To do this, we used reasonable estimates of future land cover generated by
the TSLCM and a hydrological model which captures the key runoff characteristics of
the landscape. We quantified the effects of land cover change on runoff from the basin
by employing an UWFS method which can simulate the runoff response of hundreds to
thousands of wetlands.

Chapter 6 summarizes the conclusions of the research conducted in this dissertation.
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Chapter 2

Background and literature review
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A discussion of discontinuous permafrost land covers is presented here in a way that
emphasizes the land cover alterations and considers potential hydrological trends caused
by thaw processes. The first two sections examine discontinuous permafrost land cover
types and their interactions. The chapter also reviews studies that focus on the impacts
of the permafrost thaw on the distribution of the dominant land covers especially wet-
lands, machine learning-based and deep learning algorithms for improving the accuracy of
remote sensing products and the dynamic feedback between land cover change model and
hydrologic models.

2.1 Land Cover: Permafrost

Permafrost refers to the ground that remains below 0 °C temperature for at least two
consecutive years [133]. The surface layer of soil above permafrost, which freezes and
thaws in a cycle, is referred to as the active layer, which may be underlain by perennially
frozen or unfrozen ground. Each year, climate change brings noticeable seasonality to
discontinuous permafrost regions, with distinctive changes in land cover and hydrological
conditions occurring during each season [133].

Zhang et al. (1999) [139] reported that about 50% of the exposed land in the Northern
Hemisphere is in a seasonal freezing-thawing state during winter. The seasonal freezing and
thawing of permafrost have a strong impact on the hydrologic functions of the landscape,
the land surface energy budget, and the biological processes involved [39].

2.2 Land Cover: Discontinuous Permafrost Lands

Permafrost zones occupy about 22% of the Northern Hemisphere [139]. The distribution
pattern of permafrost in discontinuous permafrost regions is influenced by various factors,
including topography, hydrology, as well as local surfaces and subsurface characteristics,
such as vegetation cover and soil texture [39, 111].

Some areas in the NWT are characterized by permafrost-underlain peat plateaus, also
known as permafrost plateaus, which are formed by the accumulation of dead plants [133].
The extent of the permafrost plateaus varies from tens of meters to kilometers; the surface
of this type of land is dry, and their surroundings are typically waterlogged. Permafrost
plateaus are elevated features; this type of land is known as a runoff generator in the
representative discontinuous permafrost region of Scotty Creek [30, 106] (Figure 2.1). The
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occurrence of wetlands in the discontinuous permafrost regions depends on the balance
between gains and losses of water. Transport of water to the surrounding wetlands mostly
occurs due to the contribution of snowmelt during freshet [79, 116], and the water is
laterally transported from the permafrost plateaus through the zone of high saturated
hydraulic conductivity above the permafrost [116]. Permafrost plateaus impound water in
bogs and redirect flow to the fens, as the permafrost sits at a higher elevation than the
surrounding terrain [47, 106].

Connon et al. (2014) [30] created a conceptual model whereby the generated runoff from
permafrost plateaus can flow into channel fen (primary runoff), discharge into the channel
fen through a series of connected or cascading bogs (secondary runoff) or flow into isolated
bogs where the water will be stored [30]. Bogs and fens are two major types of wetlands
existing in the NWT; In this research, their classification is based on their hydrological
properties rather than their ecological functions (Figure 2.1). To delineate the runoff area
of fens and bogs, the permafrost plateau area can be discretized into primary runoff and
secondary runoff areas (Figure 2.1). The primary runoff area, which is the area where water
is drained directly into channel fens, is depicted in dark gray in Figure 2.1. In contrast,
the secondary runoff area, which contributes water to isolated bogs, is distinguished by a
relatively lighter gray shade in the same figure (Figure 2.1).

Fens are formed as wide channels comprising the drainage network of basins, and bogs
are presented as patches distributed in a discontinuous permafrost region [106]. Channel
fens and bogs have contrasting hydrological functions; channel fens are water conveyors,
and bogs are not typically able to convey water. The primary sources of water for bogs are
rainfall and snowmelt, while fens obtain water both vertically and laterally from ground-
water discharge [133].

Based on a thorough investigation of hydrometric data, Quinton et al. (2003) [106]
concluded that there is a positive correlation between the basin’s annual runoff and the fen
coverage. In contrast, the negative correlation between bog and fen spatial coverage was
reported as negative, which indicates that bogs play a major role in storing water. In some
instances, bogs or a series of connected bogs can transfer water to channel fen (secondary
runoff) and the basin outlet which occurs during periods of high moisture supply (i.e. in
response to snow melting or large summer rain) [30].

2.3 Thaw-induced Changes to Land Cover

Numerous studies have reported a recent increase in the rate of lateral permafrost thaw, and
climate warming is affecting the lateral exchange of water and energy between permafrost
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Figure 2.1: Classified map of the SCRS in 1947 representing fen, bog cascades, and their
estimated contributing area.
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plateaus, fens, and bogs [12, 27, 64, 67, 105].

The interdependence of thaw-induced land cover evolution and climate change, specif-
ically temperature change, is now altering the distribution of permafrost plateaus, fens,
and bogs in discontinuous permafrost regions of Northern Canada. Investigations into per-
mafrost thaw reveal numerous impacts upon the environment and hydrology of the NWT,
including an increase in baseflow [46], alteration of lake drainage [96], and drastic changes
in the land cover. Changes in the energy balance trigger permafrost degradation in the
NWT, thawing of peat-rich zones, and transformation of land cover.

Quinton et al. (2011) [105] identified a reduction in the area of regions covered by
permafrost plateaus and an increase in the distribution of wetlands as a result of permafrost
thaw in the SCRS (Figure 2.2). Figure 2.2 depicts the main land cover transitions over a
30-year period in the SCRS. The transitions were predominantly observed in areas closer to
the thawing edge of permafrost plateaus; the gray color indicates an increase in the fen area
or a transition from permafrost plateaus to fen. The blue color represents the transition of
permafrost plateaus to bog due to permafrost thaw, while the red color depicts bogs that
became hydraulically connected to and then transitioned to fen during the 30-year time
step (called the ”bog capture” phenomenon [30]).

Elimination of permafrost plateaus from between channel fen and a series of isolated
bogs (”bog capture”) increases the runoff contributing area, especially primary runoff con-
tributing areas [30, 130]. The changes in the extent of the secondary runoff area were found
to be controlled by the storage capacity of the bogs.

The evolution of permafrost plateaus, fens, and bogs caused by lateral permafrost thaw
changes the local hydrological cycles. Connon et al. (2014) [30] concluded that transfor-
mation from plateaus to wetlands (flat bogs) caused by permafrost thaw has a direct effect
on the generation of runoff and contributing area because of the increasing hydrological
connectivity through the surface and subsurface pathways. Quinton et al. (2011) [105]
analyzed the linkage between land-cover changes and river flow in the wetland-dominated
discontinuous permafrost of the SCRS. A combination of remote sensing and field studies
was utilized to understand the effects of horizontal heat flow on the land cover and basin
runoff when the permafrost plateaus thaw. The result of the analysis discovered a 38%
permafrost plateaus decline over 60 years. These remotely sensed observations were sup-
ported by field studies showing changes in surface saturation, loss of tree canopy, increase
in the transfer of thermal energy to the ground, and more permafrost degradation. These
changes also cause more drainage from the isolated bogs, allow hydrological connections
among bogs, and form more channel fens. An analysis of the spatial distribution of veg-
etation at the SCRS, changes in their structural characteristics, and alterations in the
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Figure 2.2: A 30-year (1970-2000) evolution of the SCRS illustrating the transition of
dominant land covers.
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permafrost-covered area was conducted by Chasmer et al. (2010) [23]. The study demon-
strated that most of the reduction in permafrost area occurred at the edge of permafrost
plateaus due to vegetation loss yield by the lateral thawing, the increase in meltwater
runoff, and the soil saturation at plateau edges. The chain reaction between the dissipa-
tion of permafrost and ecological change has been scrutinized, especially for the Scotty
Creek watershed. As permafrost plateaus are higher than the wetlands around them and
the permafrost core is ice-rich [106], the thawing core of the permafrost results in subsi-
dence of the ground surface. The increase in wetland areas as a consequence of thawing
leads to an increase in the energy inputs at their surface, this can be one of the main
drivers of lateral thawing through subsurface heat transfer via groundwater flow [130]. Be-
cause of the importance of land cover transition, it is desirable to be able to predict the
evolution of land cover to investigate the effects of permafrost thaw on the hydrological
characteristics of a permafrost environment. Moreover, analyzing the impact of land cover
evolution on the extent of secondary and primary contributing areas over time is necessary
to understand how each type of runoff area contributes to a basin water balance.

2.4 Land Cover: Classification and Change Analysis

We are sometimes able to predict future changes to land covers by using the pattern
and intensity of change captured by satellite imagery. Here, we intend to use classified
imagery to estimate the distribution of wetlands and permafrost-covered areas, detect land
cover transitions over time, track the rate of land cover evolution, capture the spatio-
temporal pattern of change, and reveal the hydrological effects of land cover evolution
on the discontinuous permafrost land covers in the NWT. Tracing the evolution of the
dominant land covers in discontinuous permafrost zones requires:

• An accurate means of classification of dominant land covers.

• Models for simulating long-term and short-term land cover evolution both spatially
and temporally.

• Methods for delineating the runoff area of the wetlands for hydrological modeling
purposes.

To develop and train an accurate land cover change model, we need classified maps.
Both pixel-based and object-based classification methods have been used for classifying
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dominant land covers of the southern NWT’s discontinuous permafrost zones to deter-
mine the scale and magnitude of change during the last 70 years [23, 20, 26, 103, 42,
85, 84, 82, 57, 69]. Mapping permafrost plateaus via remotely sensed data on a large
scale requires a combination of statistical and numerical methods [108, 130]. The com-
plicated process of gathering remotely sensed data, and the availability and frequency of
the data are the main obstacles to using most of the developed statistical and numerical
methods. For instance, Hachem et al. (2009) [45] utilized the MODIS’s land surface tem-
perature (LST) product for mapping permafrost presence/absence. The regional map of
permafrost was created by estimating the mean annual surface temperature and freezing
and thawing indices. A sinusoidal model for representing seasonal thermal variation for
each pixel is fitted over the daily LST. The validation of the method was done by finding
the correlation between the calculated mean annual surface temperature and freezing and
thawing indices derived from the reference stations and the sinusoidal curve. The results
illuminated that there is a low correlation between indices derived from both methods,
the low correlation caused by the number of cloudy days, ignoring heterogeneity, and the
low spatial resolution of MODIS imageries. Recently, the spectral, spatial, and temporal
qualities of remote sensing products have been improved by the use of machine learning
and deep learning-based algorithms in the fields of object detection, scene classification,
image segmentation, change detection, geospatial land cover prediction, and land use and
land cover classification [136, 140, 53, 107, 5]. The performance of deep learning and ma-
chine learning algorithms in land cover modeling and classification have been analyzed
in several studies [135, 76]. Numerous research studies have been done to enhance the
Canadian wetland mapping products using machine learning and deep learning algorithms
[21, 26, 85, 7, 6, 72, 71, 70, 33]. A maximum likelihood classification model was one of the
first methods developed for classifying wetlands, uplands, and permafrost plateaus in the
Scotty Creek watershed [106] using Landsat and IKONOS remote sensing data. In another
study, Stadnyk et al. (2005) demonstrated inaccuracies in the classification of bogs and
fens in the Scotty Creek watershed using Landsat data which proves that the complexity of
the wetland landscapes demands high-resolution imagery and the deep architecture of deep
learning algorithms [6, 70, 115]. Chasmer et al. (2014) [24] presented a decision-tree (DT)
classification methodology which combines airborne LiDAR and high-resolution spectral
data sets to classify the landscape into permafrost plateaus, bogs, fens, uplands, and water.
The decision-tree classifier is used to determine the highest probability of prediction of a
given land cover type. The selected hierarchical models for predicting the land cover of
the training sets were tested due to elevation derivatives, vegetation characteristics, and
spectral classification of land cover types. For evaluating the accuracy of this method,
the classification inaccuracies were compared against field measurements. Moreover, Chas-
mer et al. (2014) [24] drew a comparison between this method and supervised land cover

15



classification from the spectral WorldView2 by using sensitivity analysis. The results of
modeling and validating in this study illustrated the accuracy of the hierarchical classifi-
cation was between 88% and 97% of the validation sub-area, and topographical derivatives
were more accurate in identifying variations in land cover types. In contrast to the findings
of Quinton et al. (2003) [106], the percentage of bogs identified by the decision tree [24]
model were higher than fens in the Scotty Creek watershed; these findings demonstrate
the influence of edge uncertainties, especially for bogs due to their fragmented structures,
as well as the possibility of pixel value range confusion between bogs and fens when em-
ploying lower resolution remote sensing data. The main concern of the model developed
by Chasmer et al. (2014) [24] is that the model has never been evaluated by assessing and
testing the model on other taiga wetlands areas in discontinuous permafrost zones. Most
of the permafrost landscape classification methods are restricted by a lack of computing
power or a suitable working environment, particularly during the data preparation step
and during the application to big data sets.

In the context of hydrological modeling of discontinuous permafrost zones, an auto-
matic classification solution would be helpful for long-term and large-scale analyses of land
cover change. Bhuiyan et al. (2020) [16] developed an automatic mapping workflow for
delineating ice-wedge polygons distributed in arctic tundra complexes on the north slope
of Alaska. This study incorporated deep learning algorithms to facilitate and improve the
process of data preparation and classification to detect ice-wedge polygons from sub-meter
resolution commercial satellite imagery[16]. In the discontinuous permafrost wetland sys-
tems found in the taiga plains, no study has yet established an automated and scalable
method for precisely recognizing wetlands and outlining the run-off area of isolated and
connected wetlands.

To expand our investigations on the hydrological effects of land cover evolution both
temporally and spatially, we need land cover change models. The outputs of classification
models, which are land cover maps, have been used as input for land cover change models
to provide long-term predictions of land cover changes in various environments. These
models are used to describe and predict the past, present, and future classification of
land use and land cover in different systems, and have been applied to simulate changes
due to agricultural, forestry, and urbanization. A diversity of modeling methods have
been used to analyze the land cover change, for example, statistical and empirical models
[37, 62, 118], dynamic models such as Cellular Automata [89], agent-based models [125],
machine learning and deep learning models [95, 87], and hybrid models [11, 89, 88, 54]. The
land cover change models simulate evolution by extracting spatial and temporal correlations
and important features from the available data and the driving factors of change (such as
climate or economics). The traditional methods, such as cellular automata and statistical
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models, have two major drawbacks: they cannot simultaneously capture both spatial and
temporal changes, and their simulations are entirely governed by earlier states. These
challenges can be addressed by the deep architectures of deep learning and machine learning
algorithms and advanced computer vision techniques. A diversity of machine learning
and deep learning methods have been used to predict and simulate land cover change
[37, 62, 118, 89, 11, 88, 87, 73]. Abdullah et al. (2019) [2] utilized eXtreme Gradient
Boosting (XGBoost) and Random Forest (RF) to capture the spatio-temporal patterns of
land use and land cover across coastal areas over a 28-year period from Landsat imagery.
This study showed that the XGBoost is a successful method in feature selection for solving
the issues of land cover heterogeneity and spectral complexities of the image data. It should
be noted that Abdullah et al. (2019) [2] never tested the accuracy and performance of the
model in terms of long-term land cover change prediction. Pijanowski et al. (2002) [95]
developed a land transformation model by applying an artificial neural network and GIS
to model land-use change in Michigan’s Grand Traverse Bay watershed. They analyzed
the effects of feature presence (roads, highways, residential streets, rivers, inland lakes,
and agricultural density) on urbanization. The model had better predictions at larger
scales when using a moving scalable window metric. Kanevski and Pozdnoukhov (2008)
showed that machine learning algorithms can be sufficiently used for exploratory spatial
data analysis, recognition and modeling of spatio-temporal patterns, and decision-oriented
mapping [55].

Future assessments of land use and land cover change play a significant role in urban
planning, policy-making, and environmental studies. An artificial neural network and
cellular automata model was used by Javed Mallick et al. (2021) [73] to predict the
change in land cover in the Saudi Arabian city of Abha for the year 2028. The trained
model forecasted an increase in the built-up area, indicating the necessity for long-term
sustainable management measures. A similar methodology was used to predict future land
use and land cover changes to help environmental engineers and policy makers lessen the
possible effects of the urban heat island phenomena in a developing megacity [54]. Kafy et
al. (2021) [54] incorporated a combination of support vector machine algorithm, cellular
automata, and the artificial neural network algorithm to retrieve and simulate the pattern
of land cover change in one of Bangladesh’s fastest-growing regions. The validation results
demonstrated excellent accuracy. The model projected a 10% increase in urban built-
up areas by 2029, and the research findings revealed a significant relationship between
changes in urban areas and the rising LST, suggesting the need for long-term plans that
emphasize the significance of urban plantation and the preservation of natural resources
[54]. Four statistical techniques—Markov chain, logistic regression, generalized additive
models, and survival analysis—were tested for their efficacy in land use and land cover

17



change modeling by Sun and Robinson (2018) [118]. In terms of overall accuracy, the
generalized linear model performed better than the other three models, whereas logistic
regression and survival analysis performed better when modeling changes for certain land-
use types. The study by Sun and Robinson (2018) [118] demonstrated that the selection of
model by land use change type is an important method for land use and land cover change
studies, and a hybrid model composed of the best modeling methods for each land-use
change may be more reliable than those where an individual statistical method is applied
[118].

We provide a thorough overview of recent deep learning and machine learning appli-
cations in Chapter 4 and Chapter 5 for categorizing wetlands and permafrost plateaus,
simulating spatio-temporal land cover change in discontinuous permafrost zones, and im-
proving the quality and accuracy of remote sensing outputs. These studies demonstrate
a significant benefit of using machine learning and deep learning algorithms for long-term
simulations of land use and land cover change, which helps policymakers and urban plan-
ners take the effects of climate change into account in upcoming projects. However, these
methods have not yet been applied to predict the evolution of the discontinuous permafrost
lowlands impacted by climate warming. Despite the excellent performance of deep learn-
ing, machine learning, and advanced computer vision techniques, there are still unexplored
aspects in the use of these methods for land cover classification and land cover change
simulation of discontinuous permafrost wetland systems in the taiga plains.

2.5 Land Cover: Hydrological Analysis

The evolution of land cover impacts watershed storage, streamflow, and the watershed-
scale hydrological response of the discontinuous permafrost regions of the NWT [105].
Quantifying the impact of land cover changes on watershed features like flood potential,
soil water availability, or groundwater recharge may potentially be achieved by combining
hydrological models and land cover change models.

There is some precedence for coupling hydrological models and land cover change mod-
els; a coupling method was presented by McColl and Aggett (2007) [77] to enhance the
formulation of land-use policies at the watershed scale. In this study, a land-use forecasting
model called “What If?” was combined with a rainfall-runoff model (HEC-HMS) with a
GIS platform. While taking into account both low and high population growth scenarios,
the “What If?” model assessed the spatial distributions of low-density residential land uses
for the years 2015, 2025, and 2050. The “What If?” model’s output was then used as an
input in the HEC-HMS hydrologic model calibrated for a specific storm time within central
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Washington State. By quantitatively comparing the results of the anticipated stormwater
runoff volumes generated for each pattern of land-use distribution, it was possible to es-
tablish which land-use policy is more hydrologically advantageous for land-use managers
and policymakers.

The hydrological effects of thaw-induced fen–bog–plateau complex evolution have been
examined in many studies [30, 31, 25, 48, 116]. Kurylyk et al. (2016) [63] analyzed the
influence of vertical and lateral heat transfer on permafrost thaw by stimulating the devel-
opment of thaw, and the evolution of groundwater flow in single permafrost plateau-wetland
complex. The results of the simulations were compared to observed data. Simulated soil
temperatures in the surface energy balance model were used as the upper boundary condi-
tions to a three-dimensional model of subsurface water flow and coupled energy transport
using the SUTRA-ICE model [101]. The results of simulations indicated that the landscape
transition of a permafrost plateau-wetland complex caused by permafrost thaw increases
energy absorption. Nevertheless, such computationally intensive 3-D modelling cannot be
scaled up to the level of a watershed. Further research is needed to better understand
the mechanisms of water transfer and storage between fens, bogs, and basin outlets at
larger scales in order to improve the performance of hydrological models and examine
the hydrological effects of changes in contributing runoff areas of fens and bog (primary
and secondary), bog cascades, and forested covered area. The interaction between the
Canadian NWT’s discharge properties and the conversion of forests to wetlands (fens and
bogs distribution) should be taken into account by the numerical models [116]. Stone et
al. (2019) [116] used the cold regions hydrological modeling [98] platform and field water
balance observations to model the hydrological behavior of a single channel fen sub-basin
in the headwaters of Scotty Creek, to show the effects of permafrost thaw-induced land
cover change on wetland discharge. The model performed well when compared to measured
water balance components, and the results showed that the total annual discharge from
the channel fen diminishes and the surface storage capacity is affected by a decrease in
permafrost distribution [116]. One problem with this study is that despite the possibility
of utilizing land cover change models to estimate the transitions of forested area, the effect
of permafrost plateaus conversion to wetlands is investigated by changing the proportion
of wetland to permafrost plateau area in the modeled sub-basin. Particularly, there has
been little work done regarding explicitly simulating the long-term effect of land cover
evolution on permafrost thaw patterns and hydrological properties. Painter et al. (2013)
[93] concluded that modeling the evolution of discontinuous permafrost and the reaction
of the environment is a big challenge which is caused by the complexity of the controls
affecting permafrost thaw, the spatial and temporal resolution, and the nonlinear nature
of the freeze/thaw [1, 93]. It should be noted that additional background information rel-
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evant to the topic of each chapter will be provided at the beginning of each Chapter. This
information will provide context and further detail on the specific topic being discussed
and will serve to enhance the understanding of the content presented.

In this study, we seek to understand how changes in land cover—from permafrost
plateaus to fen, permafrost plateaus to bog, and bog to fen (a phenomenon known as
“bog capture”)—affect the hydrological responses of the Scotty Creek Basin and similar
environment. These changes could significantly affect the connection between fens and
bogs, the stored water in the basin, and consequently the runoff responses at the basin
scale.
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Chapter 3

Hydrological Classification of
Isolated Wetlands in Discontinuous
Permafrost Regions using only RGB
Imagery
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3.1 Introduction

Northern regions are rapidly evolving as an outcome of climate warming. Permafrost thaw
is one of the driving factors of land cover change in discontinuous permafrost zones of
Northern Canada and elsewhere; the thawing edges of peat plateaus lead to a gradual
transition from forested lands to wetlands [30]. Delineation of the extent and spatial
distribution of wetlands and peat plateaus at different snapshots is needed to investigate
the magnitude and impact of this permafrost thaw and the resultant land cover change.

Satellite imagery enables us to mine information about the pattern and degree of change
and use that data to forecast future changes. We can use classified imagery to estimate
the distribution of wetlands and forest-covered regions, detect land cover transitions across
time, delineate runoff areas, and investigate the effects of land cover transitions on the
hydrological characteristics of discontinuous permafrost wetland systems such as those
found in the NWT, Canada.

Pixel-based and object-based classification has been applied to remotely sensed imagery
of discontinuous permafrost regions of the southern NWT; these approaches have been
critical in estimating the extent and magnitude of change over the past 70 years [23, 20,
26, 103, 42, 85, 84, 82, 57, 69].

Although existing pixel-based classification models have helped determine the pattern
and spatial extent of changes, the models encounter some challenges [24, 106]. One of the
main concerns regarding the application of pixel-based classification methods is that the
method usually needs training data that includes all of the land cover characteristics to
boost the classification accuracy [26]. For example, classes with similar spectral information
can be wrongly allocated to pixels with characteristics not present in the training data [26].
Another issue with wetland identification is the spatial heterogeneity of wetlands, which
leads to unclear and blending boundaries between these highly fragmented landscapes and
the neighboring land covers [26, 99]. The blending boundary issue can be a challenge for
hydrologists interested in classifying the wetlands into two hydrologically important land
covers—fens and bogs—and determining their local contributing runoff areas.

In this study, we consider three primary land classes: forested land, open water, and
wetlands. Wetlands can be further subdivided into bogs (which are geometrically isolated
from the surface water network) and fens (which connect open water features) . Bogs
and fens are recognized for their distinct hydrological functions, serving as storage and
conveyance features, respectively. Forest can be subdivided into forested peat plateaus,
strips of land interspersed between wetlands which is perched atop permafrost and at a
slightly higher elevation, and larger forested upland regions. Notably, we use a hydrological
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(rather than ecological) definition of bogs and fens, with bogs as storage features and fens
as conveyance features [4, 103, 59, 106]. Bogs and fens share similar spectral information,
making it difficult to distinguish using pixel-based methods [26]. However, when hydrolog-
ically defined, bogs are geometrically isolated whereas fens are part of a connected network
connected to lakes and streams. These geometric differences between bogs and fens can be
leveraged using machine-learning-based classification tools. Compared to traditional pixel-
based classification, which uses only the spectral information within individual pixels, the
geometric categorization of fens and bogs has the advantage of minimizing classification
errors in these two land covers by using (multi-pixel) information about the geometry of
these features.

Depending on the employed classification methods and the necessary input data, gen-
erating classified maps may have an unavoidable cost; the process of preparing the data
for image classification (such as image restoration, geometric (or ortho-) rectification, ra-
diometric corrections, resampling, and other similar operations) can be complicated and
time-consuming. These data preparation challenges are also an additional shortcoming of
the previously developed pixel-based methods for wetland identification. These previously
developed methods require a considerable amount of computer memory, remote sensing
expertise, and access to specific data sets.

To address some of these wetland classification challenges, the main objective of this
study is to develop and test a feature classification approach that simplifies and accelerates
the data preparation and land cover classification procedures for discontinuous permafrost
wetland systems within the Taiga Plains Ecozone. The method is intended to classify
earlier airborne photos and sites using only RGB imagery (i.e., without access to multi-
spectral data), RGB image classification is largely avoided in the literature due to limited
information provided by 3 spectral bands in the classification of lands for discontinuous
permafrost zones (relative to more spectral bands with multi-spectral imagery).

New developments in computing based on shape-based features avoid these limitations.
Considering the limitations, this paper aims to:

1. Develop and test an automatic classification approach for classifying remotely sensed
imagery features into wetlands, forests, and water, focusing on discontinuous per-
mafrost wetland systems in Northern Canada.

2. Develop and test a method to categorize the classified wetlands as either hydrologi-
cally isolated (bogs) or connected wetlands (fens) based on geometric characteristics.

3. Delineate and estimate the primary and secondary runoff area of the categorized
wetlands for hydrological analysis.
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Fortunately, deep learning methods have demonstrated their capability to address sev-
eral similar contemporary challenges in remote sensing and computer vision classifica-
tion tasks, including image classification, object recognition, and semantic segmentation
[124, 143, 28, 83, 131]. Deep learning approaches use a multi-layer neural network archi-
tecture or numerous hierarchical layers to learn the spatial characteristics of the existing
components in an image [107].

Convolutional Neural Network (CNN)s are one of the most effective and popular deep
learning methods in environmental and geographical research for feature identification,
classification, and hazard prediction. As such, CNN methods have been applied to building
detection, land type classification, Spatio-temporal simulation, cloud removal, and flood
risk prediction [136, 56, 76, 43]. In contrast to traditional pixel-based techniques that
demand training data comprising all the characteristics of the existing labels, CNN’s multi-
layer interconnected architecture enables them to identify important features from data in
each layer to classify images.

A combination of deep learning methods and advanced computer vision techniques
comprise the TWINN solution, which consists of three steps. First, we implement a CNN
model with ResNet34 [49] architecture for semantic segmentation of dominant land covers
in discontinuous permafrost zones using World View 2 (WV2) RGB imagery. The CNN
model implemented in this study is capable of segmenting RGB imagery into three distinct
classes: water, wetlands, and forests. Here, features such as ponds and lakes are identified
as water [24].

Then, the classified wetlands generated by the CNN are categorized into isolated wet-
lands (bogs) and connected wetlands (fens) based on their geometric characteristics by
employing a four-layer Multi Layer Perceptron (MLP) model. Finally, we use the water-
shed algorithm from the OpenCV library in Python using the watershed and Euclidean
distance functions, effectively estimating the contributing runoff area to each categorized
wetland as its “nearest neighbor” region, a useful first-order approximation in very flat
landscapes such as Scotty Creek Basin (61.44◦N, 121.25◦W), in the Northwest Territo-
ries of Canada. Hydrological analysis requires delineating the contributing runoff area of
classified wetlands [106, 24], i.e., the portion of forested land cover which drains to the
fens (primary runoff area) and that which drains to bogs (secondary runoff area). This
information can be used for hydrological simulation under current conditions or used in
conjunction with a land cover evolution model (e.g., [4]) to examine changing hydrological
responses due to climate change.

To assess the performance of the developed models, we run the final solution on eight
Areas of Interests (AoI)s located in similar discontinuous permafrost wetlands within the
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NWT and British Columbia, Canada. We also investigate the effects of batch size, data
augmentation, and image size (tiling) on the performance of the TWINN solution.

3.2 Related Works

CNNs are deep learning algorithms mainly employed for image processing. The spectral,
spatial, and temporal qualities of remote sensing products have been improved by the use
of CNN-based algorithms and computer vision techniques in the fields of object detection,
scene classification, image segmentation, and land use and land cover classification [137, 72,
136, 140, 53, 107, 5]. The architecture of the CNN, geographical location, spatial extent,
and image resolution can all influence the accuracy of the CNN-based models for land cover
classification [50]. Here, we briefly review recent applications of CNN-based techniques in
remote sensing and Canadian wetland mapping studies.

A typical application of CNNs is object detection. Applications in remote sensing
include identifying clouds in images, which can facilitate cloud removal as a pre-processing
step and improve solar forecasts [75, 112]. CNNs have also been used to identify buildings,
roads, vegetation types, or urbanized areas [75, 112]. Bhuiyan et al. (2020)[16] developed
an automatic mapping workflow for delineating ice-wedge polygons distributed in arctic
tundra complexes in the North slope of Alaska. They incorporate a CNN-based instance
segmentation technique to detect ice-wedge polygons from sub-meter resolution commercial
satellite imagery [16].

It has been demonstrated that CNN-based techniques often outperform traditional
pixel-based methodologies in land cover classification [135, 76]. Merchant (2020)[80] com-
pared the performance of a Random Forest (RF) model to an object-based CNN technique
for detecting open water over the Peace Athabasca Delta; based on the reported results,
the CNN technique outperformed the RF model in terms of accuracy.

Numerous investigations and studies have been conducted to examine machine learning
and deep learning methods to derive wetland mapping products [21, 26, 85, 8, 6, 72, 71, 33].
Montgomery et al. (2019)[85] developed a decision-based methodology using data fusion
of multiple remote sensing data sources to classify boreal wetlands. The performance
of the proposed method was assessed by comparing the results with field measurements
and applying the methodology to other boreal environments in the Peace-Athabasca Delta.
The results demonstrate both the decision-based method and data fusion are not restricted
to a particular ecosystem or a particular geographic location and can be used to classify
different types of boreal wetlands; the availability, frequency, and skill required to analyze
the data set are the main challenges of employing this wetland classification approach.
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The Canadian Wetland Inventory is the result of a machine learning-based wetland
classification approach and the first Canada-wide remote sensing method for wetland clas-
sification over large areas [6]. The Canadian Wetland Inventory was developed by training
a RF algorithm on many field samples and Landsat-8 imagery within the Google Earth
Engine platform. The Canadian Wetland Inventory showed an overall accuracy of 71% for
categorizing wetlands. [72] generated a 10-m resolution Canadian Wetland Inventory by
training a RF classifier using multi-year summer composites of Sentinel-1 and Sentinel-2
data in Google Earth Engine. The 10-m resolution Canadian Wetland Inventory showed
an overall accuracy of 80%, outperforming the Canadian Wetland Inventory produced by
[6].

Further research is required to increase the Canadian Wetland Inventory’s accuracy
for classifying wetland areas due to potential field data inaccuracies and the complexity
of the wetland landscapes, which demands high-resolution imagery [6, 72]. Using high
spatial resolution remotely sensed data for wetland classification may result in errors due
to the blending boundaries issues between the edges of wetlands and other land covers [26].
Additionally, there has been no attempt to evaluate alternatives to RF [6, 72].

Regarding the blending boundary issues, multiple studies have compared pixel-based
classification and object-based classification (which spatially cluster pixels) methods to
find the best approach for wetland delineation [26, 15]. [15] applied pixel- and object-
based (parametric and non-parametric) algorithms on the Lake Baikal, Russia, drainage
basin using four Quickbird multi-spectral bands plus various spatial and spectral metrics.
The researchers reported that there is no statistically significant difference in the overall
accuracy of the classifiers. The pixel-based method is preferred for classifying wetland-
dominated landscapes since the object-based method requires substantial resources.

Chasmer et al. (2014)[24] presented a decision-tree classification approach for iden-
tifying the heterogeneous land cover types in a northern watershed located in the zone
of discontinuous permafrost using airborne LiDAR and high-resolution spectral data sets.
The method outperformed the past classification approaches in the same area with an
overall accuracy of 91%. This study showed that topographical derivatives were more
successful at explaining the variations in land covers compared to spectral and vegetation
structure characteristics. However, the study also reported validation accuracy between
38% and 74%, suggesting that alternate techniques may be needed to improve classification
performance.

Determining the unknown boundary of heterogeneous land covers like wetlands is often
a difficult task due to their gradual transition into another class [33], which benefits from
the deep architecture of CNN-based models. The layer-based architecture of CNN models
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makes them capable of capturing more features and natural complexities of land cover
classes such as wetlands. Pouliot et al. (2019)[99] and DeLancy et al. (2019)[33] tested the
performance of CNN-based models for the classification of wetlands over a similar region in
Alberta using different sets of training data. DeLancy et al. (2019)[33] study’s validation
and testing results revealed that the accuracy of the CNN-based model is 5% higher than
the eXtreme Gradient Boosting (XGBoost) model in wetland classification.

The CNN-based model tested by Pouliot et al. (2019)[99] reported an overall accuracy
of 69% for classifying bog, fen, marsh, swamp, and water classes using Landsat data.
Rezaee et al. (2018)[107] evaluated the performance of a pre-trained CNN-based model
in the classification of the complex wetland by comparing the outputs of the CNN model
with a RF model, the overall accuracy of the trained models showed that CNN performs
better (95% accuracy) than RF with a 16% improvement. ArcticNet is another deep
neural network-based solution for the semantic segmentation of six important land covers
distributed in permafrost regions [52]; the ArcticNet solution achieved an overall high
accuracy of 94% on the testing data. Still, the solution was not applied to other similar
areas to analyze the transferability of the ArcticNet.

Most of the developed methods for Taiga Plains wetland classification struggle with
the wetlands’ fuzzy boundaries which leads to leads to classification uncertainties within
transition zones; the results of comparing deep learning methods to non-neural network
methods reveal that the deep architecture of the CNN-based algorithm is more accurate
at delineating wetland boundaries and categorizing the wetlands. Although these CNN-
based solutions were successful in terms of classifying the wetland complexes, there are
still unresolved issues and gaps in the application of deep learning techniques for the
classification of discontinuous permafrost wetland systems in the Taiga Plains of the NWT.
These issues include determining whether CNN-based models are efficient at classifying the
wetlands in discontinuous permafrost zones and whether using RGB images can help users
with the data preparation process. Most of the developed methods are focused on more
sophisticated wetland types (marsh vs. bog vs. heterotrophic bog, etc.) rather than
the much simpler hydrologic definition. Additionally, these methods require hyperspectral
information and LIDAR as input data, which makes the data preparation procedure more
difficult.

The advantages of employing RGB images are that they are cheaper, can be acquired
from aircraft in air photo programs, and that high spatial resolution data sets, which are
usually expensive, can be easily extracted through Google Maps/Google Earth/ESRI, etc.
without costs. It is also important to note that tiling, batch size, and data augmentation
techniques are crucial parameters for the development of CNN-based models. However,
none of these parameters have been well investigated and have yet to be evaluated how
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they affect the performance of CNN-based models developed for categorizing wetlands.
Before training the model, the input data are tiled to a smaller size due to the large size
of the images[68]; Lee et al. (2022)[68] proved that the size of tiling images noticeably
affects the accuracy of the trained CNN models for non-small cell lung cancer detection.
The TWINN approach outlined here is intended to address a number of these limitations
and data gaps. Within this study, we not only apply the method to 8 different landscapes,
but we explore the effectiveness of batch size, data augmentation, and sample size (tiling)
on the accuracy of the TWINN solution.

3.3 Study Area and Data Set

This study builds upon the extensive image classification work done by Chasmer et al.
(2014, 2020) [23, 24] at the SCRS, located 50 km south of Fort Simpson in the Northwest
Territories, Canada (Figure 3.1.a). This region is characterized by extensive wetlands, with
permafrost-underlain peat plateaus interspersed with fens, collapse-scar bogs, and lakes
(Figure 3.1.c) [23, 24]. Fens are seen as wide channels comprising the drainage network
of basins, and bogs appear as patches distributed between forested plateaus sitting atop
permafrost mounds. Bogs and channel fens are crucial to the hydrological process of the
SCRS due to their different hydrological functions [106, 104]. Channel fens are one of the
primary drainage systems of this region, which convey water to the basin outlet, and bogs
are not typically able to convey water [63, 106], but may hydraulically connect during
larger snowmelt and rainfall events [30].

To assemble the training and testing data set for the TWINN solution, we initially used
the WV2 imagery of the SCRS acquired in the summer of 2010 (Figure 3.1.b). Although
the image includes a high-resolution panchromatic band and eight multi-spectral bands,
the TWINN solution is solely trained on the RGB bands of the WV2 imagery with a
spatial resolution of 1.6 m by 1.6 m to determine whether RGB images are sufficient for
classifying land cover. Using only RGB images simplifies the data preparation step, does
not require specialized knowledge to analyze and prepare the input data, and is useful when
multi-spectral data are unavailable. The training input data are derived from a classified
map developed by Chasmer et al. (2014) [24] on the same image WV2 image, with bogs
and fens grouped as one class (wetland) (Figure 3.1.c); then, the main image and classified
map were re-sampled to 1m resolution.
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Figure 3.1: The data set used for training TWINN solution: (a) the geographic location
of the SCRS in the Northwest Territories, Canada. (b) the WV2 imagery of SCRS (c)
the labeled map of the study area representing three classes of forest, wetlands, and water.
Bogs and fens are not discriminated between in this image.

3.4 Methodology

The TWINN solution proposed here consists of three independent steps:

1. Multi-label/multi-class classification using a CNN-Based semantic segmentation method
to delineate the RGB image into forest (forested regions), wetland features, and open
water.

2. Wetland identification as either bogs or fens based upon the area, perimeter, and
roundness ratio of the wetland polygons using a MLP method.
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3. Further delineation of the permafrost plateau regions into primary runoff areas (drain-
ing to fens) and secondary runoff areas (draining to bogs) using a nearest-neighbor
approach.

These steps are depicted in Figure 3.2.

Figure 3.2: The flowchart of developing TWINN solution for classification of wetlands
using RGB image.

3.4.1 Step 1: CNN-Based Semantic Segmentation

Semantic Segmentation is a category of image segmentation that clusters an image’s pixels
to determine category labels on a pixel-by-pixel basis [97, 56]. Here, we used a transfer
learning UNet architecture with pre-trained ResNet34 encoder [109, 49]. In transfer learn-
ing, the parameters of pre-trained neural network architecture are updated while using
new data.

The process sequence in UNet may be visualized as two paths resembling a U shape
(Figure 3.3), a contracting path and an expansive one. The contracting path represents an
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encoder of a typical CNN network that collects information from the image by successive
down-sampling or reduction of the grid size [109]. The encoder of UNet (the contracting
path) is composed of the following:

1. Convolutions: implement filters by applying weights with the input data set for
recognizing features in pixels and producing feature maps from images.

2. Rectified linear unit activation function: uses a max() function to replace any negative
values of feature maps with 0.

3. 2x2 max pooling operation: compresses the features by calculating the maximum
value of each subsection of an image received from convolution [5].

The expansive path on the right of the U shape functions as the decoder of the model and
successively increases the grid size to generate an image of the same or greater size and
resolution as the original input using up-sampling[109].

In the expansive path of the CNN model, the final layers comprise a global average
pooling layer and a fully connected layer, which are added subsequent to the last convo-
lutional layer. After passing the input image through the convolutional layers, the global
average pooling layer reduces the spatial dimensions of the feature maps to a single value
per feature map representing the average value of each feature map. This produces a vec-
tor of feature values that are then passed through the fully connected layer. The fully
connected layer converts the feature values into probabilities by applying the softmax ac-
tivation function to the vector. The resulting probabilities represent the likelihood of the
input image belonging to each class in the dataset. The class with the highest probability
is selected as the predicted output. In other words, the softmax activation function in the
fully connected layer produces the final class probabilities for the input image.

The application of deep networks in image segmentation problems might shrink the
gradient of the loss function to zero, slow the training pace, and decrease the model’s
accuracy. To solve the vanishing gradient problem during the training of the image seg-
mentation model, we used a residual network with 34 layers called ResNet-34 (Figure
3.2). ResNet was trained on the ImageNet data set, which includes millions of labeled
high-resolution images. The architecture of ResNet-34 is made up of residual blocks with
skip connections which address the degradation problem [49, 137]. A residual block uses
skip-connection to add the outputs from a layer to the next layer deeper in the block.

The ResNet segmentation model has multiple hyperparameters which can influence
classification skills. As part of the training process, we evaluated the use of two different

31



Figure 3.3: The architecture of ResNet34 used for semantic segmentation of the RGB
image to a classified image consisting of permafrost plateau/wetland/lake.

batch sizes: 16 and 32. Batch size refers to the number of samples from the available
training data set processed before updating the model’s weights and parameters. Training
such deep architectures from scratch is time consuming and expensive for computer vision
projects, so we used a transfer learning technique from the fast.ai deep learning library
to implement the semantic segmentation model; fast.ai simplifies the process of training
model by providing neural network API [51].

In this study, the image was split into 2860 tiles of 128x 128 pixels. 80% randomly
selected tiles were used for training of the CNN, 15% for validation, and 5% for independent
testing.

Additionally, a data augmentation method was utilized to boost the quantity and diver-
sity of the input data and evaluate its impact on the model’s performance. This approach
has been successfully employed in computer vision for training classification models by
generating synthetic images from the original data through various transformations such
as flipping, cropping, rotation, and contrast and brightness adjustments. In the case of
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land cover classification, data augmentation can enable the model to learn to detect fea-
tures under distinct environmental circumstances, such as different weather conditions and
times of day, enhancing its ability to generalize to unseen data and avoiding overfitting.

The input to the network is normalized RGB images with the size of 128 pixels x 128
pixels x 3 RGB color bands, and the output is a segmentation map represented as 128 ×
128 matrices; the model first predicts pixel-wise probabilities for each class, and the class
that has the highest probability is portrayed on the classified map as the final result. The
model is trained with 1000 epochs (the number of times the CNN model iterates over the
entire training set of data) using the Adam optimization algorithm [58]. Adam combines
Root Mean Squared Propagation and stochastic gradient descent with momentum to scale
the learning rate by squared gradients (like Root Mean Squared Propagation) and take
advantage of the momentum by using the moving average of the gradient (like stochastic
gradient descent with momentum).

To assess the classification’s performance, we employ cross-entropy loss. For multiclass
classification, the cross-entropy loss is calculated for each predicted and observed label and
summed over all pixels in an image:

L = −
128×128∑

n=1

3∑
i=1

gin log pin (3.1)

where i represents each class (wetlands, water, and forest), n is the set of pixels in an
image (the predicted and observed labels are images of 128x128x1), pin is the predicted
probability of pixel n belonging to label i, and gin is equal to one if the label in pixel n is
the same category as the observation, zero otherwise.

The test data set (%5 of input data) is used to evaluate the model; we used four
metrics commonly used for segmentation tasks to compare the performance of all the
trained models, including cross-entropy loss in the training and validation steps, accuracy,
and Intersection over Union (IoU). IoU ranges from 0 to 1, and, for each label, it calculates
the number of overlapping pixels between the observed labels and the predicted labels
divided by the total number of pixels existing in both observed and predicted labels:

IoUi =
|Ai

⋂
Bi|

|Ai

⋃
Bi|

(3.2)

where Ai is the set of pixels predicted by CNN for label i and Bi is the set of pixels observed
to be in label i. Lastly, the accuracy of models in classifying each land cover class will be
described using a confusion matrix, which reports the percentage of misclassification for
each class during validation.

33



3.4.2 Step 2: MLP Wetland Categorization

The semantic segmentation model trained in the previous step labels the pixels as one of
three classes: wetlands, water, and forest. Discriminating between fens and bogs in an
RGB image is historically a challenging part of wetland classification in the Taiga Plains
because fens and bogs share similar characteristics at the thawing edges of the forest
which can lead to many misclassifications. Here, however, we are aided by the hydrological
distinction between the two feature types: fens are wide and long channels located along
the drainage network of basins, and bogs are isolated patches surrounded by peat plateau
[106, 104, 26]. The geometric differences between fens and bogs helped us to solve the
wetland identification problem by using area, perimeter, and roundness ratio instead of
pixel-based classification.

The TWINN solution categorizes the wetlands into fens and bogs based on these ge-
ometric metrics using a MLP model. MLP is an artificial neural network including three
types of layers with non-linearly activating nodes, typically referred to as the input layer,
hidden layers, and output layer [140].

In a neural network, each layer is connected to the previous and next layers, and adding
more hidden layers increases the complexity of the task. Here, the input layer of the MLP
model is a vector of data that includes the model’s features (geometrical features of bogs
and fens) and distributes input data values to the following layers for further processing.
The hidden layer consists of neurons that perform computations on the input data and
send the results to the next layer. The final hidden layer passes the output to the output
layer, which applies a sigmoid activation function to generate the final binary classification
prediction. The sigmoid function maps the output to a value between 0 and 1, where
values closer to 0 indicate a prediction for the negative class (fen), and values closer to 1
indicate a prediction for the positive class (bog). The output layer is the model’s classes
or output in vector format. During training, the weights are adjusted by using the Adam
optimization method to reduce the error in the prediction of the model, which helps in
improving the accuracy of the model’s predictions.

The MLP model used in this study comprises four fully-connected layers with a 0.5
dropout implemented on the fully-connected layer, as depicted in Figure 3.4. The dropout
technique with a rate of 0.5 is implemented on the final fully-connected layer (Figure
3.4). The dropout layer randomly omits a fraction of input data or nodes during training,
and this serves as a regularization method that aids in addressing the overfitting issue
in artificial neural networks. By randomly dropping some of the input data, the model
is forced to learn more robust and generalizable features, improving its performance on
unseen data. The implementation of dropout on the fully-connected layer of the MLP
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model contributes to a more effective and accurate classification model for the given task.

Here, the input layer is a vector of three values representing perimeter, roundness ratio,
and area of each wetland polygon. To generate the input data set for the MLP model,
the wetlands in the initial data set are extracted from the labeled image and polygonized
in ArcGIS Pro (2.9.0) (Figure 3.1.b). Then, area, perimeter, and roundness ratio are
calculated for each polygon and added to the attribute table. Finally, the vector file of
the polygons is converted to a raster, and each pixel in the raster contains labels and the
calculated geometric features. The data set is split into three sets 70% train, 20% test,
and 10% validation.

The accuracy of the MLP model in categorizing isolated and connected wetlands will be
analyzed by the confusion matrix using the validation data, which calculates the percentage
of misclassified fens and bogs. It should be noted that the trained model may be biased
toward the majority class predictions (in this case, fen) due to the unequal distribution
of bogs and fens in the study area. To address this issue, an upsampling class balancing
technique is used, which generates synthetic data from the bog and adds them to the
original data set [13].

Figure 3.4: The architecture of MLP model used for categorizing wetlands.
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3.4.3 Step 3: Delineate Runoff Area

Identifying the runoff area of isolated (secondary) and connected (primary) wetlands is nec-
essary to comprehend the consequences of land cover changes on discontinuous permafrost
zones of the NWT. Discretizing the primary and secondary contributing areas helps to un-
derstand how isolated bogs connect over time and how the conversion from isolated bogs
to connected bogs alters the hydrological function of the watershed. The classified maps
of bogs and fens generated by TWINN solution can be incorporated to define primary
and secondary contributing areas and landscape units to investigate the effects of land
cover change on the hydrological response of any discontinuous permafrost zones. The
contributing area of bogs and fens will be delineated by leveraging the Watershed function
from the OpenCV library. This method has been previously applied to image segmentation,
particularly for extracting touching or overlapping components in RGB images.

This method uses a map of wetlands and non-wetlands to delineate contributing areas.
The first step of watershed delineation is generating the Euclidean distance map of the
wetland features (Figure 3.5.b). This distance map plays the role of a synthetic topographic
surface (Figure 3.5.b), because the actual topographic surface is very flat and difficult to
characterize without high resolution Lidar data. It shows the distance from each wetland
pixel to the nearest non-wetland pixels, with the farthest pixels being peaks and the nearest
pixels being valleys. The minima of the Euclidean distance field is used to find the markers
(in red Figure 3.5.c) which are used as pour points in the watershed algorithm. The
watershed algorithm then can estimate the local contributing area to each wetland, which
is equivalent to a nearest neighbor region for each wetland polygon.

3.4.4 Evaluating Transferability of the TWINN Solution

To measure the generalization of the TWINN solution to similar regions in the Taiga
Plains (Figure 3.6), we applied the method to WV2 imagery of 8 areas of interests (AoIs)
[102] which represent peatland complexes. The selected AoIs are located in the extensive-
discontinuous and sporadic-discontinuous zones of the NWT and northeastern British
Columbia.

Snapshots were separated from the RGB WV2 imagery of each AoI and manually
classified and digitized in ArcGIS Pro (2.9.0). These 800x800 pixel snapshots of the AoIs
are divided into tiles of 128x128 (the same size as the training data), 256x256(larger than
the training data), and 64x64(smaller than the training data) in order to evaluate the
method’s sensitivity to the input size.
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Figure 3.5: The process of image segmentation using Watershed function from OpenCV
library : (a) binary image. (b) delineated nearest neighbor polygons.(c) the delineated
markers.

3.5 Results

In this section, we report the results of applying the TWINN solution to a range of input
images. First, we present the accuracy of trained semantic segmentation and MLP models
evaluated by the test data set. Next, we apply the TWINN solution to other case studies to
quantify the performance of the TWINN solution for the general classification of wetlands
in the Taiga Plains.

3.5.1 Semantic Segmentation: Performance on the Test data set

We initially trained four models (Model1-Model4) on 80% of the classified images to inves-
tigate the importance of data augmentation and batch size on the accuracy of classification
of wetlands from RGB images (Figure 3.7). Figure 3.7 visually compares a subset of the
outputs of each model to the target test data set. The visual representation of these models
is in most cases a visually accurate reconstruction of its target image (Figure 3.7). The
reported performance metrics in Table 3.1 confirm that the model trained on augmented
data set and with batch size 16 outperforms other trained models in terms of both the
classification accuracy and processing time (Tab.3.1). Another metric used to assess the
high accuracy of model2 is IoU; the calculated IoU for Model2 is higher than all the trained
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Figure 3.6: Geographical setting of the selected areas of interests for analyzing the per-
formance of final TWINN Solution which represents discontinuous permafrost zones dis-
tributed in NWT: (a) Location of all the selected areas of interests. (b) WV2 imagery
from each area of interest [102].

models, which is close to 0.9 (a value of one implies perfect classification, with zero being
the worst performance) (Tab.3.1).

Figure 3.8 shows the confusion matrix of the best trained model, and the diagonal
values of the matrix indicate that over 95% of pixels are classified correctly, with 100%
accuracy for wetland pixels.

3.5.2 Semantic Segmentation: Performance on other Case Stud-
ies

The best semantic segmentation model (Model2) is here evaluated in more detail. We
separated a 800x800 image from the RGB bands of each AoI’s WV2 imagery and then
manually classified each image in ArcGIS. This manual imagery (in the rightmost column
of Figure 3.9 was used to test the wetland/forest classification skill of Model2. Moreover,
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Figure 3.7: The predicted labels by each model to the target labels of the same image
in the test data set : (a) Model1, with batch size of 16 and no data augmentation. (b)
Model2, with batch size of 16 and data augmentation. (c) Model3, with batch size of 32
and no data augmentation. (d) Model4, with batch size of 32 and data augmentation.

the effects of image size on the accuracy of the model are determined by running the model
on three different image tiles: 128x128 (same as the input size for the training semantic
segmentation model), 256x256 (higher than the input data set), and 64x64 (lower than the
input data set) (Figure 3.9). Note that the resolution was maintained at the resolution
of the original data set; only the input image size was varied. The 800x800 snapshots are
split into tiles of three different sizes; then, the model is applied to each tile to segment
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Table 3.1: Accuracy metrics of all the semantic segmentation models trained on the input
data set and evaluated by the test data set. Model1: batch size16 and no data augmen-
tation, Model2: batch size 16 and data augmentation, Model3: batch size 32 and no data
augmentation, Model4: batch size 32 and data augmentation.

Features Model1 Model2 Model3 Model4

Batch Size 16 16 32 32
Data Augmentation X ✓ X ✓
Average Accuracy 91.2 97.8 89.4 94.3

IoU 0.65 0.89 0.59 0.77
Validation Loss 0.24 0.06 0.27 0.14

the RGB image, and all the images are merged to compare the final output of the model
to the manually labeled images (Figure 3.9). The rows in Figure 3.9 illustrate the model
output for different image sizes, and each column includes the images for separate AoI
(A-H). Comparing the central three columns of the Figure 3.9 indicates that the model’s
performance model is noticeably affected by the size of the image since there are many
misclassifications of the model when the 800x800 image is split into tiles of 256x256, which
is higher than the size of tiles in input data set.

Figure 3.10 provides quantitative details of these classification results for only the 64x64
and 128x128 image sizes in the form of a confusion matrix. The rows of the figure report
the estimated true and false positive for each AoI when the 800x800 snapshot is divided
into tiles of 64x64 (Figure 3.10.a) and 128x128 (Figure 3.10.b) (same size as an input data
set). The columns of both figures correspond to the predicted label of each class (True
label-predicted labels). Each cell displays the percentage of a specific true label existing
in each 800x800 snapshot is predicted as the true label (true) or predicted as other classes
(false); for instance, the value of a cell on column 6 and row 3 of Figure 3.10. a confirms
that 0.06 of the water in the 800x800 snapshot of AoI (C) is incorrectly labeled as wetlands.
Figure 3.10 showcases that the model’s overall performance is influenced by the size of the
image, comparing the first three columns of Figure 3.10.a to the first three columns of
Figure 3.10.b indicates that the accuracy of the model applied on 128x128 tiles is higher
than the set of 64x64. The last row of Figure 3.10 summarizes the average true positives
(first three columns) and false positives of all the AoIs; It is clear that the most common
misclassification is the classification of wetlands as forests, with an average misclassification
rate of 19% for all the 128x128 images. The major source of these misclassifications could
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Figure 3.8: Confusion matrix of Model2 evaluated by test data set.

be the fuzzy boundary between wetland and forest that is in transition, this can be seen
naturally between the margins of wetlands and peatlands; another limitation is that the
target labels may contain inaccuracies. According to our results, the semantic segmentation
method is superior to previous methods for segmenting land covers in permafrost zones
because the method achieved the greatest reported accuracy when applied to other areas.

Figure 3.11 includes the original RGB imagery and the classified maps of all 8 AoIs.
The classified map of AoI (B) suggests that the performance of the TWINN solution is
noticeably affected by cloud covers (highlighted in red), and there are misclassifications
(mostly labeled as water) in regions where images are covered by cloud. Forest fires have
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Figure 3.9: Results of semantic segmentation model on 800x800 snapshots from each area
of interest; rows represent the image, and classified labels of each area of interest, and
columns illustrate the performance of the model when the 800x800 snapshot is divided
into different sizes
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Figure 3.10: Summary of the Confusion Matrices generated for 800x800 snapshots of images
(the normalized percentage of predicted classes divided by the total number of the true
label) (Figure 3.5): (a) the 800x800 snapshot is divided to tiles of 128x128. (b) the 800x800
snapshot is divided into tiles of 64x64.
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occurred in some of the NWT’s discontinuous permafrost zones, and some of the AoIs are
directly affected by them. The training procedure of TWINN was assessed for wetlands,
waters, and forests except for forest fire. The TWINN solution cannot detect this type of
land since the training data set does not include labels for forest fire since forest fire was
not yet occurring in our case study at the time of the WV2 acquisition.

3.5.3 MLP Performance

Figure 3.12 presents the accuracy metrics used for the MLP model to evaluate its perfor-
mance on the test data; the confusion matrix proves the high accuracy of the trained MLP
model for categorizing fen and bogs based on their geometry. Figure 3.12 illustrates the
spatial distribution of the predicted bogs which compares them to the labeled image to
show some of the misclassified bogs generated by the MLP model (Figure 3.12.b).

The performance of the MLP model for categorizing wetlands as fens or bogs is evalu-
ated by applying the model on AoI (B) from the selected AoIs, which shows a decrease in
the accuracy of the model for identifying bogs (Figure 3.13) on this independent testing
data set.

3.5.4 Watershed: Delineating the Contributing Area

Figure 3.14 illustrates the output of the developed Watershed() function using OpenCV
library. The outputs of the TWINN solution are converted to a binary image(Figure 3.14);
the value of one is assigned to wetlands, and the value of 0 is assigned to other land covers
(Figure 3.14.a). The function incorporates the Distance Transformation function from
OpenCV to generate the euclidean distance from the boundaries of wetlands to forest (the
topographic maps) which is used as input in the final step (Figure 3.14.b). Figure 3.14.c
shows the delineated runoff area of a snapshot of the Scotty creek basin.

3.6 Discussion

This study introduces a novel solution intended to classify readily available, often inexpen-
sive, and multi-platform RGB imagery which simplifies and accelerates the processing steps
for the classification of images. TWINN solution enables the classification of open water,
fens, bogs, and forests in discontinuous permafrost landscapes, and the further delineation
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Figure 3.11: The original WV2 RGB images of the selected areas of interest and their
segmented map generated by the semantic segmentation model
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Figure 3.12: The results of the MLP model: (a) confusion matrix of MLP model evaluated
on the test data set. (b) map of categorized bogs.

of runoff contributing areas for these features with minimal data requirements. Figure
3.15 briefly displays the automatic Taiga Plains wetland identification process using the
devised TWINN solution. The final output of the model is a raster file delineating water,
fen, bogs, and forest and a shape file including a polygon of the existing bogs and fens and
the calculated contributing area for each polygon (Figure 3.15).

We found that the trained semantic segmentation model on step 1 was 97% accurate in
identifying water, forests, and wetlands, and the trained MLP model was 98% accurate in
detecting isolated bogs from other types of wetlands. The results of these evaluations con-
firm that deep learning methods are highly efficient in classifying RGB images of complex
wetland areas. We also examined the effects of batch size and data augmentation on the
semantic segmentation model’s performance. It was concluded that the data-augmented
models gave clearly better results than the models trained without data augmentation, and
the data-augmented model with a batch size of 16 showed the best performance.

This best segmentation model was evaluated on 8 study sites in the extensive-discontinuous
and sporadic-discontinuous zones of the NWT and northeastern British Columbia to eval-
uate the model’s applicability to other discontinuous permafrost zones distributed in the
NWT of Canada, which were outside the training data set.
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Figure 3.13: The results of MLP model: (a) confusion matrix of MLP model evaluated on
the independent validation data set of AoI (B). (b) map of categorized bogs for AoI (B).

Despite only using RGB imagery, the segmentation model showed a good performance
in identifying wetlands, forests, and water of other AoIs. However, the methodology was
challenged by the presence of cloud cover, fuzzy or transitional boundaries, forest fire
burn scars, and other features not present in the training imagery. Confusion in the
classification methodology occurs at the transitional boundaries between wetlands and
permafrost plateaus. These are areas that undergo cumulative seasonal and land cover
change, and therefore have the ecological and hydrological characteristics of both peatlands
and permafrost plateaus [105, 12, 22]; these boundaries are not discrete, rather they are
’fuzzy’ boundaries, also noted in wetland hydro-ecology and remote sensing literature [36,
91]. In addition, TWINN suffers from a limitation that can only be applied to high-
resolution imagery and has not been tested on data with coarser resolutions.

3.7 Conclusion

Here, we applied a semantic segmentation neural network model, a MLP, and a watershed
algorithm to classify Taiga Plains wetlands of discontinuous permafrost zones and delineate
their contributing runoff areas. The TWINN solution employed in this study generates
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Figure 3.14: The output of Watershed function for delineating the contributing area of
categorized bogs and fens: (a) binary image of the study area. (b) generated runoff area
for each fen and bog.

classified maps that discriminate between isolated wetlands (bogs), connected wetlands
(fens and connected bogs), and forested areas.

TWINN facilitates the application of CNN-Based techniques for wetland mapping by
using only RGB images and can be used to delineate the runoff area of bogs and fens
for hydrological purposes. This novel approach enables the incorporation of high spatial
resolution images with limited spectral information (e.g., the NASA Arctic-Boreal Vulner-
ability Experiment or historical RGB aerial photography) within a framework for wetland
classification. Accurate classification of land covers using inexpensive RGB imagery also
provides an opportunity to use multi-temporal data to quantify wetland change over time,
which largely includes photogrammetric/manual methods with single/few temporal images
[129] or lower spatial/high temporal imagery [141].

Our results showed these techniques may be useful for the long-term evaluation of the
thaw-induced land cover change due to climate change and for evaluating the hydrologic
impacts of such change. Quantification of wetland areas and transitional zones (which
may be impacted by cumulative climate-mediated and other disturbance factors) and the

48



Figure 3.15: The process of hydrological wetland identification using TWINN: (a) The
input image of TWINN solution (WV3 imagery of SCRS in 2017). (b) the first output of
TWINN solution is a raster file presenting segmented water, forest, and wetlands. (c) the
second output of TWINN solution is a raster file and a shape file, including bogs and fens.
(d) the final output of TWINN solution is a raster file and a shape file, including wetlands
primary and secondary runoff area.

potential to apply this method to other similar high-resolution imagery in the past/future is
critically important, especially in northern environments that are undergoing rapid change.
Such methods may also be used to inform local communities of changes and hazards using
data sets that may require different platforms or sources [44].

This study presented a novel and useful approach for discretizing the runoff area of
wetlands in lowland discontinuous permafrost zones, which has the potential to facilitate
hydrological and ecological assessments in areas where digital elevation models do not
provide sufficient information for runoff area delineation. However, it should be noted that
the method assumes that the flow divides between the local contributing area of wetlands
are equidistant to these adjacent wetlands. In reality, these flow divides are functions of
complex local topography and, in some cases, subsurface permafrost topography. Such a
simplification is necessary for regions where detailed topographic information is unavailable,
and is likely to provide reasonable regional estimates of primary/secondary area cover, but
will typically not be locally valid.
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In general, the TWINN solution showed promising results for wetland mapping and
hydrological assessments in northern environments, but the solution still has limitations
that need to be addressed to improve its accuracy and applicability. The sensitivity of the
TWINN solution to cloud cover, forest fire, and other land types not present in the training
data increases the number of misclassifications in the final outputs of the model. Future
research should focus on incorporating methods that can address these limitations, such as
boosting the input data of the model from other data sources or refining the segmentation
algorithm.

Additionally, the challenge of accurately classifying transitional boundaries between
wetlands and permafrost plateaus is another concern that can lead to the inaccurate dis-
cretization of runoff areas. Exploring new approaches that can better handle these types
of boundaries, such as designing new algorithms that can better capture the complexity of
these transitions, may help to improve the accuracy of the TWINN solution.

Future research can be used examine the utility of this method applied to variable
spatial resolution data to assess transferability and classification accuracy across scales. For
instance, one could incorporate the CNN-Based approach for the classification of wetlands,
water, and forest utilizing RGB bands of freely available satellite imagery, such as Landsat,
Sentinel-2, CubeSats, and aerial photography. To improve the performance of ResNet34,
we should consider optimizing hyper-parameters based on the architecture of the model
used in this study . Addressing these limitations will be crucial for the development of
more accurate and reliable techniques for wetland mapping and hydrological assessment in
northern environments.
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Chapter 4

Simulating thaw-induced land cover
change in discontinuous permafrost
landscapes
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4.1 Introduction

The gradual thawing of discontinuous permafrost in the Northern Hemisphere has led to
dramatic hydrological and ecological changes to wetland-dominated terrains, including an
increase in baseflow [46], increases in runoff due to changes in hydraulic connectivity [30],
alteration of lake drainage [96], and drastic changes in the land cover as permafrost alters
the topography and water storage on the landscape [20]. This evolution has hydrological
and ecological impacts, but will also impact the carbon and energy balance at the land
surface, likely leading to further warming at both local and regional scales [111, 9]. Because
of the important role of this evolving land cover, it is desirable to be able to simulate its
long-term trajectory.

Wetland landscapes in the Taiga plains are generally rather heterogeneous, with variable
forest and shrub cover, treed and untreed bogs, with minor elevation differences contribut-
ing to spatial variation in the water table, vegetation cover, and trophic status. While
each of these criteria could be used to determine unique land cover classes, the initial focus
of this research is predominantly on the hydrologic impacts of land cover evolution, and
therefore we focus solely on the transitions between three hydrologically relevant land cover
types (fen, bog, and permafrost plateaus) as done in [23]. Note that these terms do not
strictly follow classic ecological definitions of fens and bogs; rather we use the terminology
of [103, 31], whereby bogs are typically isolated vegetated water bodies with seasonal hy-
draulic connections, fens are the primary conveyance feature moving water downstream to
the basin outlet, and permafrost plateaus are drier elevated landscape features (sometimes
referred to as ’runoff generators’ [106]) that drain to bogs and fens, but also impound
water in bogs. As the permafrost melts beneath the plateaus, the edges of the plateaus get
assimilated into the adjacent bogs or fens [94, 105]. Elimination of permafrost plateaus
from between a channel fen or a chain of isolated bogs increases the runoff contributing
area [130], leads to the transition of bogs to fen (termed ’bog capture’) [30], influences the
wetting-drying cycles of the ground, and changes the primary runoff characteristics of the
landscape.

Because of the large spatial extent (>100 km2) of wetland complexes and the com-
plexity of the three-dimensional energy and water balance that determines local thaw and
erosion patterns, it is likely infeasible to simulate long-term permafrost plateaus shrinkage
using physically-based models. While there are a number of numerical models that sup-
port the simulation of local lateral permafrost thaw [63, 10], they have intensive data and
computational requirements, which is why most earth systems models only simulate 1-D
vertical permafrost freeze/thaw, known to be a secondary mechanism in plateau degrada-
tion [35]. However, both hydrological models and regional climate models will benefit from
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reasonable long-term estimates of evolving land cover, as land cover influences not only
runoff and net evapotranspiration but also net greenhouse gas production. We here focus
on generating such estimates using machine learning methods trained on detailed histori-
cal observations of land cover at the SCRS in the Northwest Territories, Canada. Similar
empirically-informed land cover models (LCMs) have been applied to simulate land use and
land cover change [11, 122, 110, 113, 118] impacted by socioeconomic and environmental
factors. Such methods have not yet been deployed for the simulation of natural land cover
change due to permafrost thaw. It is hoped that such a model may both provide useful
projections of long-term climate-induced land cover change but also potentially provide
insight into the driving factors behind this change.

The primary goal of this research is to develop and test a TSLCM to simulate continuous
land cover evolution induced by permafrost thaw and apply the TSLCM to predict land
cover scenarios at SCRS from today to the future. We assess two distinct approaches:
ensemble learning and logistic regression techniques, to determine which method is most
robust in being able to replicate historical land cover observations without over-fitting over
time. We apply a novel ’boosting’ strategy based upon the ensemble learning approaches
to make the most of our limited historical imagery (1970-2008) over a much longer future
time period (2020-2120). The newly introduced means in which we use cumulative variables
(time and accumulated land surface temperature) will be shown to be effective as compared
to standard approaches which are mainly focused on incorporating spatial variables and
the available data set (not boosting the data nor using scalar temporal input variables)
[113, 11, 41].

4.2 Material

4.2.1 Case Study

The study area is the SCRS (61.3◦N, 121.3◦W), 50 km south of Fort Simpson in the North-
west Territories, Canada (Figure 4.1.a). It is located south of the McKenzie River in a
wetland-dominated discontinuous permafrost zone. The landscape of the study region is
composed of permafrost plateaus, fens, and patches of flat collapse scar bogs [23] (hence-
forth, bogs). The primary drainage system of the SCRS includes channel fens, open stream
channels, and intervening lakes (Figure 4.1.b). The site has been the focus of continuous
research into cold regions hydrology and ecology for more than 20 years [103], and benefits
from the availability of classified land cover imagery over a period of 38 years from 1970
to 2008 [23, 105].
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4.2.2 Data Acquisition and Processing

The TSLCM is designed to estimate land cover evolution from an initial land cover state
over a specified time interval. It is both trained and validated against observed final land
cover states over the same time interval. The key data requirement is classified imagery of a
site (discriminating between the key land cover types of bog, fen, and permafrost plateaus).
Four classified maps of SCRS were acquired for the years 1970 (1.1 m resolution), 1977
(0.53 m resolution), 2000 (4 m resolution), and 2008 (0.18 m resolution) using historical
aerial photography, satellite imagery, and digital imagery to classify the main three land
cover types for each year [23, 105]. The classified data was derived by spatial analysis of
the remote sensing imagery of a 1 km2 area of Scotty Creek [23]. All data were re-sampled
to a spatial resolution of 3 m for consistency (Figure 4.1.d). [23] noted there are potential
errors in edge delineation and feature detection using historical imagery and these errors
lead to some misclassifications, which will influence our analysis. In Figure 4.1.c, the
bulk evolution of land cover can be discerned, with permafrost plateaus generally thawing,
laterally shrinking, and being converted to bog and fen.

The initial raster land cover maps are needed both to characterize the initial classifi-
cation and to generate spatial metrics that are correlated with permafrost thaw for use
as input variables to the machine learning model. These metrics are similarly calculated
at a resolution of 3m. Because thaw occurs from the edge of each plateau inward, over a
given time period areas near the interface between a plateau and bog/fen cover are more
likely to transition between land cover classes than areas far from this interface. Thus,
we chose the Euclidean distance of each land cover to other land interfaces as three of the
spatially distributed input variables. This distance was calculated using the Euclidean dis-
tance tool in ArcMap(10.7) (Figure 4.2). Complicating the use of this simple metric alone
is the occurrence of ’bog capture’ [30]. Bog capture refers to the instantaneous hydraulic
connection of an entire bog to the fen network once the impounding plateau between a
bog and fen is lost, which often results in drainage of the bog or equilibrium of the water
level between the two. With consideration of bog capture, locations within the same bog
both near and far from a thin impounding plateau feature have near equal susceptibility
to land cover change over a given time step. This is here handled by calculating (again,
in ArcMap) a cost distance for each bog’s and permafrost plateau’s pixel to fen interfaces
where the ’travel cost’ is 1.0 within permafrost plateaus and 0.0 within bogs (Figure 4.2.d).
This cost distance may be physically interpreted as the smallest width of the plateau that
needs to thaw before a bog pixel is converted to fen.

Another known critical control on plateau thaw is the availability of melt energy. While
the distribution of energy available for thaw can be quite complicated at the local scale and
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Figure 4.1: Location of the SCRS and the land cover maps; (a) Location of the SCRS in
the NWT, (b) Imagery collected in 2010 and outline of the three dominant land covers, (c)
Area covered by each land cover during each time step in initial data, (d) Classified map
of the SCRS (1970, 1977,2000, 2008) ([23]).
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Figure 4.2: Geometric independent variables used for training the TSLCM: (a) Euclidean
distance to permafrost plateaus, (b) Euclidean distance to bog, (c)Euclidean distance to
fen, (d) Cost distance to fen.
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is a function of air temperatures, water flow, incoming radiation, and advection [133, 34],
we here solely consider the available data set of land surface temperature (LST) from the all
the available series of Landsat Surface Reflectance, collection1 product. First, we filtered
images with a threshold of less than 30% cloud cover; then, a cloud mask function based on
the Quality Assessment (QA) band and an emissivity method algorithm are implemented
in the Google Earth Engine to retrieve LST [66]. The LST values in this work are based on
the Landsat Collection 1 Tier 1 data and all the available Landsat bands were resampled
to a 30 m spatial resolution using the bicubic method in Google Earth Engine. The final
results were verified by comparing the LST values against the temperature data measured
using HOBO Shallow thermistors located at the edge of the fen (61.3083◦N, -121.3083◦W)
collected by Elise Devoie. It should be noted that most of the derived images from Landsat
are concentrated in the summer season since images with a high level of cloud cover are
removed from the image collection. The summertime LST anomaly is estimated for each
year, where anomaly refers to the difference between the mean domain LST and the local
pixel LST. This indicates where locally warmer and cooler locations are while removing
the impacts of inter-annual fluctuations in temperature. The calculated summertime LST
anomaly does not show a noticeable inter-annual change, so we used the average value of
all the available LST anomalies from 1970 to 2021.

The daily accumulated air temperature (i.e., the temperature time series integrated
over time) is calculated by using historical climate data collected at nearby Fort Simpson
(61.45◦N, 121.14 ◦W) by Environment and Climate Change Canada. Note that time step
and air accumulated temperature (which are spatially uniform) is the only time-dependent
variables selected for use as input to the machine learning models.

It is recognized that other remotely sensed landscape properties such as soil moisture,
Normalized Difference Water Index, Normalized Difference Vegetation Index, and elevation
could potentially be used to inform the machine learning model developed here and may
be considered in future studies. Here, we attempt to develop the model given the chosen
inputs without examining the potential gains in performance by adding additional data
sets.

Generating a data set for training the TSLCM requires a stack of raster data layers
for each time increment. The vector of time increments corresponds to the set of pairwise
time differences between observed imagery. In this case, the set of 4 observed images
(1970,1977,2000, and 2008) yields 6 time increments (7, 8, 23, 30, 31, and 38 years), plus
one zero-year duration training increment. Each stack includes a) a land cover change
map and the initial land cover classification map, b) a set of geometric metrics and spatial
attributes at the start of the time increment, and c) time-integrated information. Each
pixel of the change map represents one of the nine possible combinations of starting and
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ending land cover classification, which is denoted by a combination of the abbreviations
for each land cover type. For instance, P −→ P indicates that the pixel was classified as
plateau at both the start and end of the time increment, while P −→ B indicates that
the pixel was classified as plateau at the start of the time increment and bog at the end.
Similarly, B −→ F indicates that the pixel was classified as bog at the start of the time
increment and fen at the end. The abbreviations P, B, and F represent plateau, bog, and
fen, respectively. The geometric characteristics include Euclidean distance to the nearest
fen, Euclidean distance to the nearest bog, Euclidean distance to the nearest permafrost
plateaus, and cost distance to the nearest fen. All of these characteristics were calculated
only for the starting year of the time increment, acting as ’initial conditions’ for a forecast.
Lastly, the time increment (in years) and mean air accumulated temperature over the time
increment were included as spatially uniform variables. All stacks were transformed into
a single data frame, where each row represents a pixel and each column of the data frame
represents a variable.

The SCRS is covered by permafrost plateaus, fens, and bogs and the classified imagery
of this region does not contain a uniform distribution of the three main classes. Using class-
imbalanced data is a common challenge in machine learning modeling potentially leading
to poor results and inclining the trained model toward the majority class [135, 52]. We
used the upsampling class balancing technique to deal with unequal proportions of land
cover in the observational data set. The upsampling technique synthetically creates data
from the minority class (here, bog) and adds them to the original data set [13].

4.3 Modelling

Figure 4.3 illustrates an overview of the TSLCM implementation. The TSLCM method-
ology consists of two stages: (1) application of an ensemble learning (EL) or a Log-Linear
Regression classification technique in order to generate synthetic data consistent with his-
torical observations of land cover change (the ’boosting’ stage), intended to overcome the
data limitation problem; (2) fitting a machine learning-based classification model on the
boosted data set to estimate land cover change over a fixed time step given any initial
condition (the ’simulation’ stage). At both stages, we will here identify a preferred (or
’best’) option for which classification algorithm (ensemble learning or regression) should
be used.

To avoid over-fitting in both stages, we shuffled the data set and randomly allocated
80% of the original data set as a training set to fit the model and the remaining 20% was
used for evaluating the final model. All the implemented classification algorithms used on
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the training data set are evaluated by a triply repeated k-fold cross-validation using the
’caret’ package in R [61, 60]. The repeated cross-validation method divides the training
data into k =10 folds and repeats the process of evaluation three times; after identifying
the best model in hyper-parameter tuning, the performance of the final model will be
analyzed on the test data set.

ensemble learning and logistic regression have been applied for land use and land cover
change predictions [89, 18, 118]; the performance of these techniques is sensitive to the
type of input variables (continuous, discrete, and categorical), and size of the input data.
Moreover, each technique owns specific limitations. For example, despite the fast and
efficient performance of EL methods in solving classification problems, one of the major
limitations of using these techniques is that tree-based methods don’t always perform well
in forecasting a trend over time. There is no clear indication in the literature as to which
technique is most likely to produce the best results for spatio-temporal modeling of land
cover evolution happening in discontinuous permafrost regions. To address this knowledge
gap, we compared the predictive performance of two ensemble learning techniques and
logistic regression in modeling land cover change for permafrost-covered regions.

4.3.1 Ensemble Learning (EL) Models

Machine learning approaches have been widely used for both classification and regression
problems in landscape modelling [132, 81, 53, 100]. In this study, we examine the per-
formance of ensemble learning models such as bagging (Random Forest (RF)) and boost-
ing (eXtreme Gradient Boosting (XGBoost)) techniques for spatio-temporal modeling of
climate-driven land cover change using the ’caret’ and ’xgboost’ package [61, 60]. ensemble
learning techniques are based upon ensembles of decision trees; each decision tree repre-
sents a flowchart of nodes (splits of the data set informed by if-else conditions) and leaves
(the final output classification). ensemble learning models select the majority class pre-
dicted by all the trees as the final output for classification problems and take an average
of all the predictions for regression problems.

RF is an ensemble machine learning model composed of a collection of parallel decision
trees that are sampled by the bagging technique [17]. The bagging technique creates an
ensemble of trees from random subsamples of the training data; each tree represents a
separate ensemble member. The output of the model is estimated by averaging the pre-
dictions of all the trees. An alternative ensemble learning method, XGBoost, implements
a boosting technique, which builds the ensemble member models sequentially. Each model
corrects the mistake from the previous model to enhance the estimator performance in
each step, then integrates the predictions sequentially.
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Figure 4.3: Process schematic of implementing TSLCM. The methodology includes two
stages: 1) train the synthetic data model, 2) train the TSLCM.
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In this study, RF and XGBoost hyper-parameters were tuned using the grid search
function in the ’caret’ package [61, 60] to improve their k-fold validation performance. The
training process in RF model included tuning ntree (number of trees) and mtry (number of
variables). For the random XGBoost model, the tuning algorithm adjusted both max-depth
(the maximum depth of the trees) and eta ( the learning parameter which controls the
boosting process).

4.3.2 Multinomial Log-Linear Regression(MLR)

MLR is a technique for estimating the probability of occurrence for categorical data when
the dependent variable of model includes multiple categories. The technique is similar to
a logistic regression model but it predicts the likelihood of occurrence for each category.
Here, the dependent variable (land cover change) Yi ∈ {n = 1, . . . ,N} include N categories,
the probability that i− th output can be written as [138]:

πi
n = Pr {Yi = n}

In our case, πi
n is the probability that pixel i will belong to the land cover category

n at the end of the timestep. The calculated probabilities ( πi
n) depend on a vector of

independent variables Xi (here, the spatio-temporal driving factors of land cover change).
MLR fits N − 1 logit equations in terms of the πi

n which can be written as follows [90] :

πi
n =

exp (Xiβn)∑N
S=1 exp (XiβS)

where βn is a vector of regression coefficients for n = 1, 2, ..., N − 1. MLR incorporated
lasso regression regularization work to minimize the βn of the less contributive independent
variables toward exactly zero.

4.3.3 Synthetic Data Model for Time Series Prediction

Spatio-temporal forecasting of land cover category can be challenging when the input data
is multivariate, and the limited training data is not enough to analyze the relationship
between the time-dependent variables and the categorical outputs. To overcome the po-
tential data limitation problems in extrapolating beyond the historical data, the initial
data set was boosted by adding synthetic classified maps to the input data. First, we
applied a RF and a MLR model on the initial data set to train a model for generating
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synthetic data that represents the change of land cover in the SCRS for the time incre-
ments existing in the initial training set. The land cover maps for the added time horizons
were created by combining the predicted land cover change maps (generated by the model
with highest accuracy) and the real data (Figure 4.4). For example, the land cover change
map for the 90 years time interval (1970-2060) is created by three consecutive time steps
from 1970-2000 (from the actual data), 2000-2030 (predicted by the best model using 2000
as initial conditions), and 2030-2060 (predicted by the best model using the 2000-2030
result as initial conditions). To estimate the cumulative temperature for future years, we
fitted an Auto-regressive Integrated Moving Average model on the historical climate data
collected at nearby Fort Simpson (1970-2021) using the forecast package in R. The LST
anomaly for future years was derived by averaging the available Landsat data over the last
15 years (2006-2021), and was assumed to be constant into the future. Without this boost-
ing strategy, the prediction method would be unable to extrapolate beyond the largest
time increment of 38 years. This approach enables support for continuous predictions in
time, rather than only at fixed time steps.

Figure 4.4: Boosting strategy for extrapolating long-term synthetic training data set from
a limited historical data set. Boxed numbers indicate available years (since 1970) of obser-
vations. Circled numbers indicate synthetic data sets generated via repeated application
of single-time increment land cover change, with increments identified from increments
between original data sets.

After generating the synthetic data for the longer time horizons, a MLR, RF and an
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XGBoost model were trained on the boosted data set to estimate land cover change over
time. The XGBoost model is added to this step to compare the performance of bagging
and boosting (XGBoost) techniques for predicting time series prediction of categorical
data when the initial data set is boosted. This step is also sufficient to assess the relative
performance of ensemble learning and MLR methods for simulating the land cover change.

4.3.4 TSLCM Summarized

The TSLCM handles a multi-class classification problem by considering the trend and loca-
tion of change for each land cover through continuous time steps in two steps. The benefit
of using a two-step approach with boosting is that long-term predictions (i.e., over the
course of 100 years) respect the incremental change occurring over multiple smaller time
increments and it improves the performance of the model for time interpolation or ex-
trapolation. Without this boosting step, the relative importance of time and accumulated
energy inputs (the key variants for encapsulating the impacts of climate change) would be
diminished, and the model would only reliably estimate potential change over smaller time
increments and just consider the role of spatial dependent variables.

The TSLCM is designed to predict the change when exceeding the known period in the
input data set. In this study, we adopted the TSLCM to obtain land cover change over in
SCRS until the year 2120.

4.4 Results

In this section, we assess the performance of all the implemented methods evaluated by
three times repeated 10-fold cross-validation. We first quantitatively examine the perfor-
mance of the synthetic data models in being able to simulate historical observed land cover
trends over discrete time steps from 7 to 38 years. We then apply the TSLCM approach to
extrapolate long-term land cover trends to 2120 and qualitatively evaluate the reasonable-
ness of the predictions. To evaluate the historical performance of the classification models,
we used classification accuracy, a metric that calculates the ratio of a number of correct
predictions to the total number of predictions.
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4.4.1 Synthetic Data Models

Figure 4.5 presents the confusion matrix of stage 1 for both the RF and MLRmodels trained
on the historical input data for all intervals, as determined via three times repeated 10-fold
cross-validation. The MLR method (Figure 4.5.a) achieved an accuracy of 87.5% and the
RF model (Figure 4.5.b) achieved an accuracy of 95.16% for simulating land cover change,
where accuracy is defined as the percentage of non-training pixels accurately assigned the
correct land cover at the end of the time step. The confusion matrix of both methods
illustrates that change in permafrost plateaus is predicted with higher accuracy than the
change in other classes; the MLR model incorrectly classified 41.2% of fen pixels and 18.1%
of bog pixels as permafrost plateaus (Figure 4.5.a).

To provide more extensive analysis of the performance of each model in separate time
steps, the percentage of correctly predicted outcomes of the RF and MLR model for each
time increment existing in the test data set is calculated (Tab.4.1). Based on the estimated
percentage of correctly predicted fen, bog, and permafrost plateaus by RF model for each
time increment, the trained RF model shows consistent performance in both short and long
time steps especially for predicting permafrost plateaus and bogs (Tab.4.4.1), whereas the
accuracy of MLR model improves rapidly from 5% to 60.1% in predicting fen cover over
time (Tab.4.4.1).

(a) MLR

Time step (yrs) Fen(%) Bog(%) PP(%)*

7 5 85.4 96.9
23 11.3 82.3 96.1
30 38.6 80.9 93.2
38 60.1 70.7 89.1

(b) RF

Time step (yrs) Fen(%) Bog(%) PP(%)

7 87.9 96.3 98.9
23 93.8 96.5 98.8
30 94.8 96.4 98.7
38 95.6 96.7 98.3

*Permafrost Plateaus

Table 4.1: Accuracy of MLR and RF in separate time steps existing in input data set;
(a) Predicted land cover by the MLR model for each time step, (b) Predicted land cover
by the RF model for each time step. Each value represents the percentage of accurately
predicted land cover classes.

Example results depicting the RF-predicted change in 2000 from an initial land cover
condition in 1970 are presented in Figure 4.6. From these results, it is clear that the MLR
model is not adequately capturing the observed patterns of historical land cover change in
our observational data set, but the RF model results for this time increment are visually
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Figure 4.5: Statistical results of MLR and RF models trained on the initial data set for
developing a synthetic data model; (a) Confusion matrix of the MLR model trained and
tested on the initial input data, (b) Confusion matrix of RF model trained and tested on
the initial input data.

similar to the observed land cover, with bog expansion and new fen established in the same
regions across the map.

The spatial pattern of all three classes in each map shows that both methods adequately
captured the observed relationship between distance to fen-plateau interfaces and land
cover change (Figure 4.6). Permafrost plateaus closer to thawing edges of fen are more
susceptible to transforming to fen, even though no explicit constraints were included in
either the RF or MLR model to enforce this. However, it is clear that the predicted by
the RF model is much more consistent with the observed land cover maps for the time
horizons existing in the initial data set.

A key concern is that, despite the strong performance under historical conditions, the
RF model may not perform well in predicting land cover change when the time increment
is larger than those used in training. From Figure 4.7 we can see that, without amendment,
the base RF model is unable to effectively be applied over longer time steps: the predicted
landscape at 75 years is (unrealistically) nearly identical to that predicted at 150 years.

To assist the performance of the model for extrapolating past the historical observation
period, we added more synthetic time increments to the initial data set by combining the
predicted land cover change from RF model and the real data (the boosting step of Figure
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Figure 4.6: Land cover maps generated by models trained on the initial data set compared
to the real data using a 30 year time step; (a) initial land cover map (1970), (b) observed
2020 land cover (c) Predicted land cover predicted by the MLR model for a 30-year time
step, (d) Predicted land cover predicted by the RF model for a 30-year time step.

Figure 4.7: The predicted land cover change for 25, 50, 75, 100,125, and 150 time steps
using the RF model without data boosting.
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4.3). Figure 4.8 illustrates how the data for each new time step is created by repeated
application of the single-increment simulated by RF model using initial conditions from
observations or a previous simulation. This approach enables us to use a sparse data set
of only N =4 images (1970, 1977, 2000, 2008) with M = N(N − 1)/2 =6 increments to
generate a host of (in this case 18) synthetic land cover images.

4.4.2 Final Model

After generating the synthetic data set used in extrapolation with the successful RF model
(as demonstrated in Figure 4.8), a MLR, RF, and XGBoost method were evaluated for
extrapolating land cover change to future conditions.

The confusion matrix for the three trained models as evaluated using test data set are
given in Figure 4.9, illustrating the classification accuracy of each method on the three
classes in this study. The overall accuracy of the MLR method on the historical test set
of boosted data is 81.09% which is 7% less than the accuracy of MLR model trained on
the initial data, but still inferior to the original RF model (Figure 4.9.a). The accuracy of
both ensemble learning models were higher than the MLR: the XGBoost model achieved
a high overall accuracy of 98.16% by running on the test set of boosted data (6% higher
than the RF model) (Figure 4.9.c).

The output of each model was further evaluated for four specific time increments
(Tab.4.2). Both MLR and RF exhibit an improved classification accuracy while predicting
the change in fen over time (Tabs.4.4.2 , 4.4.2). The results indicate that XGBoost method
is appreciably more successful in predicting the transition of each class at all examined time
increments.

(a) MLR
time step(year) Fen(%) Bog(%) PP(%)*

7 2.1 78.3 96.5
30 9.8 77.3 95.4
60 47.2 72.4 91.9
90 59.1 70.19 92.8

(b) RF
time step(year) Fen(%) Bog(%) PP(%)

7 78.4 92.5 96.9
30 81.5 91.2 95.5
60 87.1 89.7 92.3
90 95.7 84.8 94.7

(c) XGBoost
time step(year) Fen(%) Bog(%) PP(%)

7 95.1 98.8 98.2
30 97.9 98 97.6
60 96.8 97.5 97.2
90 99.1 96 97.9

*Permafrost Plateaus

Table 4.2: Accuracy of MLR, RF, and XGBoost for separate time increments existing in
boosted data set. Each value represents the percentage of true positives for each land cover
in a separate time step.
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Figure 4.8: Visual depiction of boosting approach for extrapolating long-term synthetic
training data set from a limited historical data set. Boxed numbers indicate available
years (since 1970) of observations. Circled numbers indicate synthetic data sets generated
by RF via repeated application of single-time increment land cover change, with increments
identified from increments between original data sets.
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Figure 4.9: Ten-fold cross-validation results of the three machine learning models trained
on the entire 18-sample boosted data set from 1977-2068, expressed as confusion matrices.
(a) MLR model (b) RF model, (c) XGBoost model.

The pattern and degree of predicted land cover change by the XGBoost model is con-
sistent with the observation data set (depicted in Figure 4.10). Statistically, the XGBoost
and RF model outperformed the MLR in the terms of being able to replicate historical
land cover.

Note that the final XGBoost model outperforms the original RF model in its ability
to successfully replicate historical observations (98.16% accuracy vs. 92% accuracy for
the RF model), which begs the question ’why do we even need the original RF model?’.
However, the RF model (or an equally successful predictive model) is required to generate
the boosted data set which is used to help train this XGBoost model.

The relative importance of each independent variable is quantified for the RF model
using the ’varImp’ function in ’caret’ package [61, 60]. This function estimates the increase
in the model’s prediction error when the variable is shuffled or modified; the variable
is considered unimportant when permuting does not affect the model’s error [17]. The
results showed that distance to fen, distance to bog, and cost distance were the three most
significant variables contributing to the output of the RF model.

4.4.3 Accuracy and Consistency Assessment

To further understand the strengths and weaknesses of these predictive models, three
additional tests were run:

1. Visual assessment of predictions out to 150 years (Figure 4.11), assessing the physical
plausibility of future scenarios.
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Figure 4.10: Observed and predicted land cover maps generated by models trained on the
boosted data set compared to the observed data (year 2000 using 1970 initial conditions).
(a) Initial land cover map (1970), (b) Observed year 2000 land cover, (c) MLR-predicted
year 2000 land cover change (d) RF-predicted year 2000 land cover, (e) XGBoost-predicted
year 2000 land cover.

2. Generation of a consistency map for each model to measure the model’s ability to
avoid non-physical oscillation between land cover types (Figure 4.12).

3. A comparison of the outputs of each model for four combinations of time steps which
add up to 30 years (Tab.4.3), to assess the consistency of predictions with different
time increments.

Figure 4.11 depicts the predicted land cover change from MLR, RF, and XGBoost
methods for a 25, 50, 75, 100, 125, and 150-year time step, using the 1970 classified map
as an initial condition. All three methods method clearly respect time as a controlling
factor in land cover change (unlike the results of Figure 4.7 which did not use the boosted
synthetic data). Although the accuracy metrics of the XGBoost model were higher than the
MLR, the MLR was found to better respect expected physical trends when extrapolated
into the future (Figure 4.11). For instance, it is clear that bog capture is not being
respected in the major bog in the center of the plateau complex, with the RF and XGBoost
models producing patchy new fen coverage. Similarly, these ensemble learning models both
predict spotty fens emerging on wide plateau areas. In addition, comparing the simulated
time series change by MLR (Figure 4.11.a) to XGBoost (Figure 4.11.c) and RF (Figure
4.11.b), it is clear that the rate of change slows for later years, with the time increment
seemingly disregarded by the models. The MLR model more plausibly characterizes long-
term changes.
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Figure 4.11: The predicted land cover change for a 25, 50, 75, 100, 125, and 150 year time
increment; (a) The predicted land cover change by MLR, (b) The predicted land cover
change by RF, (c) The predicted land cover change by XGBoost.

It should be noted that it is physically implausible to have certain repeated land cover
transitions occur - the natural expectation is that plateaus will convert to fen and bog, and
not that (for instance) we see a transition from fen to bog back to fen then to permafrost
plateaus. To evaluate the consistency of each model while predicting the type of transitions
over time, the models illustrated in Figure 4.12 were processed to generate the consistency
maps of Figure 4.12. The values in Figure 4.12 reveal the total number of transitions over
150 years in each cell of the raster map simulated by each model. The expectation is that
most of the landscape should experience between zero and two changes. All three models
achieved a good performance in this regard: the highest number of transitions in 150 years
is 5 which is happening in just 16 cells (the total number of cells in all three maps is around
150,000).

The final test examines the sensitivity of the model to time increment choice, as we
have a choice as to how to propagate results forward in time. For instance, a 30-year time
increment could be simulated all in one step, or by repeatedly running the model in 5-year
increments. Ideally, these two approaches should generate similar predictions. Table 4.3
compares the outputs of each model using four combinations of time steps (whether or not
it exists in the boosted data set) which add up to 30 years to observed transitions over a 30
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Figure 4.12: The consistency map illustrating the total number of transitions in each cell
of the raster maps (representing SCRS) over a 150 years prediction. The consistency map
generated by; (a) MLR, (b) RF, (c) XGBoost.
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years time step. The RF (Tab.4.4.3) seems to slightly outperform the XGBoost (Tab.4.4.3)
and MLR (Tab.4.4.3) model in predicting the change for all the four combinations of time
steps.

(a)
combinations Fen(%) Bog(%) PP(%)*

30(observed) 10.2 15.2 74.5
30 8.7 12.1 79.2

7+23 6.4 14.9 79.2
15+15 5.2 14.4 80.4

10+10+10 4.9 15.6 79.5

(b)

combinations Fen(%) Bog(%) PP(%)

30(observed) 10.2 15.2 74.5
30 10.2 15.7 74.1

7+23 9.4 16.4 74.2
15+15 8.6 16.8 74.6

10+10+10 9.5 14.8 75.7

(c)

combinations Fen(%) Bog(%) PP(%)

30(observed) 10.2 15.2 74.5
30 10.4 15.7 73.9

7+23 5.9 15.2 78.9
15+15 8.4 16.8 74.8

10+10+10 7.1 16.9 76

*Permafrost Plateaus

Table 4.3: Comparing the results of each model to 30 years of observed data for different
combinations of time ; (a) Predicted land cover by the MLR model, (b) Predicted land cover
by the RF model,(c) Predicted land cover by the XGBoost model. Each value represents
the percentage of area covered by each class at the end of the 30-year increment.

4.5 Conclusion

A spatio-temporal multivariate land cover change model was developed and trained on
continuous and categorical input data sets. The proposed model uses historical spatial
data to infer patterns of change, which helps us to simulate future land cover scenarios
subject to important environmental driving factors. This model is hoped to be useful
in predicting hydrologically-important land cover transitions in discontinuous permafrost
regions. Such models may be used, for instance, in the assessment of long-term climate
impacts on the hydrology of the Taiga plains in Northern Canada.

This application was not data-rich - a key challenge was building viable predictive
models informed by a limited number (here only four) classified historical land cover maps.
Because of this limitation, we applied a novel data boosting strategy by first training mul-
tiple machine learning models to effectively simulate historical conditions, then stitching
together a synthetic future data set from repeated single time-increment applications of the
highest accuracy model (here, RF). This boosted data set was then used to train multiple
predictive models.

The XGBoost model trained on the boosted data set proved to be the most accurate
using basic pixel-by-pixel comparisons (98.16% accuracy vs. 92% accuracy for the RF
model vs. 81% accuracy for the MLR model). All models demonstrated an acceptable
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level of temporal consistency, as evaluated by counting the number of land cover changes
experienced by each pixel in the images. The XGBoost model exhibited the lowest degree
of sensitivity to time increment. It is expected that the models would significantly benefit
from additional observed classified land cover maps in similar landscapes.

While there were differing long-term predictions provided by individual ML-based mod-
els, the predicted time series land cover maps consistently suggested that permafrost
plateaus are transforming to fens and increase in the percentage fen cover will acceler-
ate over time. The overall predictions of TSLCM are in accordance with other studies
investigating the transition of land cover in the SCRS via field studies [105, 30, 63]. It
has been reported that the permafrost plateaus are transforming to fen and bog over time
which is also predicted by the TSLCM model. The rate of change is strongly dependent
upon time and accumulated air temperature which depicts the critical role of temporal
variables in any machine learning simulation strategy.

The TSLCM has been shown to be effective for predicting land cover change in the
lowland discontinuous permafrost zones, such as the SCRS. However, it is important to
acknowledge the uncertainties associated with the model’s predictions and address them in
future studies. The TSLCM’s outputs are subject to limitations due to uncertainties caused
by various factors such as the quality and quantity of the training data, the complexity of
the model, hyper-parameter tuning, and the algorithm used for training the model. This
study attempted to assess these uncertainties by analyzing the consistency in predicted
land cover change over time (consistency map) and comparing different machine learning
models’ performance. To improve the accuracy of the land cover change models and reduce
these uncertainties, future research should consider addressing these various sources of
uncertainty explicitly during the process of training the land cover change model.

Another issue may arise when applying the model to other discontinuous permafrost
regions. The spatio-temporal variables used to train the land cover change model primarily
rely on distance-based variables, given that the main land cover evaluations in the SCRS
occur in close proximity to the thawing edge of permafrost plateaus, which may not capture
the full complexity of land cover change in other regions. Incorporating more driving factors
of land cover change, such as vegetation and water index, in future studies may address
these limitations and improve the model’s generalization and performance.

Furthermore, the TSLCM has limitations in predicting the potential reversion of wet-
lands to forested land covers that may not be underlain by permafrost over time (depicted
by Carpino et al. (2021) [19]). It also is unable to represent the formation of new wet-
lands in the interior regions of peat plateaus, which may occur when topographic depres-
sions receive higher input energy than their surroundings. The input data of TSLCM
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lacks information about these two transitions since the observed data only covers a pe-
riod when both forest reversion and wetland formation are rare. To enhance the accuracy
of the TSLCM predictions, future studies should consider this transition and the associ-
ated spatio-temporal variables that lead to the transitions from wetlands to forested cover
regions. This will require additional training data capturing these phenomena.

Moreover, work in Chapter 5 will address the relative impacts of land cover evolution on
the hydrology of the Taiga plains via hydrological modeling, using the TSLCM simulated
land cover as inputs. This information will be crucial for effective land management and
conservation efforts in cold regions.
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Chapter 5

Hydrological Responses of
Wetland-Dominated Basins to
Climate-Induced Land Cover
Changes in Discontinuous Permafrost
Regions
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5.1 Introduction

The transformation of a forest-dominated landscape into one dominated by wetlands and
the resulting ecological changes have affected the hydrological responses of the basin [12,
105], including the runoff generation from permafrost plateaus [47], surface and subsurface
hydrology [30], lake drainage [96], baseflow [46], and interconnectivity of drainage networks
[14].

Due to the hydrological roles of channel fens (as a feature that conveys water), bogs (as
a feature that stores water and may generate runoff when a storage threshold is exceeded),
and permafrost plateaus (as a feature that generates runoff), these hydrological effects
are controlled by the pattern and distribution of land cover. This pattern is changing
over time. Connon et al. (2014) [30] and Haynes et al. (2018) [48] demonstrated that the
transition from permafrost plateaus to wetlands increases the runoff from the discontinuous
permafrost basins. A critical question is to what degree this trend will continue into the
future due to changing climate.

The hydrological roles of fens and bogs may be examined by separating the landscape
into secondary and primary runoff generating areas [30]. Primary runoff areas are those
which drain directly to fens which release water to the basin outlet [47]. Secondary runoff
areas drain to bogs, where the water may only be released to the outlet under wet con-
ditions when the bogs hydraulically connect to the fen network. Therefore, fill-and-spill
hydrological processes determine the runoff production from bogs.

It has been well established that the dominant land covers in these fen-bog-plateaus
complexes play a hydrological role, and that the evolution of these land covers affects
the hydrological and ecological properties of these discontinuous permafrost environments.
Because of the importance of these long-term changes to land cover, it is still important
for numerical hydrological models to be able to simulate these transitions.

Many studies have shown that land use change models and hydrological models can be
coupled to provide decision-making tools, especially for assisting land-use decision-making
[142, 126, 77]. Most relevant to this work, the study done by Stone et al. (2019) showed
the effects of land cover change on wetland discharge in the Scotty Creek basin, NWT,
Canada using a sensitivity analysis to assess the impact of permafrost loss on discharge
from the sub-basin by reducing the ratio of wetland to plateau in the modeled sub-basin
[116]. However, this reduction was not based on a predictive model of land cover change.

In order to accurately forecast the future of a study area, it is not sufficient to define
land cover transitions by pre-defined or arbitrary ratios because they do not reflect the real
transitions caused by climate warming. The shortcoming of these hydrological studies is
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that the hydrological models are not informed about the transitions of the dominant land
covers over time based on predicted future driving factors of change.

Furthermore, considering thaw-induced alterations in the runoff area of the wetlands
is a persistent challenge for most researchers working on discontinuous permafrost regions
of NWT. This analysis requires a method to calculate the primary and secondary runoff
area of fens and bogs; it also requires land cover models which can adequately describe
the lateral permafrost thaw impacts without explicitly (and expensively) simulating thaw
processes.

To the best of our knowledge, no previous study has attempted to simulate the land
cover change effects and the interaction between the hydrological role of the dominant
land covers in discontinuous permafrost wetland regions by coupling hydrologic models
and machine learning techniques.

This study aims to better understand how permafrost thaw-driven land cover transi-
tion from forested area to wetland affects the runoff responses of the Scotty Creek basin,
both historically and under the future influence of climate change. Coupling hydrological
models to the land cover change model developed in Chapter 4 can be used to quantify
the contribution of land cover changes to the basin properties such as flood potential, soil
water availability, or groundwater recharge. In order to evaluate the long-term impacts of
climate warming on hydrology, we coupled:

1. A machine learning model of land cover change (a multinomial time series land cover
model, or TSLCM, described in Chapter 4) [4].

2. A runoff area delineation method (the TWINN, described in Chapter 3) [3].

3. A hydrological model (the UWFS method), as implemented in the Raven hydrological
modeling framework [120].

The coupled approach is applied to a case study of the Scotty creek basin, trained on
the historical data, forced with multiple future climate scenarios, and used to assess the
relative influence of lateral permafrost thaw on future runoff changes.

5.2 Case Study

Figure 5.1 depicts the location of the Scotty Creek basin (61.44◦N, 121.25◦W), in the
NWT of Canada. This basin is located 50 kilometers south of Fort Simpson in the zone of
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sporadic discontinuous permafrost (Figure 5.1a) and has a water survey Canada (Gauge
ID 10ED009) at its outlet [134].

Based on remote sensing products and the generated classified maps of the Scotty Creek
basin in different studies, as extrapolated from field studies [23, 106, 14, 114], the 129 km2

basin is known to be comprised of permafrost plateaus, bogs, channel fens, and small lakes
and ponds (Figure 5.1b). The average annual air temperature recorded at Fort Simpson
for the whole basin is around -2.8 °C, and receives an average of 388 mm of precipitation
each year with around half of it falling as snow (Environment and Climate Change Canada,
2017).

Figure 5.1: Scotty Creek basin: (a) The location of the basin within the Northwest Ter-
ritories, Canada; (b) Land cover distribution of the basin in 2010; (c) Delineated runoff
areas ([3]).

As a result of lateral permafrost thaw, the permafrost plateaus in the Scotty Creek
basin have been decreasing in the area over time. According to research by Quinton et al.
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(2010) [105, 23], the permafrost plateaus’ higher elevation and the surrounding unfrozen
wetlands are two primary factors causing specific thermal impacts leading to the loss of
permafrost along the plateau perimeter. Duchesne et al. (2008) [38] estimated that 22%
of Scotty Creek was covered by plateaus in the year 2000, and they forecasted a decline
to 17% by 2055. Beilman and Robinson (2003) demonstrated a reduction of permafrost
plateaus coverage by 22% during the previous 50 years in this area [14].

Channel fen and bogs play a significant hydrological function in the Scotty Creek basin
[106]; the generated runoff from permafrost plateaus can flow into channel fen (primary
runoff), discharge into the channel fen through a series of connected or cascading bogs
(secondary runoff) or flow into an isolated bog where the water will be stored (Figure 5.1c)
[30] and lost only as evaporation. Bogs are formations surrounded by upraised permafrost
plateaus that store water and convey water to the fen only when overflowing (Figure 5.1c).
They store water precisely because they are bounded by relatively impermeable permafrost.
There are therefore inevitable hydrological consequences when the distribution and pattern
of these three land cover changes.

5.3 Methods

This section describes the process of coupling the land cover change model and a hydrologic
model for analyzing the effect of thaw-induced land cover change on the hydrologic response
of the Scotty Creek basin.

5.3.1 Land Cover Change Model (TSLCM)

The TSLCM, as detailed in Chapter 4, is a tool that can simulate historical land cover
transitions, capture temporal changes, and replicate the long-term evolution of land cover.
It has been applied in this study to provide input data for hydrological models, allowing
us to analyze the effects of climate change over the long term. Despite being developed
within a specific training domain (a smaller subset of the Scotty Creek basin), the TSLCM
is assumed to be scalable enough to be utilized in various case study locations within
NWT’s discontinuous permafrost zones.

The process of implementing the TSLCM is explained in Chapter 4, and it involves
training a generative model using both Random Forest (RF) and methods. The generative
model enhances the performance of the final TSLCM by adding more data to the initial
dataset, thereby extrapolating time series changes. After boosting the observational data,
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we employed MLR, RF, and eXtreme Gradient Boosting (XGBoost) models to simulate
land cover changes. The MLR model was eventually selected as the best machine learning
technique for the TSLCM as it can estimate land cover changes over a fixed time step,
regardless of the initial condition. The input data of the TSLCM are presented in Table
5.1.

Table 5.1: The input data of the TSLCM

Variable Source Generation process Reason
Estimated sum-
mertime land
surface tempera-
ture

Landsat Image Emissivity algorithm in
the Google Earth Engine

[3]

Plateau thaw is controlled
by the availability of melt

energy

Euclidean dis-
tance to land
cover interfaces

Classified land
cover map

Euclidean distance tool
(ArcMap)

Interface between a
plateau and bog/fen are

more likely to transform to
other land cover classes
than areas far from this

interface
Cost distance to
bog

Classified land
cover map

Cost distance tool
(ArcMap)

Entire bog connects to fen
instantaneously once the

permafrost plateau
between a bog and fen is

completely lost (the
‘bog-capture’
phenomenon)

Accumulated
temperature
degree

Historical or
forecasted

climate data

Temperature time series
integrated over time

Represents the net energy
applied to the landscape

over time
Time horizon Ending year -initial year Addresses temporal

evolution

The TSLCM generates land cover maps that represent the spatial distribution of fen,
bogs, and permafrost plateaus over time.

5.3.2 Hydrological Model (Raven)

A hydrological model of the Scotty Creek basin was developed by using the UWFS method
in the Raven hydrological modeling framework [32]. Raven supports the development
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of semi-distributed hydrological models which can capture the potential impacts of land
cover evolution upon basin properties such as flood potential, soil water availability, or
groundwater recharge.

In Raven, a basin can be composed of a number of subbasins. The subbasins are as-
sembled from a number of contiguous or non-contiguous hydrologic response units (HRUs).
HRUs are identified by unique combinations of land type, vegetation classes, slope, and
aspect. In each HRU, for each time step, water is redistributed in response to precipitation
and other atmospheric forcings.

The areas of HRUs in Scotty creek’s model were determined from a land cover clas-
sification and a runoff area delineation map that indicated the extent of the permafrost
plateaus, fens, bogs, primary runoff areas, and secondary runoff areas within the basin.
The initial model configuration was based on 1995 classified imagery. Five HRUs were
created in this model based on the distribution of five hydrologically important land covers
in the Scotty Creek basin in 1995: water, upland, fen, secondary, and primary area. The
energy and water storage within each HRU in the Scotty Creek basin is defined by storage
variables that track the water content of the soil, canopy, and snowpack.

For the UWFS model to run, required forcing inputs included daily precipitation and
maximum and minimum temperatures. These meteorolgical forcings are augmented with
land cover transition data. The land cover transition over time represents the transition
of primary areas to fens, secondary areas to fens, and secondary areas to primary areas at
several time increments, with the percent cover of each land cover over time derived from
the TSLCM. In primary runoff areas, runoff is shed directly to the fen. The secondary
runoff area’s abstraction process is defined by the UWFS method that incorporates lateral
water movement (rainfall and rainfall excess including snowmelt and runoff) from the
secondary contributing area to the bogs.

The UWFS categorizes secondary contributing areas into wetland cascades, which are
groupings of wetlands that are serially ordered with one downstream connection to a surface
water network [120]. The wetlands are treated as storage units that receive water until a
threshold is reached, after which any additional water flows downstream. The total outflow
from the most upstream wetland in a cascade can be derived based on the amount of water
input minus the storage deficit as [120]:

O∗
1 =

A1
u

A1
w

·R + P ′ −D1 = β1.R + P ′ −D1 (5.1)

O1 = max(O∗
1, 0) (5.2)
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The potential and actual volumetric outflow of a wetland are represented by the vari-
ables O∗ [mm] and O [mm], respectively. These variables are normalized by the wetland
area to simplify calculations and eliminate the need for wetland area values. The term
”potential” is used because Equation 5.1 may produce a negative value, which cannot be
considered as outflow. The local contributing area of the first wetland, excluding the wet-
land area, is represented by A1

u [L2], while A1
w [L2] represents the wetland area. The ”local

contributing area ratio,” denoted by β1 [-], indicates the relative size of the local contribut-

ing area and is defined as β1 =
A1

u

A1
w
. The variable R [mm] represents the rainfall excess from

the local contributing area, which is the remaining fraction of precipitation or snowmelt
after other processes such as evaporation have been applied and can contribute to runoff.
During snowmelt events, P ′ is equal to zero, representing rainfall over the wetland area.
The wetland storage deficit is represented by D [mm].

It should be noted that when the local contributing area exceeds the wetland area by
a significant amount, the wetlands’ role in regulating the outflow becomes minimal, and
the deficit term can be disregarded [120]. While the aforementioned equation is applied
to a single wetland, the UWFS model treats the outflow probabilistically by considering
the probability distributions of the contributing area ratio (β) and the deficit distribution
(D), as discussed in [120]. This approach enables the treatment of systems comprising
numerous bogs where detailed runoff characteristics of each bog cannot be characterized.

In this study, the hydrological model’s performance will be evaluated by using available
runoff historical data (1995-2015). For calibration and validation purposes, the simulation
period has been separated into two parts: 1995-2010 for calibration and 2010-2015 for vali-
dation. Table 5.2 presents the range of selected parameters for the calibration process. The
calibration process involves estimating the values of parameters. The Dynamically Dimen-
sioned Search algorithm in OSTRICH was utilized with 2,000 iterations and 10 replicates
to identify the most suitable parameters for simulating streamflow accurately [123, 74].
The parameters that led to the best model performance in streamflow simulation were
chosen. The model’s performance is measured using the Kling-Gupta Efficiency (KGE)
metric:

KGE =

√
(r − 1)2 +

(
µsim

µobs

− 1

)2

+

(
σsim

σobs

− 1

)2

(5.3)

where r is the correlation between simulated and observed streamflow, µsim/µobs is the
ratio of the mean simulated to mean observed streamflows and σsim/σobs is the ratio of
the simulated to observed streamflow variance. Percent Bias (PBIAS) is also another
evaluation metric considered to analyze the model’s performance, calculated as:
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PBIAS =
Σn

i=1X
obs
i −Xsim

i

Σn
i=1X

obs
i

(5.4)

where Xobs
i and Xsim

i are the observed and simulated streamflow; the acceptable range for
PBIAS in simulation is typically less than 10-15% [86].

Table 5.2: UWFS parameters for calibration of the Scotty Creek hydrologic model [119]

Parameter name Description Units Min Max
RAIN CORR Rain bias correction factor [-] 0.8 1.2
SNOW CORR Snow bias correction factor [-] 0.8 1.2
RAIN ICEPT PCT Relates percentage of throughfall of rain to LAI+SAI [-] 0.02 0.2
SNOW ICEPT PCT relates percentage of throughfall of snow to LAI+SAI [-] 0.02 0.2
MELT FACTOR Maximum snow melt factor used in degree day models mm/d/◦C 1 3.5
SNOW SWI Snow bias correction factor [-] 0 0.4
RAINSNOW TEMP Rain/snow halfway transition temperature ◦C -3 3
PARTITION COEFF Runoff fraction [0..1] 0.5 1
GAMMA SCALE Gamma unit hydrograph scale parameters [1/d] 0.1 20
MAX PERC RATE Percolation rate [mm/d] 0.01 1000
FIELD CAPACITY Field capacity saturation of the soil [0..1] 0 1
BASEFLOW COEFF Linear baseflow storage/routing coefficient 1/d 0.01 1
FOREST COVERAGE Fraction of land covered by vegetation canopy [0..1] 0 1
PET CORR Correction of PET [-] 0.8 1.2
LAKE PET CORR Fraction of PET to apply to open water evaporation [-] 0.8 1.2
Parameters for secondary area:
DEP MAX Maximum amount of water that stored in depressions mm 100 450
MAX DEP AREA FRAC Percent of landscape covered by depressions when full [0..1] 0.1 0.8
MIN UWFS BETA Minimum concentrating factor [-] 0 4
UWFS B Shape factor of concentrating factor distribution [-] 0.01 10
Initial Parameters for secondary area:
DEPRESSION Initial amount of water that is stored in depressions mm 50 250
MIN DEP DEFICIT Minimum amount of deficit in each depression mm 0 50

5.3.3 Coupling

The interaction between land cover evolution in the Scotty Creek basin and the hydrological
responses will be analyzed by coupling three models, the TSLCM [4] (Chapter 3), the
TWINN solution [3] (Chapter 4, and the Raven-UWFS hydrological model[120]. Figure
5.2 illustrates an overview of the coupling process.

The modeling process includes four steps:
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Figure 5.2: Process schematic of the coupling method presented in this Chapter.

1. Generate the classified maps of the Scotty Creek basin at five-year intervals utilizing
the TWINN classification solution for historical evaluations. Next, delineate the
wetlands’ primary and secondary runoff areas present in the classified map.

2. Forecast the future changes in land cover within the Scotty Creek basin from 2010 to
2100 based on three distinct climate scenarios using TSLCM. Employ the TWINN
solution to delineate the predicted wetlands’ primary and secondary runoff areas for
each climate scenario and GCMs.

3. Develop a hydrological model of the Scotty Creek basin in Raven using an UWFS
algorithm and the generated historical land cover from step 1 and evaluate the model’s
performance in the validation period.

4. Analyze the effects of the predicted land cover transition by the TSLCM model on
the runoff generation of the basin under three different climate scenarios using three
different global climate models, with and without non-stationary land cover.
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5.4 Data Preparation

5.4.1 Data Preparation: Historical Data

The TWINN solution was used to generate classified maps of Scotty Creek every five years
between 1995 to 2015. The maps were generated using RGB bands of Landsat 5, 7, and
8 Level 2, Collection 2, Tier 1 data. These datasets were processed to remove any pixels
with more than 2% cloud cover and then resampled to a spatial resolution of 30 meters
using the Google Earth Engine platform.5.3.a).

It should be noted that the TWINN solution was trained and evaluated on high-
resolution imagery only within 6 km2 of the Scotty Creek basin (Chapter 4); In order
to verify the accuracy of the historical land cover maps of the Scotty Creek basin gener-
ated by TWINN using Landsat imagery, the land cover map of 2010 was compared to the
high-resolution classified map derived by Akbarpour et al. (2023) [3] using a World View
2 (WV2) image from the same year.

The Landsat image covering the Scotty Creek basin area in 2010 was obtained from
Landsat 7 Level 2, Collection 2, Tier 1. The RGB bands were resampled to a spatial reso-
lution of 1.6 m, using the bicubic method in Google Earth Engine to match the resolution
of the WV2 image. According to the comparison results, the TWINN solution classifies
about 6% of the permafrost plateaus as fen and 2% as bogs when using Landsat, especially
on thawing edges of wetlands where the accuracy of the classifications is already uncertain
[3].

By using the runoff delineation method of the TWINN solution presented in Chapter
4 of this thesis, the runoff area of the isolated wetlands (bogs) and connected wetlands
(fens) was calculated for each 5 years time increment. The historical data of the land
cover change in the Scotty Creek basin was then used to inform the Raven hydrological
model to define the changing HRUs definitions over time. We used the historical daily
streamflow measured at the Scotty Creek basin outlet (Gauge ID 10ED009) [134]. The
daily precipitation data used for the development of the original Scotty Creek model and
the temperature data were obtained from the same station at Fort Simpson from 1995 to
2015 (Gauge ID 2202103) [40]. The observation-based annual runoff and precipitation are
reported in Figure 5.3.b.
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Figure 5.3: Historical land cover, precipitation, and streamflow within the Scotty creek
basin from 1995 to 2015: (a) Distribution of dominant land covers in the Scotty Creek
basin (1995-2015); (b) Annual historical meteorological data recorded at the Fort Simpson
(Gauge ID 2202103) and runoff ratio from water survey Canada (Gauge ID 10ED009)
(1995-2015).

5.4.2 Data Preparation: Climate Scenarios

To assess the long-term effects of continued warming due to the transitions of permafrost
plateaus to wetlands on generated runoff, climatic inputs, and land cover transition pre-
dictions are required. Precipitation and temperature forecasts from 1995 to 2100 were
retrieved from three GCMs under the three RCPs [127] from Coupled Model Intercompar-
ison Project 5 (CMIP5) [92, 121](Tab.5.3).

The three selected RCPs (RCP2.6, RCP4.5, and RCP8.5) represent stringent, interme-
diate, and high Greenhouse Gas (GHG) emissions, respectively. The land use scenarios of
the RCPs consider a wide range of future land cover changes. To address climate model
uncertainty, three global climate forecasts for each of the RCPs were considered, as shown
in Table 5.3. The decision to utilize three global climate models to address this uncer-
tainty is motivated by practical considerations such as computational resources and time
constraints. Running a large number of models for each scenario, especially for the TSLCM
model, would be impractical due to its significant time and resource demands. While us-
ing only three models may not completely capture the range of potential outcomes, it does
provide an estimate of the uncertainties associated with the modeled climate projections.

The transformation of dominant hydrologic land covers was predicted by the TSLCM
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Table 5.3: Attributes of the selected CMIP5 GCMs [65]
Acronyms Model Institution Resolution (lat/long◦)
BCC-CSM1.1 Beijing Climate

Center Climate
System Model with

Moderate
Resolution

Beijing Climate Center,
China Meteorological

Administration

1.1215*1.125

MIROC5 Model for
Interdisciplinary

Research on Climate
5

Atmosphere and Ocean
Research Institute,

National Institute for
Environmental Studies,
and Japan Agency for

Marine-Earth Science and
Technology

1.4008*1.4063

GFDL-CM3 GFDL Coupled
Model version 3

Geophysical Fluid
Dynamics

Laboratory(GFDL)

2.0*2.5

model over the 2010–2100 period using the forecasted temperature data for the three
different scenarios with three GCMs. The classified map of the Scotty Creek basin in 2010
is incorporated to generate input variables for forecasting the land cover change including
Euclidean distance to fen (2010), Euclidean distance to bog (2010), Euclidean distance
to permafrost plateaus (2010), cost distance to fen (2010) (Figure 5.4). Figure 5.4 also
provides a snapshot of the calculated cost distance values for a bog which shows when fen
reaches the bog it captures all the bog’s pixels due to the ’bog-capture’ phenomenon.

Initial land surface temperature in 2010 is retrieved by applying the emissivity method
presented in Chapter 3 using Landsat 7 Level 2, Collection 2, Tier 1 (Figure 5.4). The
temporal input data includes time increments and accumulated degree days. The TSLCM
model (developed in R) requires each input variable to be introduced to the model in
a raster format. In the case of the Scotty Creek basin, this results in 51,000,000 pixels
per variable. The computation cost of running the TSLCM model can be challenging,
particularly when dealing with large study areas and high-resolution input data.

The UWFS was provided with information about land cover changes for every 30-year
period starting from 2010, instead of reporting daily or yearly land cover changes. The
magnitude of land cover change at this interval is more noticeable and significant than daily
changes. Reporting daily land cover changes would result in a large amount of data, a time-
consuming and expensive computational process that may not be practical to understand
the long-term trends and impacts of land cover change on wetlands.
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Figure 5.4: The spatial variables used by TSLCM for predicting the land cover change
from 2010 to 2100.
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Moreover, modeling land cover change for shorter time frames may not accurately cap-
ture the larger patterns of change and may be subject to more uncertainty. The generated
classified maps for the years 2040, 2070, and 2100, under each climate scenario, were used to
identify the primary and secondary contributing areas of the predicted wetlands. Changes
in the runoff area can affect the basin storage, hydrological connectivity, and recharge in
the Scotty Creek basin at various spatial and temporal scales.

5.5 Results

In this section, we report the results of coupling the TSLCM and Raven hydrological model
for simulating the streamflow of the Scotty Creek Basin.

5.5.1 Calibration: Model Performance

The results of the simulated and observed streamflow for a selected snapshot (3.5 years)
of the calibration and validation period are presented in Figure 5.5.

These results indicate that the hydrological model is capable of accurately simulating
high flows, with a KGE metric of 0.77 and PBIAS of 5.43% for the calibration period (1995-
2010), as shown in Figure 5.5a. Despite the generally good performance of the hydrological
model shown in Figure 5.5b, the model overestimates the flow during low-flow events and
tends to overestimate the peak flows. The simulated streamflow from 2014 to 2015 in
Figure 5.5.b illustrates an example of the overestimation of peak during a low-flow event.
The validation results reach a similar quality result with a KGE of 0.65 and PBIAS of
1.46%.

5.5.2 Climate Scenarios: Land Cover Change

Figure 5.6 depicts the simulated land cover change from 2010 to 2100 predicted by the
TSLCM model for GFDL-CM3 climate model under RCP8.5. Based on the land cover
change predicted for other GCMs, it is important to note that these values are also within
the range of GFDL-CM3 climate model.

The predicted transient land cover maps generated up to the year 2100 suggest that
in general permafrost plateaus are transforming to fens and the increase in the proportion
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Figure 5.5: Streamflow hydrograph for: (a) A subset of the calibration period from 2006
to 2009 and; (b) Validation period from 2012-2016 [119].

91



Figure 5.6: Prediction of land cover change over a 100 years interval (2010-2100) simulated
for GFDL-CM3 climate model (RCP8.5): (a) Distribution of land cover in 2010; (b) Dis-
tribution of land cover simulated by TSLCM for 2100.
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of the landscape covered in fen is accelerating (Figure 5.6). This is consistent with other
qualitative predictions based upon observations of historical change [23, 114, 14].

Figure 5.7 reports the change in hydrological land cover under each climate scenario
over the simulation time for the GFDL-CM3 climate model. The rate of change simulated
for RCP8.5 is greater than other selected RCPs. The distribution of primary runoff regions
has been increasing across all RCPs, whereas the distribution of secondary runoff areas has
been continuously declining; considering these trends, streamflow is expected to rise in the
future as a result of this thaw-induced change. The same behavior was observed in the
predicted land cover changes for other selected GCMs.

Figure 5.7: Transitions of land covers in three-time increments under three selected RCPs
for GFDL-CM3 climate model.

93



5.5.3 Climate Scenarios: Hydrographs (Before and After)

In order to evaluate the effects of climate change on hydrological responses in the Scotty
Creek basin, we compared the simulated streamflow across three climate models (BCC-
CSM, GFDL-CM3, and MIROC5) and three scenarios (RCP2.6, 4.5, and 8.5).

Figure 5.8 shows the streamflow values on each day of the year averaged over the period
from 1995-2016 (pre-2016), and over the period from 2016-2100 (post-2016). Figure 5.8
illustrates that, in all nine cases, the highest daily streamflow appears earlier in the post-
2016 simulations. Additionally, the leftward shift in streamflow observed in the post-2016
simulations suggests that there is a high likelihood of the spring freshet occurring earlier in
the future. The higher estimated 90% quantile for post-2016 than pre-2016 in each climate
scenario confirms the expected impacts of climate change.

The majority of the basin serves as a primary runoff area during high flow periods (i.e.,
April and May during the spring freshet), and the fill-and-spill process happening in the
secondary runoff area controls the generated runoff magnitude during the moderate flow
periods. The importance of climate-induced land cover change, especially, the transition
of secondary runoff area to primary runoff during low-flow can be noticed in Figure 5.8
after the spring freshet (i.e., day 150).

5.5.4 Climate Scenarios: Hydrographs (Trends)

The 10-year moving average of annual peak streamflow for three climate scenarios is illus-
trated in Figure 5.10. Each column reports the trend of the average estimated annual peak
of the three selected climate models and observations in each scenario from 1995-2100. The
bounds in the figures represent the maximum and minimum of the streamflow simulated
by the three selected climate models. This uncertainty indicator helps to improve the
understanding of the potential range of outcomes and the level of confidence that can be
placed on the model predictions.

A gradual increase is observed in the predicted annual peak streamflow for RCP2.6,
and RCP4.5 during the 100 years time increment (Figure 5.10), while there is a sharper
rise in predicted streamflow for RCP8.5, especially after 2070. These increases are a result
of changes in the climate variables such as temperature and precipitation, which have led
to changes in the hydrological response of the basin (Figure 5.9).

The estimated annual volume of streamflow shows a trend that is similar to the trend
observed for the estimated annual peak streamflow in the three climate scenarios (Figure
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Figure 5.8: The simulated streamflow values in each day of the year averaged over 1995-
2016 (pre-2016), and over 2016-2100, (post-2016) [119].
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5.11). This suggests that the changes in precipitation and temperature are likely to have
a significant impact on the annual volume of streamflow in the basin (Figure 5.9).

Moreover, it is noteworthy that the observed streamflow aligns more closely with the
maximum values of the predicted annual peak streamflow and the average values of the
annual volume streamflow for the three climate models.

The graph in Figure 5.12 provides valuable insights into the variations in streamflow
over the selected time period. Specifically, the 10-year moving average of the maximum,
minimum, and average values of the simulated runoff ratio for the three climate change
models and scenarios are presented. The results indicate that the runoff ratio is expected to
increase considerably between 2010 and 2100 in all three RCP scenarios, with an increase
ranging from 20% to 25% for each RCP.

This highlights a significant change in the hydrological cycle of the basin, primarily
driven by the rise in precipitation observed in Figure 5.9.b. The warming climate can
hold more moisture in the atmosphere, resulting in increased precipitation, and warmer
temperatures can cause earlier snowmelt and a shift from snow to rain, which ultimately
increases streamflow.

5.5.5 Climate Scenarios: Hydrographs (With and Without Land
Cover Change Transition)

To explore how land cover changes affect predicted streamflow under different climate sce-
narios, the Raven-UWFS model was used to compare simulated summer peak and summer
volume of streamflow with and without considering a land cover change for BCC-CSM1.1
under three RCPs. For the case without land cover transitions, the land cover is held fixed
at the 2010 land cover. Here, the Relative Difference Percentage (RDP) is used to estimate
the impact of land cover transition on the simulated streamflow which can be calculated
by:

RDP =
FwithLCC − FwithoutLCC

FwithLCC

(5.5)

where FwithLCC and FwithoutLCC represent the simulated streamflow by the hydrological
model with and without land cover evolution information as input. The estimated RDP
values for summer peak streamflow range from 9% to 9.8% for RCP2.6, RCP4.5, and
RCP8.5, respectively. Similarly, the RDP values for summer streamflow volume range
from 10.5% to 11% under the same scenarios. This indicates that precipitation and tem-
perature changes are significant factors contributing to the increase in streamflow. The
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Figure 5.9: The 10-year moving average of the forecasted temperature and precipitation
for three climate scenarios: (a) Air temperature; (b) Precipitation.
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Figure 5.10: The 10-year moving average of the simulated annual peak from three climate
scenarios and models [119].

Figure 5.11: The 10-year moving average of the simulated annual runoff volume from the
three climate scenarios and the models [119].

98



Figure 5.12: The 10-year moving average of the simulated annual runoff ratio from the
three climate scenarios and the models [119].
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Figure 5.13: The comparison of simulated: (a) summer peak; (b) Summer volume of
streamflow from the Scotty Creek basin with and without land cover change for RCP4.5
of the BCC-CSM1.1 climate model.

RDP value for annual peak and volume streamflow is estimated to be around 7% and 5.6%,
respectively. These results suggest that the fill-and-spill process has a greater impact on
the generation of runoff in the secondary area during the summer season.

In Figure 5.13, land cover transitions were examined in relation to predicted stream-
flow by comparing the simulated summer peak flow and summer volume with and without
the incorporation of land cover transitions in the model for BCC-CSM1.1 under RCP4.5.
The simulated streamflow when the land cover transition information is introduced to the
hydrological model is higher, as the majority of land cover transitions are from secondary
to primary runoff areas (Figure 5.13), meaning that less water is stored and lost as evap-
oration. Furthermore, as the basin’s storage capacity decreases during this transition, the
streamflow increases.

5.6 Conclusion

In the discontinuous permafrost zones of the Northwest Territories, lateral permafrost thaw
is causing the redistribution of hydrologically important land cover types and modifying
their hydrological function. Permafrost thaw has been found to increase hydrological con-
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nectivity and streamflow magnitude in a basin, decrease secondary runoff area and storage
capacity, accelerate the transition to primary runoff area, and reduce the extent of sec-
ondary runoff area.

A land cover change model, TSLCM, and a hydrological model, UWFS, were here
coupled to examine the effects of thaw-induced land cover transitions on the hydrologi-
cal response of a wetland-permafrost plateau complex. The TSLCM is used to estimate
the long-term evolution of the hydrologically important land cover and simulate spatial
patterns and pace of change. Based on an upscaled fill-and-spill process in wetlands, the
probabilistic UWFS algorithm in Raven differentiates runoff generation processes in sec-
ondary and primary runoff areas.

Coupling the TSLCM land cover transition data with the UWFS model estimates
the long-term effects of land cover evolution on streamflow generation. According to the
simulated streamflow for the selected model and scenarios, there is a possibility of an
earlier spring freshet occurring in the future due to the increasing temperatures. Based on
the selected climate models and scenarios, it is predicted that basin runoff will increase by
approximately 20 to 25% in the future. This corresponds to the expected rise in streamflow
volume, which is due to an anticipated increase in rainfall within the basin, as well as an
increase in bog capture primarily resulting from the conversion of secondary runoff areas
to primary areas.

The study indicated that land cover transitions had an impact on predicted streamflow
for the BCC-CSM1.1 model under different RCPs, resulting in an estimated increase of
approximately 10% beyond that of meteorological changes alone. The fact that similar
behavior was observed in other selected GCMs indicates a low level of uncertainty in the
estimation of land cover’s impact on streamflow. These findings align with those of Connon
et al.(2014) [31], who found that ignoring connected bogs as dynamic transmission features
in the landscape may lead to an underestimation of water available for streamflow by 5-
15%.

This study suggests that while land cover transitions were a critical factor in increasing
streamflow in the past, in the future, precipitation is expected to play a more dominant
role due to the decrease in the extent of the secondary runoff area and the transitions to
the primary runoff area.

The results of this study have made a contribution to our understanding of manag-
ing and monitoring hydrological responses to land cover evolution in Canadian wetlands.
The presented machine learning-informed hydrologic model coupling framework provides
a starting point for bridging the gap between hydrological models and machine learning-
based land cover change models. Further application and evaluation of this framework
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in other areas of interest would strengthen our understanding of the effects of permafrost
thaw-induced land cover transitions on streamflow generation and are likely to improve the
performance of hydrological models created for discontinuous permafrost zones.

However, it is important to acknowledge the limitations and potential sources of uncer-
tainty associated with the presented methods that must be considered in future studies.
One source of uncertainty is the limited selection of climate change models used to predict
climate-related variables, which was done without following a systematic processs. Future
studies could benefit from including a larger ensemble of climate models to improve the
reliability of the presented approach.

Moreover, as mentioned in Chapter 4, the TSLCM used in this study is not able to
capture the transition from wetlands to forest over time since this transition was not the
main land cover change in the study area during the time presented in the input data.
This could affect the runoff generation simulated by the hydrological model and should be
addressed in future studies. By addressing these limitations, the presented approach could
be further refined and applied to other regions, providing useful information for managing
and monitoring hydrological responses to land cover evolution in Canadian wetlands and
beyond.
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Chapter 6

Conclusions
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6.1 Summary

The aim of this research was to develop, test, and apply methods for simulating the thaw-
induced evolution of dominant land covers in discontinuous permafrost zones and its hydro-
logical effect. In Chapter 1, three objectives were presented; Chapter 3 through Chapter
5 documented the research required to achieve those objectives. Here, we summarize the
key findings of each Chapter and their associated objectives:

• Objective 1) Iteratively develop and test a machine learning geospatial
model that can estimate the conversion between the three primary land
cover types at SCRS and in other similar discontinuous permafrost re-
gions of the discontinuous permafrost zones in the taiga plains: Chapter 4
discusses the development of a spatio-temporal TSLCM for simulating the transition
of dominant land covers in these discontinuous permafrost zones. This is the first
land cover change model developed for thawing discontinuous permafrost landscapes
that considers both spatial and temporal drivers of change. The TSLCM was demon-
strated to reliably represent historical hydrologically-important land cover transitions
and provide estimates of the long-term future climate impacts on the evolution of
these unique landscapes. A novel data boosting strategy was presented in this work
to solve the data limitation issues for training a machine learning model, specifically
for infilling data in time when only a finite number of historically classified images
are available for training. The boosting strategy was able to help simulate the long-
term land cover changes by generating synthetic data from the existing data set and
adding it to the training data set. It is possible that similar strategies may be de-
ployed for other machine-learning models of the transient phenomenon in data-poor
environments.

Chapter 4 presents the performance of different machine learning methods for cap-
turing land cover transition patterns and rates in discontinuous permafrost zones,
identifies a preferred machine learning-based model to replicate historical data and
extrapolate the change predictions into the future, and examines the role of different
driving factors of change in informing an accurate land cover change model. The re-
sults proved that MLR’s extrapolations into the future exhibit superior consistency
with projected physical patterns compared to ensemble learning’s time series land
cover change projections, and the distance-based variables were the most important
factors influencing the model’s output. The developed model predicted a time series
of land cover changes, indicating that permafrost plateaus are undergoing transfor-
mation into fens. Furthermore, the model predicted an increase in the proportion of
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fen cover over time. This is consistent with historical observations and our current
understanding of change mechanisms in these landscapes. Overall, the developed
TSLCM is a valuable tool for predicting hydrologically-important land cover transi-
tions and analyzing the long-term climate impacts on the hydrology of discontinuous
permafrost regions.

• Objective 2) Use historical remote sensing imagery products to evaluate
long-term changes to the land cover characteristics of discontinuous per-
mafrost zone’s wetlands by incorporating deep learning-based algorithms:
This objective aims to enhance our understanding of the factors driving changes in
discontinuous permafrost zones over time, specifically related to thaw-induced pro-
cesses, and streamline the data preparation process for hydrological analysis, making
it easier and more efficient to study the hydrological impacts of permafrost thaw.

The TSLCM devised in Chapter 4 and hydrological analysis of the land cover evo-
lution covered in Chapter 5 both require classified maps and the estimates of the
delineated runoff areas of the wetlands. These classified maps can now be gener-
ated using the TWINN automatic solution presented in Chapter 3. The TWINN
solution enables the automatic classification of high-resolution RGB imagery from
discontinuous permafrost zones into forests, wetlands, and water. This allows for a
more efficient and accurate analysis of land cover change in wetlands over time. In
addition, TWINN’s ability to delineate the local runoff area of individual wetlands is
also critical for achieving the final goal of this thesis. The runoff area of wetlands is
needed to estimate the contributing area of isolated and connected wetlands, which
is essential for hydrological analysis and understanding the effects of climate change.

The TWINN solution generated promising results for classifying wetlands, permafrost
plateaus, and water using only RGB images. This study confirmed that CNN’s deep
architecture and machine learning methodologies are superior to previous pixel-based
methods for classifying heterogeneous landscapes like wetlands.

• Objective 3) Simulate the likely future hydrological impacts of thaw-induced
landscape changes based on the predicted land cover evolution from the
machine learning-based model using a hydrological model( UWFS method)
implemented in the Raven hydrological framework: Chapter 3, Chapter 4,
and Chapter 5 aimed to reach this objective. Chapter 5 was focused on address-
ing this objective by coupling the developed TSLCM [4], the TWINN solution, and
the hydrological model (the UWFS method), implemented in the Raven hydrological
modeling framework [120].
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To develop a hydrological model of the area, the UWFS model [120] needed to be
informed by historical land cover maps and changes in the primary and secondary
runoff areas of wetlands over time. The TWINN solution, presented in Chapter 3,
was used to generate land cover distribution data that informs hydrological models
like UWFS. Moreover, Chapter 5 outlines an approach to incorporate information
on land cover changes due to climate change and permafrost thaw into the UWFS
model, which is crucial for enhancing our understanding of the hydrological impacts
in the region.

Then, the outputs of the land cover change model for different climate scenarios in
the future and historical data were imported into the developed hydrological model
to analyze the role of land cover evolution on the hydrology of the Scotty Creek
basin. The amount of land cover change in the Scotty Creek basin that the TSLCM
anticipated for future climatic scenarios demonstrated the model’s applicability on a
larger scale.

The study contributes to a better understanding of the historical role of landscape
change on streamflow in the Scotty Creek basin. It provides an approach to incorpo-
rate information on land cover changes due to climate change and permafrost thaw
directly into hydrological models. The findings of this study show that future appli-
cation and assessment of the provided machine learning-informed hydrologic model
coupling framework on other regions of interest can help to improve the understand-
ing of the impacts of permafrost thaw-induced land cover changes on streamflow
generation.

The land cover change model and classification model developed herein are thought to
be helpful in further research used to improve our understanding of the poorly understood
process of land cover change in discontinuous permafrost regions of the NWT and similar
environments.

6.2 Thesis Limitations and Scope

The methods developed in this thesis represent a contribution to our understanding of
how thaw-induced land cover changes affect the hydrological response of the unique Scotty
Creek-like landscape type found in Northern Canada. However, there are several limita-
tions related to each presented method in this work, especially with regard to the extension
to other landscape types. Here, the most important drawbacks of the devised methods are
listed:
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• The semantic segmentation model was trained only on the data set representing the
Scotty Creek Basin land covers, this leads to misclassifications when employing the
TWINN solution on other taiga wetland environments.

• Only three types of lands—water, wetlands, and forests—can be identified using the
classification approach in high-resolution images of any taiga wetlands region. This
solution does not currently generate classified maps that incorporate uplands and
permafrost plateaus.

• The TSLCM was developed using data collected at the SCRS; there may therefore
be several limitations regarding the model’s applicability to larger scales and to other
discontinuous permafrost regions.

• The driving factors of change for developing the land cover change model were se-
lected based on the characteristics of the dominant landscapes and pattern of land
cover evolution in the SCRS. Other key drivers of change may affect how land types
evolve in different cases, and it is likely that additional drivers could improve the
performance of the existing model.

• The TSLCM makes the assumption that all bogs connected to fens transform into
fens based on the ’bog capture’ phenomenon; however, the nature of this transition
may vary in other discontinuous permafrost landscapes.

• The hydrological simulations did not consider lateral heat transfer through per-
mafrost underlying taliks or other complex local-scale phenomena.

• The selection of climate change models used to predict climate-related variables has
been done without following a systematic process and only a limited number of
models have been included in the analysis. It may be that alternate selection of
climate models would lead to distinct results.

6.3 Future Works

The objective of this study is to enhance the effectiveness of current classification methods
and develop a land cover change model of discontinuous permafrost regions of NWT for
producing geospatial data used in the hydrological analysis of wetland systems. The study
did not aim to create a flawless and unbiased representation of reality. Based on the
limitations of the developed methods in this work, there are other pathways that can be
pursued to improve upon and extend this work. Future work may involve:
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• Including and assessing more candidate driving factors of change and/or training on
more data sets, so the land cover change model will be able to take diverse transitions
into account in any discontinuous permafrost zones, improving its effectiveness and
transferability.

• Improving the performance of the TWINN solution by boosting the training data-
set and including more land cover types covering the taiga wetlands discontinuous
permafrost regions.

• Addressing the relative impacts of land cover evolution on the hydrology of the taiga
plains via hydrological modelling using the simulated land cover as inputs for other
discontinuous permafrost landscapes.

• Including a more comprehensive ensemble of climate change forecasts to inform sim-
ulation of the streamflow trends.

6.4 Publications and Presentations

6.4.1 Research Papers

Chapter 4 of this thesis is published in peer-reviewed journal and Chapter 3 of this thesis
is under review in the International Journal of Applied Earth Observation and Geoinfor-
mation. The list of publications is as follows:

• Shaghayegh Akbarpour and James R. Craig. Simulating thaw-induced land cover
change in discontinuous permafrost landscapes. Remote Sensing Applications: Soci-
ety and Environment, 28:100829, 2022

• Shaghayegh Akbarpour, Laura Chasmer, and James R. Craig. Hydrological classifi-
cation of isolated wetlands in discontinuous permafrost regions using RGB imagery.
Under review in the International Journal of Applied Earth Observation and Geoin-
formation, 2023

6.4.2 Conference Presentations

• A computer vision-based wetland identification solution for discontinuous permafrost
landscapes of northern Canada, Shaghayegh Akbarpour, James R. Craig, AGU Fall
Meeting 2022, Chicago.
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• Application of machine-learning to spatio-temporal modeling of land cover evolution
in discontinuous permafrost regions, Shaghayegh Akbarpour, James R. Craig, CWRA
June 2022, Canmore.

• A machine-learning model to predict uncertainty in permafrost thaw-induced land
cover transition, Shaghayegh Akbarpour, James R. Craig, EGU May 2022, Vienna.

• Multinomial simulation of land cover evolution in discontinuous permafrost zones of
Northwest Territories, Shaghayegh Akbarpour,James R. Craig , AGU Fall Meeting
2021.

• Semantic segmentation of Isolated wetland in discontinuous permafrost regions of the
Northwest Territories using deep convolutional neural networks, Shaghayegh Akbar-
pour, James R. Craig, AGU Fall Meeting 2021.

• Impact of climate-induced land cover change on the hydrological response of discon-
tinuous permafrost landscapes,Mahkameh Taheri, Shaghayegh Akbarpour, James R.
Craig, ArcticNet ASM 2021.

• Modelling Evolution of Discontinuous Permafrost Landscapes and Hydrology, Shaghayegh
Akbarpour, James R. Craig, AGU Fall Meeting 2020.

• Modeling the evolution of landcover in a lowland ecosystem of the NWT , Shaghayegh
Akbarpour, James R. Craig, AC2020conferenc.
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[34] Élise G. Devoie, James R. Craig, Ryan F. Connon, and William Quinton. Taliks: a
tipping point in discontinuous permafrost degradation in peatlands. Water Resources
Research, 55(11):9838–9857, nov 2019.

113
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Appendix A

Repositories of data and Code

A.1 Data

The remote sensing data used in this work which helped in achieving the goals of this
research is available in the Scotty Creek Data Archive. This archive is hosted at Wilfrid
Laurier University and can be requested by contacting Dr. William Quinton (wquin-
ton@wlu.ca) who heads this research station.

A.2 Model

The TSLCM code model discussed in Chapter 3 is available here:

Transition-of-Landcovers-SCRS.
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