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Abstract

Discontinuous permafrost regions are experiencing a change in land cover distribution
as a result of permafrost thaw. In wetlands interspersed with discontinuous permafrost,
climate change is particularly problematic because temperature increases can result in
signi�cant permafrost thaw, thaw-driven landscape changes, and resultant changes in wa-
tershed hydrologic responses.

The inuence of land cover change on the short- and long-term hydrological responses of
wetland-peatland complexes is poorly understood. A better understanding of the impacts
of climate-related land cover evolution on the hydrology of wetland-covered watersheds
requires information about the distribution of hydrologically important lands, their pat-
tern, and the rate at which they change over time. Here, we �rst developed a machine
learning-based land cover evolution model (TSLCM) to estimate the long-term evolution of
dominant land covers for application to the discontinuous permafrost regions of Northern
Canada. This model is applied to replicate historical land cover and estimate future land
cover scenarios at the Scotty Creek Research Basin in the Northwest Territories, Canada.

A signi�cant challenge when analyzing land cover change e�ects on hydrological proper-
ties is generating time-dependent classi�ed maps of the region of interest, and the challenges
associated with preprocessing remotely sensed data for discriminating between wetlands
and forest-covered regions. In this work, we focus on two important objectives supporting
the improved classi�cation of wetlands in discontinuous permafrost regions: the exclusive
use of only RGB imagery, and the use of an image segmentation method to accelerate the
automatic classi�cation of land cover. A semantic segmentation neural network, a multi-
layer perceptron (MLP), and watershed function algorithms are applied to develop the
taiga wetland identi�cation neural network (TWINN) for the hydrological classi�cation of
wetlands. TWINN is here demonstrated to accurately classify high-resolution imagery of
discontinuous permafrost regions within the Northwest Territories into the water, forest,
and wetlands, and also able to delineate the runo� area of wetlands.

To study the e�ect of land cover evolution on runo� generation in the Scotty Creek
basin, the products of TWINN and TSLCM are used to inform a process-based hydrological
model where land cover change is represented explicitly. According to simulation results,
land cover transitions can modify annual mean streamow by as much as 7%, in addition
to inuences due to changing precipitation regimes alone.
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1.1 Introduction

Climate change has yielded numerous environmental changes in the northern hemisphere,
especially in permafrost regions [117]. Rapid warming in permafrost regions is increasing
the output of greenhouse gases [29] and leading to thaw-induced changes to regional hy-
drology [30]. Recent studies in the Arctic and subarctic regions reect a growing awareness
of changes in permafrost regions; these studies focus on vegetation, wildlife, hydrological
changes in aquatic ecosystems, land use and land cover, and geophysical and geomorpho-
logical changes of the permafrost underlain regions [128].

In the Northwest Territories (NWT), Canada, and elsewhere, the outcome of permafrost
degradation can be observed as land cover and hydrologic change in discontinuous per-
mafrost regions. Lateral permafrost thaw in these discontinuous permafrost regions is
inuencing permafrost's distribution and extent, and intensifying the fragmentation rate
of peat plateaus. The increased permafrost thaw a�ects the spatial distribution of three key
land cover types (permafrost plateaus, bogs, and fens), and consequently, their hydrologi-
cal responses [105]. Historical remote sensing products report a noticeable transformation
of forest-covered land (permafrost plateaus) into wetland (fens and bogs) [105, 104]. This
transformation is causing restrictions in hydrological interactions between groundwater
and surface water, altering water storage, increasing summer streamow, and changing
the hydrological role of permafrost [105]. Connon et al. 2014 [30] illustrated that climate-
related changes in hydraulic connectivity are increasing streamow in the NWT due to
degradation in the lateral extent of permafrost plateaus. Many local factors may inuence
vertical and lateral permafrost thaw, including thermal gradient, air temperature, incom-
ing radiation, canopy cover, the lateral movement of groundwater, and the geometry of the
thawing permafrost.

A variety of permafrost models are used in cryosphere science to assess the inuence
of permafrost evolution and the rate of vertical permafrost thaw. However, models for
simulating lateral thaw are limited to complex 3D models [63, 101, 78]. These models
are generally too computationally expensive to deploy at large scales. Other means are
therefore needed in order to predict local rates of lateral permafrost loss and corresponding
land cover change. Such predictions of land cover change can then be input into hydrologic
models to determine the potential for hydrologic change at watershed scales. To date, there
is no available predictive model for simulating this spatio-temporal land cover evolution and
its corresponding hydrological impact in discontinuous permafrost zones characteristic of
those found in the NWT. The absence of a predictive model for spatio-temporal land cover
evolution and its corresponding hydrological impact may be due to a number of reasons,
including the complexity of the process, the lack of reliable long-term historical remote
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sensing data sets (particularly classi�ed maps showing the distribution of hydrologically
relevant land cover), and resource constraints. The challenging and time-consuming process
of data processing is another concern when analyzing long-term changes in dominant land
covers in discontinuous permafrost zones.

To analyze the long-term e�ects of land cover evolution on hydrological properties
of a basin, track the pattern and pace of change, and reduce prediction uncertainties, a
spatio-temporal land cover change model trained by historical observations of land cover
evolution in discontinuous permafrost regions of the taiga plains is needed. There are many
alternative methods available for addressing this need; recent improvements in machine
learning, deep learning, and advanced computer vision techniques have shown a potential
to solve contemporary problems in land cover classi�cation, simulating long-term land
cover evolution, and coupling hydrological models and land cover change models in other
geographic locations [142, 126].

1.2 Aims and Objectives

Permafrost thaw drives the erosion of peat plateaus, leads to the merging of bogs and
fens, inuences the wetting-drying cycles of the ground, and changes the primary runo�
characteristics of landscapes. The overarching goal of this research is to study these thaw-
induced land cover change e�ects on the hydrological properties of systems comprised of
permafrost plateaus, fens, and bogs such as those depicted in Figure 1.1. The research
described herein addresses this goal by:

1. Developing an automatic method for the classi�cation of wetlands and permafrost
plateau from remote sensing products.

2. Developing, training, and testing a machine-learning-based land cover change model
for simulating both long-term and short-term land cover evolution due to lateral
permafrost thaw.

3. Creating a simple wetland runo� contributing area delineation method.

4. Coupling a hydrological model and land cover change model predictions to analyze
the hydrological e�ects of land cover change and assess the magnitude of land cover
change inuence relative to the inuence of changing meteorological forcing.
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In this research, a general machine learning-based land cover change model and a deep
learning-based automatic solution were developed to analyze the e�ects of remotely ob-
servable variables on spatial and temporal patterns of historical change in lowland discon-
tinuous permafrost zones and generate long-term land cover change scenarios for further
analysis. Challenges associated with developing a spatio-temporal land cover change model
include extrapolating the time series change of land cover when the training data set is
limited and the portability of model results to other regions. The temporal extrapolation
and transferability issue can be tackled by implementing and testing machine learning and
data generative methods. An additional concern regarding the application of the developed
land cover change model is the time-consuming and complex input data preparation step,
which can be addressed by developing an automated method for land cover classi�cation.
The �nal portion of this thesis is focused on using the output of the developed land cover
change model as input to a hydrological model to illustrate the hydrological e�ects of land
cover evolution in lowland discontinuous permafrost zones. Coupling hydrological models
to land cover change models can help to quantify the contribution of land cover changes
to the watershed properties such as ood potential, soil water availability, or groundwater
recharge. Here, the land cover change model and the Raven [32] hydrological model were
coupled in a data coupling framework, where the results of the land cover change model
were used to inform the hydrological model. Speci�cally, the simulated land cover pre-
dicted by the land cover change model was used to delineate the primary and secondary
contributing (bog contributing areas) areas by the devised runo� area delineation method
in this research. Discretizing the primary and secondary contributing areas helps to under-
stand how isolated bogs connect over time and how the conversion from isolated bogs to
connected bogs alters the hydrological function of the landscape. The delineated primary
and secondary runo� areas were employed as an input in the Raven hydrological frame-
work [32] to simulate the likely future hydrological impacts of the landscape changes and
investigate the e�ects of this parameter on the hydrological responses.

The explicit objectives of this research are to:

1. Iteratively develop and test a machine learning geospatial model that can estimate
the conversion between the three primary land cover types at SCRS and in other
similar discontinuous permafrost regions of the discontinuous permafrost zones in
the taiga plains (Chapter 4).

2. Use historical remote sensing imagery products to evaluate long-term changes to the
land cover characteristics of discontinuous permafrost zone's wetlands by incorporat-
ing deep learning-based algorithms (Chapter 3 and Chapter 4).
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3. Simulate the likely future hydrological impacts of thaw-induced landscape changes
based on the predicted land cover evolution from the machine learning-based model
using a hydrological model (UWFS method) implemented in the Raven hydrological
framework (Chapter 3, Chapter 4, and Chapter 5).

Figure 1.1 portrays the owchart of this thesis.

1.3 Thesis structure

This thesis is organized as follows:

Chapter 2 examines the impacts of permafrost thaw on land cover and hydrological pro-
cesses in discontinuous permafrost regions. It also discusses the use of machine learning
and deep learning algorithms to detect thaw-induced changes and evaluates the dynamic
feedback between land cover change models and hydrologic models for more accurate quan-
ti�cation of catchment ecosystems in permafrost regions. The overall goal of the chapter is
to provide a comprehensive understanding of the complex interactions between permafrost
thaw, land cover change, and hydrological processes in discontinuous permafrost regions.

Chapter 3 includes a paper submitted to the International Journal of Applied Earth
Observation and Geoinformation [3], co-authored by myself, Dr. Laura Chasmer, and my
supervisor, Dr. James R. Craig, with author e�orts noted in the statement of contribu-
tions. In this paper, we applied a semantic segmentation-deep learning model and a Multi
Layer Perceptron (MLP) method to develop the TWINN for the classi�cation of isolated
wetlands. In order to improve upon other methods used for identifying wetlands in dis-
continuous permafrost regions, we focused on two important objectives: using only RGB
images and using a method of image segmentation to speed up the processing of data for
the classi�cation of wetlands and permafrost plateaus.

Chapter 4 corresponds to a paper published in Remote Sensing Applications: Society
and Environment (2022) [4], co-authored by myself and my supervisor, Dr. James R.
Craig. In this paper, we discussed the development of a machine learning-based model to
estimate the evolution of the key hydrologically-important land cover types in discontinuous
permafrost regions of the taiga plains. The model was derived, trained, and tested against
historical observations of landscape change. Simulating land cover transitions and patterns
using the TSLCM was demonstrated to be e�ective against historical observations. This
study concluded that ensemble learning models are weak in forecasting time series changes
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Figure 1.1: Flow chart representing the objectives of this thesis.
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and capturing spatial-temporal correlations, but still produce better results than MLR
methods in replicating historical land cover changes.

In Chapter 5, we examined the potential long-term impacts of thaw-driven land cover
evolution on the hydrological response of the gauged Scotty Creek basin in the Northwest
territories. To do this, we used reasonable estimates of future land cover generated by
the TSLCM and a hydrological model which captures the key runo� characteristics of
the landscape. We quanti�ed the e�ects of land cover change on runo� from the basin
by employing an UWFS method which can simulate the runo� response of hundreds to
thousands of wetlands.

Chapter 6 summarizes the conclusions of the research conducted in this dissertation.
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Chapter 2

Background and literature review
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A discussion of discontinuous permafrost land covers is presented here in a way that
emphasizes the land cover alterations and considers potential hydrological trends caused
by thaw processes. The �rst two sections examine discontinuous permafrost land cover
types and their interactions. The chapter also reviews studies that focus on the impacts
of the permafrost thaw on the distribution of the dominant land covers especially wet-
lands, machine learning-based and deep learning algorithms for improving the accuracy of
remote sensing products and the dynamic feedback between land cover change model and
hydrologic models.

2.1 Land Cover: Permafrost

Permafrost refers to the ground that remains below 0°C temperature for at least two
consecutive years [133]. The surface layer of soil above permafrost, which freezes and
thaws in a cycle, is referred to as the active layer, which may be underlain by perennially
frozen or unfrozen ground. Each year, climate change brings noticeable seasonality to
discontinuous permafrost regions, with distinctive changes in land cover and hydrological
conditions occurring during each season [133].

Zhang et al. (1999) [139] reported that about 50% of the exposed land in the Northern
Hemisphere is in a seasonal freezing-thawing state during winter. The seasonal freezing and
thawing of permafrost have a strong impact on the hydrologic functions of the landscape,
the land surface energy budget, and the biological processes involved [39].

2.2 Land Cover: Discontinuous Permafrost Lands

Permafrost zones occupy about 22% of the Northern Hemisphere [139]. The distribution
pattern of permafrost in discontinuous permafrost regions is inuenced by various factors,
including topography, hydrology, as well as local surfaces and subsurface characteristics,
such as vegetation cover and soil texture [39, 111].

Some areas in the NWT are characterized by permafrost-underlain peat plateaus, also
known as permafrost plateaus, which are formed by the accumulation of dead plants [133].
The extent of the permafrost plateaus varies from tens of meters to kilometers; the surface
of this type of land is dry, and their surroundings are typically waterlogged. Permafrost
plateaus are elevated features; this type of land is known as a runo� generator in the
representative discontinuous permafrost region of Scotty Creek [30, 106] (Figure 2.1). The
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occurrence of wetlands in the discontinuous permafrost regions depends on the balance
between gains and losses of water. Transport of water to the surrounding wetlands mostly
occurs due to the contribution of snowmelt during freshet [79, 116], and the water is
laterally transported from the permafrost plateaus through the zone of high saturated
hydraulic conductivity above the permafrost [116]. Permafrost plateaus impound water in
bogs and redirect ow to the fens, as the permafrost sits at a higher elevation than the
surrounding terrain [47, 106].

Connon et al. (2014) [30] created a conceptual model whereby the generated runo� from
permafrost plateaus can ow into channel fen (primary runo�), discharge into the channel
fen through a series of connected or cascading bogs (secondary runo�) or ow into isolated
bogs where the water will be stored [30]. Bogs and fens are two major types of wetlands
existing in the NWT; In this research, their classi�cation is based on their hydrological
properties rather than their ecological functions (Figure 2.1). To delineate the runo� area
of fens and bogs, the permafrost plateau area can be discretized into primary runo� and
secondary runo� areas (Figure 2.1). The primary runo� area, which is the area where water
is drained directly into channel fens, is depicted in dark gray in Figure 2.1. In contrast,
the secondary runo� area, which contributes water to isolated bogs, is distinguished by a
relatively lighter gray shade in the same �gure (Figure 2.1).

Fens are formed as wide channels comprising the drainage network of basins, and bogs
are presented as patches distributed in a discontinuous permafrost region [106]. Channel
fens and bogs have contrasting hydrological functions; channel fens are water conveyors,
and bogs are not typically able to convey water. The primary sources of water for bogs are
rainfall and snowmelt, while fens obtain water both vertically and laterally from ground-
water discharge [133].

Based on a thorough investigation of hydrometric data, Quinton et al. (2003) [106]
concluded that there is a positive correlation between the basin's annual runo� and the fen
coverage. In contrast, the negative correlation between bog and fen spatial coverage was
reported as negative, which indicates that bogs play a major role in storing water. In some
instances, bogs or a series of connected bogs can transfer water to channel fen (secondary
runo�) and the basin outlet which occurs during periods of high moisture supply (i.e. in
response to snow melting or large summer rain) [30].

2.3 Thaw-induced Changes to Land Cover

Numerous studies have reported a recent increase in the rate of lateral permafrost thaw, and
climate warming is a�ecting the lateral exchange of water and energy between permafrost
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Figure 2.1: Classi�ed map of the SCRS in 1947 representing fen, bog cascades, and their
estimated contributing area.
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plateaus, fens, and bogs [12, 27, 64, 67, 105].

The interdependence of thaw-induced land cover evolution and climate change, specif-
ically temperature change, is now altering the distribution of permafrost plateaus, fens,
and bogs in discontinuous permafrost regions of Northern Canada. Investigations into per-
mafrost thaw reveal numerous impacts upon the environment and hydrology of the NWT,
including an increase in baseow [46], alteration of lake drainage [96], and drastic changes
in the land cover. Changes in the energy balance trigger permafrost degradation in the
NWT, thawing of peat-rich zones, and transformation of land cover.

Quinton et al. (2011) [105] identi�ed a reduction in the area of regions covered by
permafrost plateaus and an increase in the distribution of wetlands as a result of permafrost
thaw in the SCRS (Figure 2.2). Figure 2.2 depicts the main land cover transitions over a
30-year period in the SCRS. The transitions were predominantly observed in areas closer to
the thawing edge of permafrost plateaus; the gray color indicates an increase in the fen area
or a transition from permafrost plateaus to fen. The blue color represents the transition of
permafrost plateaus to bog due to permafrost thaw, while the red color depicts bogs that
became hydraulically connected to and then transitioned to fen during the 30-year time
step (called the "bog capture" phenomenon [30]).

Elimination of permafrost plateaus from between channel fen and a series of isolated
bogs ("bog capture") increases the runo� contributing area, especially primary runo� con-
tributing areas [30, 130]. The changes in the extent of the secondary runo� area were found
to be controlled by the storage capacity of the bogs.

The evolution of permafrost plateaus, fens, and bogs caused by lateral permafrost thaw
changes the local hydrological cycles. Connon et al. (2014) [30] concluded that transfor-
mation from plateaus to wetlands (at bogs) caused by permafrost thaw has a direct e�ect
on the generation of runo� and contributing area because of the increasing hydrological
connectivity through the surface and subsurface pathways. Quinton et al. (2011) [105]
analyzed the linkage between land-cover changes and river ow in the wetland-dominated
discontinuous permafrost of the SCRS. A combination of remote sensing and �eld studies
was utilized to understand the e�ects of horizontal heat ow on the land cover and basin
runo� when the permafrost plateaus thaw. The result of the analysis discovered a 38%
permafrost plateaus decline over 60 years. These remotely sensed observations were sup-
ported by �eld studies showing changes in surface saturation, loss of tree canopy, increase
in the transfer of thermal energy to the ground, and more permafrost degradation. These
changes also cause more drainage from the isolated bogs, allow hydrological connections
among bogs, and form more channel fens. An analysis of the spatial distribution of veg-
etation at the SCRS, changes in their structural characteristics, and alterations in the
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Figure 2.2: A 30-year (1970-2000) evolution of the SCRS illustrating the transition of
dominant land covers.
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permafrost-covered area was conducted by Chasmer et al. (2010) [23]. The study demon-
strated that most of the reduction in permafrost area occurred at the edge of permafrost
plateaus due to vegetation loss yield by the lateral thawing, the increase in meltwater
runo�, and the soil saturation at plateau edges. The chain reaction between the dissipa-
tion of permafrost and ecological change has been scrutinized, especially for the Scotty
Creek watershed. As permafrost plateaus are higher than the wetlands around them and
the permafrost core is ice-rich [106], the thawing core of the permafrost results in subsi-
dence of the ground surface. The increase in wetland areas as a consequence of thawing
leads to an increase in the energy inputs at their surface, this can be one of the main
drivers of lateral thawing through subsurface heat transfer via groundwater ow [130]. Be-
cause of the importance of land cover transition, it is desirable to be able to predict the
evolution of land cover to investigate the e�ects of permafrost thaw on the hydrological
characteristics of a permafrost environment. Moreover, analyzing the impact of land cover
evolution on the extent of secondary and primary contributing areas over time is necessary
to understand how each type of runo� area contributes to a basin water balance.

2.4 Land Cover: Classi�cation and Change Analysis

We are sometimes able to predict future changes to land covers by using the pattern
and intensity of change captured by satellite imagery. Here, we intend to use classi�ed
imagery to estimate the distribution of wetlands and permafrost-covered areas, detect land
cover transitions over time, track the rate of land cover evolution, capture the spatio-
temporal pattern of change, and reveal the hydrological e�ects of land cover evolution
on the discontinuous permafrost land covers in the NWT. Tracing the evolution of the
dominant land covers in discontinuous permafrost zones requires:

ˆ An accurate means of classi�cation of dominant land covers.

ˆ Models for simulating long-term and short-term land cover evolution both spatially
and temporally.

ˆ Methods for delineating the runo� area of the wetlands for hydrological modeling
purposes.

To develop and train an accurate land cover change model, we need classi�ed maps.
Both pixel-based and object-based classi�cation methods have been used for classifying
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dominant land covers of the southern NWT's discontinuous permafrost zones to deter-
mine the scale and magnitude of change during the last 70 years [23, 20, 26, 103, 42,
85, 84, 82, 57, 69]. Mapping permafrost plateaus via remotely sensed data on a large
scale requires a combination of statistical and numerical methods [108, 130]. The com-
plicated process of gathering remotely sensed data, and the availability and frequency of
the data are the main obstacles to using most of the developed statistical and numerical
methods. For instance, Hachem et al. (2009) [45] utilized the MODIS's land surface tem-
perature (LST) product for mapping permafrost presence/absence. The regional map of
permafrost was created by estimating the mean annual surface temperature and freezing
and thawing indices. A sinusoidal model for representing seasonal thermal variation for
each pixel is �tted over the daily LST. The validation of the method was done by �nding
the correlation between the calculated mean annual surface temperature and freezing and
thawing indices derived from the reference stations and the sinusoidal curve. The results
illuminated that there is a low correlation between indices derived from both methods,
the low correlation caused by the number of cloudy days, ignoring heterogeneity, and the
low spatial resolution of MODIS imageries. Recently, the spectral, spatial, and temporal
qualities of remote sensing products have been improved by the use of machine learning
and deep learning-based algorithms in the �elds of object detection, scene classi�cation,
image segmentation, change detection, geospatial land cover prediction, and land use and
land cover classi�cation [136, 140, 53, 107, 5]. The performance of deep learning and ma-
chine learning algorithms in land cover modeling and classi�cation have been analyzed
in several studies [135, 76]. Numerous research studies have been done to enhance the
Canadian wetland mapping products using machine learning and deep learning algorithms
[21, 26, 85, 7, 6, 72, 71, 70, 33]. A maximum likelihood classi�cation model was one of the
�rst methods developed for classifying wetlands, uplands, and permafrost plateaus in the
Scotty Creek watershed [106] using Landsat and IKONOS remote sensing data. In another
study, Stadnyk et al. (2005) demonstrated inaccuracies in the classi�cation of bogs and
fens in the Scotty Creek watershed using Landsat data which proves that the complexity of
the wetland landscapes demands high-resolution imagery and the deep architecture of deep
learning algorithms [6, 70, 115]. Chasmer et al. (2014) [24] presented a decision-tree (DT)
classi�cation methodology which combines airborne LiDAR and high-resolution spectral
data sets to classify the landscape into permafrost plateaus, bogs, fens, uplands, and water.
The decision-tree classi�er is used to determine the highest probability of prediction of a
given land cover type. The selected hierarchical models for predicting the land cover of
the training sets were tested due to elevation derivatives, vegetation characteristics, and
spectral classi�cation of land cover types. For evaluating the accuracy of this method,
the classi�cation inaccuracies were compared against �eld measurements. Moreover, Chas-
mer et al. (2014) [24] drew a comparison between this method and supervised land cover
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classi�cation from the spectral WorldView2 by using sensitivity analysis. The results of
modeling and validating in this study illustrated the accuracy of the hierarchical classi�-
cation was between 88% and 97% of the validation sub-area, and topographical derivatives
were more accurate in identifying variations in land cover types. In contrast to the �ndings
of Quinton et al. (2003) [106], the percentage of bogs identi�ed by the decision tree [24]
model were higher than fens in the Scotty Creek watershed; these �ndings demonstrate
the inuence of edge uncertainties, especially for bogs due to their fragmented structures,
as well as the possibility of pixel value range confusion between bogs and fens when em-
ploying lower resolution remote sensing data. The main concern of the model developed
by Chasmer et al. (2014) [24] is that the model has never been evaluated by assessing and
testing the model on other taiga wetlands areas in discontinuous permafrost zones. Most
of the permafrost landscape classi�cation methods are restricted by a lack of computing
power or a suitable working environment, particularly during the data preparation step
and during the application to big data sets.

In the context of hydrological modeling of discontinuous permafrost zones, an auto-
matic classi�cation solution would be helpful for long-term and large-scale analyses of land
cover change. Bhuiyan et al. (2020) [16] developed an automatic mapping workow for
delineating ice-wedge polygons distributed in arctic tundra complexes on the north slope
of Alaska. This study incorporated deep learning algorithms to facilitate and improve the
process of data preparation and classi�cation to detect ice-wedge polygons from sub-meter
resolution commercial satellite imagery[16]. In the discontinuous permafrost wetland sys-
tems found in the taiga plains, no study has yet established an automated and scalable
method for precisely recognizing wetlands and outlining the run-o� area of isolated and
connected wetlands.

To expand our investigations on the hydrological e�ects of land cover evolution both
temporally and spatially, we need land cover change models. The outputs of classi�cation
models, which are land cover maps, have been used as input for land cover change models
to provide long-term predictions of land cover changes in various environments. These
models are used to describe and predict the past, present, and future classi�cation of
land use and land cover in di�erent systems, and have been applied to simulate changes
due to agricultural, forestry, and urbanization. A diversity of modeling methods have
been used to analyze the land cover change, for example, statistical and empirical models
[37, 62, 118], dynamic models such as Cellular Automata [89], agent-based models [125],
machine learning and deep learning models [95, 87], and hybrid models [11, 89, 88, 54]. The
land cover change models simulate evolution by extracting spatial and temporal correlations
and important features from the available data and the driving factors of change (such as
climate or economics). The traditional methods, such as cellular automata and statistical
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models, have two major drawbacks: they cannot simultaneously capture both spatial and
temporal changes, and their simulations are entirely governed by earlier states. These
challenges can be addressed by the deep architectures of deep learning and machine learning
algorithms and advanced computer vision techniques. A diversity of machine learning
and deep learning methods have been used to predict and simulate land cover change
[37, 62, 118, 89, 11, 88, 87, 73]. Abdullah et al. (2019) [2] utilized eXtreme Gradient
Boosting (XGBoost) and Random Forest (RF) to capture the spatio-temporal patterns of
land use and land cover across coastal areas over a 28-year period from Landsat imagery.
This study showed that the XGBoost is a successful method in feature selection for solving
the issues of land cover heterogeneity and spectral complexities of the image data. It should
be noted that Abdullah et al. (2019) [2] never tested the accuracy and performance of the
model in terms of long-term land cover change prediction. Pijanowski et al. (2002) [95]
developed a land transformation model by applying an arti�cial neural network and GIS
to model land-use change in Michigan's Grand Traverse Bay watershed. They analyzed
the e�ects of feature presence (roads, highways, residential streets, rivers, inland lakes,
and agricultural density) on urbanization. The model had better predictions at larger
scales when using a moving scalable window metric. Kanevski and Pozdnoukhov (2008)
showed that machine learning algorithms can be su�ciently used for exploratory spatial
data analysis, recognition and modeling of spatio-temporal patterns, and decision-oriented
mapping [55].

Future assessments of land use and land cover change play a signi�cant role in urban
planning, policy-making, and environmental studies. An arti�cial neural network and
cellular automata model was used by Javed Mallick et al. (2021) [73] to predict the
change in land cover in the Saudi Arabian city of Abha for the year 2028. The trained
model forecasted an increase in the built-up area, indicating the necessity for long-term
sustainable management measures. A similar methodology was used to predict future land
use and land cover changes to help environmental engineers and policy makers lessen the
possible e�ects of the urban heat island phenomena in a developing megacity [54]. Kafy et
al. (2021) [54] incorporated a combination of support vector machine algorithm, cellular
automata, and the arti�cial neural network algorithm to retrieve and simulate the pattern
of land cover change in one of Bangladesh's fastest-growing regions. The validation results
demonstrated excellent accuracy. The model projected a 10% increase in urban built-
up areas by 2029, and the research �ndings revealed a signi�cant relationship between
changes in urban areas and the rising LST, suggesting the need for long-term plans that
emphasize the signi�cance of urban plantation and the preservation of natural resources
[54]. Four statistical techniques|Markov chain, logistic regression, generalized additive
models, and survival analysis|were tested for their e�cacy in land use and land cover
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change modeling by Sun and Robinson (2018) [118]. In terms of overall accuracy, the
generalized linear model performed better than the other three models, whereas logistic
regression and survival analysis performed better when modeling changes for certain land-
use types. The study by Sun and Robinson (2018) [118] demonstrated that the selection of
model by land use change type is an important method for land use and land cover change
studies, and a hybrid model composed of the best modeling methods for each land-use
change may be more reliable than those where an individual statistical method is applied
[118].

We provide a thorough overview of recent deep learning and machine learning appli-
cations in Chapter 4 and Chapter 5 for categorizing wetlands and permafrost plateaus,
simulating spatio-temporal land cover change in discontinuous permafrost zones, and im-
proving the quality and accuracy of remote sensing outputs. These studies demonstrate
a signi�cant bene�t of using machine learning and deep learning algorithms for long-term
simulations of land use and land cover change, which helps policymakers and urban plan-
ners take the e�ects of climate change into account in upcoming projects. However, these
methods have not yet been applied to predict the evolution of the discontinuous permafrost
lowlands impacted by climate warming. Despite the excellent performance of deep learn-
ing, machine learning, and advanced computer vision techniques, there are still unexplored
aspects in the use of these methods for land cover classi�cation and land cover change
simulation of discontinuous permafrost wetland systems in the taiga plains.

2.5 Land Cover: Hydrological Analysis

The evolution of land cover impacts watershed storage, streamow, and the watershed-
scale hydrological response of the discontinuous permafrost regions of the NWT [105].
Quantifying the impact of land cover changes on watershed features like ood potential,
soil water availability, or groundwater recharge may potentially be achieved by combining
hydrological models and land cover change models.

There is some precedence for coupling hydrological models and land cover change mod-
els; a coupling method was presented by McColl and Aggett (2007) [77] to enhance the
formulation of land-use policies at the watershed scale. In this study, a land-use forecasting
model called \What If?" was combined with a rainfall-runo� model (HEC-HMS) with a
GIS platform. While taking into account both low and high population growth scenarios,
the \What If?" model assessed the spatial distributions of low-density residential land uses
for the years 2015, 2025, and 2050. The \What If?" model's output was then used as an
input in the HEC-HMS hydrologic model calibrated for a speci�c storm time within central
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Washington State. By quantitatively comparing the results of the anticipated stormwater
runo� volumes generated for each pattern of land-use distribution, it was possible to es-
tablish which land-use policy is more hydrologically advantageous for land-use managers
and policymakers.

The hydrological e�ects of thaw-induced fen{bog{plateau complex evolution have been
examined in many studies [30, 31, 25, 48, 116]. Kurylyk et al. (2016) [63] analyzed the
inuence of vertical and lateral heat transfer on permafrost thaw by stimulating the devel-
opment of thaw, and the evolution of groundwater ow in single permafrost plateau-wetland
complex. The results of the simulations were compared to observed data. Simulated soil
temperatures in the surface energy balance model were used as the upper boundary condi-
tions to a three-dimensional model of subsurface water ow and coupled energy transport
using the SUTRA-ICE model [101]. The results of simulations indicated that the landscape
transition of a permafrost plateau-wetland complex caused by permafrost thaw increases
energy absorption. Nevertheless, such computationally intensive 3-D modelling cannot be
scaled up to the level of a watershed. Further research is needed to better understand
the mechanisms of water transfer and storage between fens, bogs, and basin outlets at
larger scales in order to improve the performance of hydrological models and examine
the hydrological e�ects of changes in contributing runo� areas of fens and bog (primary
and secondary), bog cascades, and forested covered area. The interaction between the
Canadian NWT's discharge properties and the conversion of forests to wetlands (fens and
bogs distribution) should be taken into account by the numerical models [116]. Stone et
al. (2019) [116] used the cold regions hydrological modeling [98] platform and �eld water
balance observations to model the hydrological behavior of a single channel fen sub-basin
in the headwaters of Scotty Creek, to show the e�ects of permafrost thaw-induced land
cover change on wetland discharge. The model performed well when compared to measured
water balance components, and the results showed that the total annual discharge from
the channel fen diminishes and the surface storage capacity is a�ected by a decrease in
permafrost distribution [116]. One problem with this study is that despite the possibility
of utilizing land cover change models to estimate the transitions of forested area, the e�ect
of permafrost plateaus conversion to wetlands is investigated by changing the proportion
of wetland to permafrost plateau area in the modeled sub-basin. Particularly, there has
been little work done regarding explicitly simulating the long-term e�ect of land cover
evolution on permafrost thaw patterns and hydrological properties. Painter et al. (2013)
[93] concluded that modeling the evolution of discontinuous permafrost and the reaction
of the environment is a big challenge which is caused by the complexity of the controls
a�ecting permafrost thaw, the spatial and temporal resolution, and the nonlinear nature
of the freeze/thaw [1, 93]. It should be noted that additional background information rel-
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evant to the topic of each chapter will be provided at the beginning of each Chapter. This
information will provide context and further detail on the speci�c topic being discussed
and will serve to enhance the understanding of the content presented.

In this study, we seek to understand how changes in land cover|from permafrost
plateaus to fen, permafrost plateaus to bog, and bog to fen (a phenomenon known as
\bog capture")|a�ect the hydrological responses of the Scotty Creek Basin and similar
environment. These changes could signi�cantly a�ect the connection between fens and
bogs, the stored water in the basin, and consequently the runo� responses at the basin
scale.
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Chapter 3

Hydrological Classi�cation of
Isolated Wetlands in Discontinuous
Permafrost Regions using only RGB
Imagery
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3.1 Introduction

Northern regions are rapidly evolving as an outcome of climate warming. Permafrost thaw
is one of the driving factors of land cover change in discontinuous permafrost zones of
Northern Canada and elsewhere; the thawing edges of peat plateaus lead to a gradual
transition from forested lands to wetlands [30]. Delineation of the extent and spatial
distribution of wetlands and peat plateaus at di�erent snapshots is needed to investigate
the magnitude and impact of this permafrost thaw and the resultant land cover change.

Satellite imagery enables us to mine information about the pattern and degree of change
and use that data to forecast future changes. We can use classi�ed imagery to estimate
the distribution of wetlands and forest-covered regions, detect land cover transitions across
time, delineate runo� areas, and investigate the e�ects of land cover transitions on the
hydrological characteristics of discontinuous permafrost wetland systems such as those
found in the NWT, Canada.

Pixel-based and object-based classi�cation has been applied to remotely sensed imagery
of discontinuous permafrost regions of the southern NWT; these approaches have been
critical in estimating the extent and magnitude of change over the past 70 years [23, 20,
26, 103, 42, 85, 84, 82, 57, 69].

Although existing pixel-based classi�cation models have helped determine the pattern
and spatial extent of changes, the models encounter some challenges [24, 106]. One of the
main concerns regarding the application of pixel-based classi�cation methods is that the
method usually needs training data that includes all of the land cover characteristics to
boost the classi�cation accuracy [26]. For example, classes with similar spectral information
can be wrongly allocated to pixels with characteristics not present in the training data [26].
Another issue with wetland identi�cation is the spatial heterogeneity of wetlands, which
leads to unclear and blending boundaries between these highly fragmented landscapes and
the neighboring land covers [26, 99]. The blending boundary issue can be a challenge for
hydrologists interested in classifying the wetlands into two hydrologically important land
covers|fens and bogs|and determining their local contributing runo� areas.

In this study, we consider three primary land classes: forested land, open water, and
wetlands. Wetlands can be further subdivided into bogs (which are geometrically isolated
from the surface water network) and fens (which connect open water features) . Bogs
and fens are recognized for their distinct hydrological functions, serving as storage and
conveyance features, respectively. Forest can be subdivided into forested peat plateaus,
strips of land interspersed between wetlands which is perched atop permafrost and at a
slightly higher elevation, and larger forested upland regions. Notably, we use a hydrological
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(rather than ecological) de�nition of bogs and fens, with bogs as storage features and fens
as conveyance features [4, 103, 59, 106]. Bogs and fens share similar spectral information,
making it di�cult to distinguish using pixel-based methods [26]. However, when hydrolog-
ically de�ned, bogs are geometrically isolated whereas fens are part of a connected network
connected to lakes and streams. These geometric di�erences between bogs and fens can be
leveraged using machine-learning-based classi�cation tools. Compared to traditional pixel-
based classi�cation, which uses only the spectral information within individual pixels, the
geometric categorization of fens and bogs has the advantage of minimizing classi�cation
errors in these two land covers by using (multi-pixel) information about the geometry of
these features.

Depending on the employed classi�cation methods and the necessary input data, gen-
erating classi�ed maps may have an unavoidable cost; the process of preparing the data
for image classi�cation (such as image restoration, geometric (or ortho-) recti�cation, ra-
diometric corrections, resampling, and other similar operations) can be complicated and
time-consuming. These data preparation challenges are also an additional shortcoming of
the previously developed pixel-based methods for wetland identi�cation. These previously
developed methods require a considerable amount of computer memory, remote sensing
expertise, and access to speci�c data sets.

To address some of these wetland classi�cation challenges, the main objective of this
study is to develop and test a feature classi�cation approach that simpli�es and accelerates
the data preparation and land cover classi�cation procedures for discontinuous permafrost
wetland systems within the Taiga Plains Ecozone. The method is intended to classify
earlier airborne photos and sites using only RGB imagery (i.e., without access to multi-
spectral data), RGB image classi�cation is largely avoided in the literature due to limited
information provided by 3 spectral bands in the classi�cation of lands for discontinuous
permafrost zones (relative to more spectral bands with multi-spectral imagery).

New developments in computing based on shape-based features avoid these limitations.
Considering the limitations, this paper aims to:

1. Develop and test an automatic classi�cation approach for classifying remotely sensed
imagery features into wetlands, forests, and water, focusing on discontinuous per-
mafrost wetland systems in Northern Canada.

2. Develop and test a method to categorize the classi�ed wetlands as either hydrologi-
cally isolated (bogs) or connected wetlands (fens) based on geometric characteristics.

3. Delineate and estimate the primary and secondary runo� area of the categorized
wetlands for hydrological analysis.
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Fortunately, deep learning methods have demonstrated their capability to address sev-
eral similar contemporary challenges in remote sensing and computer vision classi�ca-
tion tasks, including image classi�cation, object recognition, and semantic segmentation
[124, 143, 28, 83, 131]. Deep learning approaches use a multi-layer neural network archi-
tecture or numerous hierarchical layers to learn the spatial characteristics of the existing
components in an image [107].

Convolutional Neural Network (CNN)s are one of the most e�ective and popular deep
learning methods in environmental and geographical research for feature identi�cation,
classi�cation, and hazard prediction. As such, CNN methods have been applied to building
detection, land type classi�cation, Spatio-temporal simulation, cloud removal, and ood
risk prediction [136, 56, 76, 43]. In contrast to traditional pixel-based techniques that
demand training data comprising all the characteristics of the existing labels, CNN's multi-
layer interconnected architecture enables them to identify important features from data in
each layer to classify images.

A combination of deep learning methods and advanced computer vision techniques
comprise the TWINN solution, which consists of three steps. First, we implement a CNN
model with ResNet34 [49] architecture for semantic segmentation of dominant land covers
in discontinuous permafrost zones using World View 2 (WV2) RGB imagery. The CNN
model implemented in this study is capable of segmenting RGB imagery into three distinct
classes: water, wetlands, and forests. Here, features such as ponds and lakes are identi�ed
as water [24].

Then, the classi�ed wetlands generated by the CNN are categorized into isolated wet-
lands (bogs) and connected wetlands (fens) based on their geometric characteristics by
employing a four-layer Multi Layer Perceptron (MLP) model. Finally, we use the water-
shed algorithm from the OpenCV library in Python using the watershed and Euclidean
distance functions, e�ectively estimating the contributing runo� area to each categorized
wetland as its \nearest neighbor" region, a useful �rst-order approximation in very at
landscapes such as Scotty Creek Basin (61.44� N, 121.25� W), in the Northwest Territo-
ries of Canada. Hydrological analysis requires delineating the contributing runo� area of
classi�ed wetlands [106, 24], i.e., the portion of forested land cover which drains to the
fens (primary runo� area) and that which drains to bogs (secondary runo� area). This
information can be used for hydrological simulation under current conditions or used in
conjunction with a land cover evolution model (e.g., [4]) to examine changing hydrological
responses due to climate change.

To assess the performance of the developed models, we run the �nal solution on eight
Areas of Interests (AoI)s located in similar discontinuous permafrost wetlands within the
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NWT and British Columbia, Canada. We also investigate the e�ects of batch size, data
augmentation, and image size (tiling) on the performance of the TWINN solution.

3.2 Related Works

CNNs are deep learning algorithms mainly employed for image processing. The spectral,
spatial, and temporal qualities of remote sensing products have been improved by the use
of CNN-based algorithms and computer vision techniques in the �elds of object detection,
scene classi�cation, image segmentation, and land use and land cover classi�cation [137, 72,
136, 140, 53, 107, 5]. The architecture of the CNN, geographical location, spatial extent,
and image resolution can all inuence the accuracy of the CNN-based models for land cover
classi�cation [50]. Here, we briey review recent applications of CNN-based techniques in
remote sensing and Canadian wetland mapping studies.

A typical application of CNNs is object detection. Applications in remote sensing
include identifying clouds in images, which can facilitate cloud removal as a pre-processing
step and improve solar forecasts [75, 112]. CNNs have also been used to identify buildings,
roads, vegetation types, or urbanized areas [75, 112]. Bhuiyan et al. (2020)[16] developed
an automatic mapping workow for delineating ice-wedge polygons distributed in arctic
tundra complexes in the North slope of Alaska. They incorporate a CNN-based instance
segmentation technique to detect ice-wedge polygons from sub-meter resolution commercial
satellite imagery [16].

It has been demonstrated that CNN-based techniques often outperform traditional
pixel-based methodologies in land cover classi�cation [135, 76]. Merchant (2020)[80] com-
pared the performance of a Random Forest (RF) model to an object-based CNN technique
for detecting open water over the Peace Athabasca Delta; based on the reported results,
the CNN technique outperformed the RF model in terms of accuracy.

Numerous investigations and studies have been conducted to examine machine learning
and deep learning methods to derive wetland mapping products [21, 26, 85, 8, 6, 72, 71, 33].
Montgomery et al. (2019)[85] developed a decision-based methodology using data fusion
of multiple remote sensing data sources to classify boreal wetlands. The performance
of the proposed method was assessed by comparing the results with �eld measurements
and applying the methodology to other boreal environments in the Peace-Athabasca Delta.
The results demonstrate both the decision-based method and data fusion are not restricted
to a particular ecosystem or a particular geographic location and can be used to classify
di�erent types of boreal wetlands; the availability, frequency, and skill required to analyze
the data set are the main challenges of employing this wetland classi�cation approach.
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The Canadian Wetland Inventory is the result of a machine learning-based wetland
classi�cation approach and the �rst Canada-wide remote sensing method for wetland clas-
si�cation over large areas [6]. The Canadian Wetland Inventory was developed by training
a RF algorithm on many �eld samples and Landsat-8 imagery within the Google Earth
Engine platform. The Canadian Wetland Inventory showed an overall accuracy of 71% for
categorizing wetlands. [72] generated a 10-m resolution Canadian Wetland Inventory by
training a RF classi�er using multi-year summer composites of Sentinel-1 and Sentinel-2
data in Google Earth Engine. The 10-m resolution Canadian Wetland Inventory showed
an overall accuracy of 80%, outperforming the Canadian Wetland Inventory produced by
[6].

Further research is required to increase the Canadian Wetland Inventory's accuracy
for classifying wetland areas due to potential �eld data inaccuracies and the complexity
of the wetland landscapes, which demands high-resolution imagery [6, 72]. Using high
spatial resolution remotely sensed data for wetland classi�cation may result in errors due
to the blending boundaries issues between the edges of wetlands and other land covers [26].
Additionally, there has been no attempt to evaluate alternatives to RF [6, 72].

Regarding the blending boundary issues, multiple studies have compared pixel-based
classi�cation and object-based classi�cation (which spatially cluster pixels) methods to
�nd the best approach for wetland delineation [26, 15]. [15] applied pixel- and object-
based (parametric and non-parametric) algorithms on the Lake Baikal, Russia, drainage
basin using four Quickbird multi-spectral bands plus various spatial and spectral metrics.
The researchers reported that there is no statistically signi�cant di�erence in the overall
accuracy of the classi�ers. The pixel-based method is preferred for classifying wetland-
dominated landscapes since the object-based method requires substantial resources.

Chasmer et al. (2014)[24] presented a decision-tree classi�cation approach for iden-
tifying the heterogeneous land cover types in a northern watershed located in the zone
of discontinuous permafrost using airborne LiDAR and high-resolution spectral data sets.
The method outperformed the past classi�cation approaches in the same area with an
overall accuracy of 91%. This study showed that topographical derivatives were more
successful at explaining the variations in land covers compared to spectral and vegetation
structure characteristics. However, the study also reported validation accuracy between
38% and 74%, suggesting that alternate techniques may be needed to improve classi�cation
performance.

Determining the unknown boundary of heterogeneous land covers like wetlands is often
a di�cult task due to their gradual transition into another class [33], which bene�ts from
the deep architecture of CNN-based models. The layer-based architecture of CNN models
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makes them capable of capturing more features and natural complexities of land cover
classes such as wetlands. Pouliot et al. (2019)[99] and DeLancy et al. (2019)[33] tested the
performance of CNN-based models for the classi�cation of wetlands over a similar region in
Alberta using di�erent sets of training data. DeLancy et al. (2019)[33] study's validation
and testing results revealed that the accuracy of the CNN-based model is 5% higher than
the eXtreme Gradient Boosting (XGBoost) model in wetland classi�cation.

The CNN-based model tested by Pouliot et al. (2019)[99] reported an overall accuracy
of 69% for classifying bog, fen, marsh, swamp, and water classes using Landsat data.
Rezaee et al. (2018)[107] evaluated the performance of a pre-trained CNN-based model
in the classi�cation of the complex wetland by comparing the outputs of the CNN model
with a RF model, the overall accuracy of the trained models showed that CNN performs
better (95% accuracy) than RF with a 16% improvement. ArcticNet is another deep
neural network-based solution for the semantic segmentation of six important land covers
distributed in permafrost regions [52]; the ArcticNet solution achieved an overall high
accuracy of 94% on the testing data. Still, the solution was not applied to other similar
areas to analyze the transferability of the ArcticNet.

Most of the developed methods for Taiga Plains wetland classi�cation struggle with
the wetlands' fuzzy boundaries which leads to leads to classi�cation uncertainties within
transition zones; the results of comparing deep learning methods to non-neural network
methods reveal that the deep architecture of the CNN-based algorithm is more accurate
at delineating wetland boundaries and categorizing the wetlands. Although these CNN-
based solutions were successful in terms of classifying the wetland complexes, there are
still unresolved issues and gaps in the application of deep learning techniques for the
classi�cation of discontinuous permafrost wetland systems in the Taiga Plains of the NWT.
These issues include determining whether CNN-based models are e�cient at classifying the
wetlands in discontinuous permafrost zones and whether using RGB images can help users
with the data preparation process. Most of the developed methods are focused on more
sophisticated wetland types (marsh vs. bog vs. heterotrophic bog, etc.) rather than
the much simpler hydrologic de�nition. Additionally, these methods require hyperspectral
information and LIDAR as input data, which makes the data preparation procedure more
di�cult.

The advantages of employing RGB images are that they are cheaper, can be acquired
from aircraft in air photo programs, and that high spatial resolution data sets, which are
usually expensive, can be easily extracted through Google Maps/Google Earth/ESRI, etc.
without costs. It is also important to note that tiling, batch size, and data augmentation
techniques are crucial parameters for the development of CNN-based models. However,
none of these parameters have been well investigated and have yet to be evaluated how
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they a�ect the performance of CNN-based models developed for categorizing wetlands.
Before training the model, the input data are tiled to a smaller size due to the large size
of the images[68]; Lee et al. (2022)[68] proved that the size of tiling images noticeably
a�ects the accuracy of the trained CNN models for non-small cell lung cancer detection.
The TWINN approach outlined here is intended to address a number of these limitations
and data gaps. Within this study, we not only apply the method to 8 di�erent landscapes,
but we explore the e�ectiveness of batch size, data augmentation, and sample size (tiling)
on the accuracy of the TWINN solution.

3.3 Study Area and Data Set

This study builds upon the extensive image classi�cation work done by Chasmer et al.
(2014, 2020) [23, 24] at the SCRS, located 50 km south of Fort Simpson in the Northwest
Territories, Canada (Figure 3.1.a). This region is characterized by extensive wetlands, with
permafrost-underlain peat plateaus interspersed with fens, collapse-scar bogs, and lakes
(Figure 3.1.c) [23, 24]. Fens are seen as wide channels comprising the drainage network
of basins, and bogs appear as patches distributed between forested plateaus sitting atop
permafrost mounds. Bogs and channel fens are crucial to the hydrological process of the
SCRS due to their di�erent hydrological functions [106, 104]. Channel fens are one of the
primary drainage systems of this region, which convey water to the basin outlet, and bogs
are not typically able to convey water [63, 106], but may hydraulically connect during
larger snowmelt and rainfall events [30].

To assemble the training and testing data set for the TWINN solution, we initially used
the WV2 imagery of the SCRS acquired in the summer of 2010 (Figure 3.1.b). Although
the image includes a high-resolution panchromatic band and eight multi-spectral bands,
the TWINN solution is solely trained on the RGB bands of the WV2 imagery with a
spatial resolution of 1.6 m by 1.6 m to determine whether RGB images are su�cient for
classifying land cover. Using only RGB images simpli�es the data preparation step, does
not require specialized knowledge to analyze and prepare the input data, and is useful when
multi-spectral data are unavailable. The training input data are derived from a classi�ed
map developed by Chasmer et al. (2014) [24] on the same image WV2 image, with bogs
and fens grouped as one class (wetland) (Figure 3.1.c); then, the main image and classi�ed
map were re-sampled to 1m resolution.
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