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Abstract

Graph processing has become an increasingly popular paradigm for data management
systems. Concurrently, there is a pronounced demand for specialized systems dedicated
to streaming processing that are essential to address the continual flow of data and the
inherent dynamism in streaming data. Yet, the lack of a standardized, general-purpose
query framework specifically for streaming graphs is a notable gap in existing technologies.
This shortfall emphasizes the necessity for a more comprehensive solution for processing
and analyzing streaming graph data efficiently in real time. Enhancing this solution is
crucially dependent on improving the query processing pipeline, especially on cardinality
estimation and query optimization, both of which are key factors in ensuring optimal
system performance.

In this thesis, a novel cardinality estimation technique, called GraphSketch, that
is tailored for streaming graph database management systems (GDBMS) is proposed.
GraphSketch is a sketch-based framework designed to concisely summarize streaming
graphs, enabling both accurate and efficient cardinality estimations. The thesis delves
into the theoretical foundations of GraphSketch, outlining its conceptual design and the
specific methodologies employed in its construction. Additionally, the thesis elaborates
on the suitability of GraphSketch for streaming systems, highlighting its capability for
incremental updates, which are pivotal in maintaining efficiency in the rapidly evolving
environment of streaming data.
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Chapter 1

Introduction

\You can't step into the same stream twice
because it's always owing."

| Frederick Jay Rubin, The Creative Act

Graphs are widely used in various applications such as bioinformatics, software engi-
neering, e-commerce, �nance, trading, and social networks [48]. The ability to process
and query graph-structured data is made possible through graph database management
systems (GDBMS). In this thesis, the focus is on GDBMSs that process streaming graph
data. As the name implies, stream data consists of a continuous stream of data items
arriving at a processing centre, usually in real-time, or sorted by a timestamp. Streaming
GDBMSs with real-time and windowed processing capabilities are being investigated to
better handle this data.

Streaming GDBMSs have a similar query processing pipeline to traditional relational or
GDBMSs, although their requirements are di�erent. Traditional GDBMSs, such as Neo4j1,
JanusGraph2, and TigerGraph[18] o�er limited query capabilities for streaming scenarios
due to their reliance on snapshot models and lack of support for complex path navigations.
These constraints, as discussed in the context of G-CORE [4], point to a need for more
advanced query languages that can o�er full composability and algebraic closure, which
are critical for e�ective query optimization in streaming environments. Also, distributed
graph processing engines like Pregel [41], GraphX [22], and PowerGraph [21] focus on

1https://neo4j.com
2https://janusgraph.org
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static graphs while streaming GDBMSs must handle the continuous inux of data and the
evolving nature of graph structures in real-time.

Existing streaming systems, primarily designed for relational streams, do not fully ac-
commodate the requirements of streaming graph data [49]. The absence of a uniform,
general-purpose query framework for streaming graphs reveals a gap in current technolo-
gies. This gap underscores the need for a more adaptable and comprehensive solution
capable of e�ciently processing and analyzing streaming graph data in real time.

Recognizing these gaps and the emerging challenges in streaming GDBMSs, it becomes
crucial to understand the details of query processing within these systems. A query is
processed through multiple steps, and there can be multiple logical query plans for a
query and multiple physical execution plan for each logical query plan. A query plan
is de�ned in terms of logical and physical operators and are typically represented as a
tree of these operators. The equivalent execution plans may di�er greatly in terms of
performance. Hence, the query optimizer plays a central role in query processing, as it
aims to avoid ine�cient plans and pick an e�cient plan from the set of possible execution
plans for a given query. In order to make the query selection progress more systematic and
methodical, most modern query optimizers employ a cost-based model. These optimizers
compare numerous possible execution plans for a query and assign a cost to each plan
based on various factors such as the required memory space, input/output operations, and
CPU time. The optimizer then selects the plan with the lowest estimated cost to execute
the query. Cost-based query optimizers rely on estimations of the size of intermediate data
sets following the execution of each operator in the query plan in order to choose e�cient
execution plans. Cost-based query optimizers have three key components: (i) cardinality
estimation, (ii) cost model, and (iii) plan enumeration.

ˆ Cost model helps optimizers to assign the estimated costs for queries. Assigned costs
also consider all the sub-plans in the queries with the sum of the costs of all operators.

ˆ Cardinality estimation refers to estimating the number of results returned for each
operator in the query plan and is used by the query optimizer to estimate the cost
of executing di�erent execution plans.

ˆ Plan enumeration techniques are used to �nd the equivalent query plans. The naive
approach of exhaustive search of all equivalent plans is NP-hard, thus plan enumer-
ation considers heuristics to reduce the space of plans that are considered.

Cardinality estimation is generally considered to be the most critical component of the
query optimizer and has been called the \Achilles heel" of optimizers [40]. Enhancing
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the accuracy of cardinality estimations may not necessarily result in better query plans.
Although reducing the error of cardinality estimation is a necessary condition,it is not
su�cient { ensuring that \better" (i.e., one with lower error) estimation improves the
performance of a query plan is far more challenging. [38].

The focus of this thesis is cardinality estimation in streaming GDBMSs. Most of the ex-
isting systems typically employ a popular technique that involves utilizing statistics about
the underlying inputs, and making assumptions about the independence and uniformity
of these statistics. Wrong statistics or oversimplifying assumptions lead to inaccurate es-
timations and hence to the selection of a highly sub-optimal execution plans [11].

The �eld of cardinality estimation has been subject to intensive research, with the
majority of existing techniques being designed for use in relational DBMSs. Although it is
possible to map graph-structured data to relational systems, such techniques fail to fully
exploit the graph structure of the data, leaving ample room for optimization.

In order to capture the requirements of graph structure in the streaming setting, Pacaci
et. al. [50] introduce a general-purpose query processing framework for streaming graphs
that consist of (i) a Streaming Graph Query (SGQ) model and Streaming Graph Algebra
(SGA) with well-founded semantics, and (ii) a prototype streaming graph query processor
as a practical implementation of the proposed framework. SGQ and SGA establish the basis
of the systematic study of query processing issues over streaming graphs. In particular,
the rich plan space provided by SGA operators and their transformation rules provides
the fundamental machinery for cost-based optimization of SGQ, which is the focus of this
research. This thesis is conducted within the context of this framework.

Existing literature, by and large, study query optimization in the context of ad-hoc
queries in the snapshot model where queries are transient and the data is persistent. In
the snapshot model, query optimizers �nd an e�cient plan for a given query by navigating
the space of equivalent plans guided by a cost model. The cost model is used to estimate
the resource usage (execution time, network cost etc.) required to successfully complete
the execution of the given query using a set of statistics available about the underlying
dataset. SGQs that we target in this research pose unique challenges to this traditional
architecture:

1. SGQs are continuously evaluated over unbounded streams, so the evaluation of a
query is never completed;

2. data arrivals occur at high velocity, so heavy-duty techniques for query optimization
are not likely to work
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3. underlying data is ever changing so existing techniques for collecting and maintaining
statistic are not applicable; and

4. the recursive nature of SGQs with complex subgraph patterns and path navigations
require additional statistics such as the path length (i.e., the recursion depth).

As described earlier, SGA provides the fundamental machinery for building a cost-based
query optimization framework for SGQ. An important component of this framework is the
cost model that is used to estimate the runtime performance of individual SGA operators
and the query plans that consists of these operators. The proposed framework employs the
unit-time cost model �rst proposed by Kang et. al [33] where the optimizer estimates the
processing cost of an operator (or a plan) per unit application time. Cost of an operator
(plan) per unit-time depends on the arrival rates of its input streaming graphs and per-
tuple processing cost. It has been shown that the rate of the output streaming graph of
an operator (plan) can be computed using following streaming graph characteristics: (i)
input arrival rates, (ii) the length and distribution of validity intervals, and (iii) operator
selectivities.

The initial prototype of the proposed SGQ optimization framework makes a number of
simplifying assumptions regarding these streaming graph characteristics. First, it assumes
that input arrival rates and their interval lengths are known and do not change during
the lifespan of a query. Consequently, an optimal plan for a given SGQ does not change
over time. Second, it is assumed that the vertices of input streaming graphs have a uni-
form degree distribution, simplifying the selectivity computation for operator predicates
[49]. Edges represented by tuples in a streaming graph form a graph, and the degree of
a vertex is the number of relationships it has over this graph. However, it is known that
real-world graphs rarely have uniform degree distributions and characteristics of stream-
ing graphs uctuate over time as the graph evolves. Consequently, these assumptions
results in sub-optimal optimization decisions, in particular, they diminish the accuracy
of cost estimations. The primary objective of this thesis is to improve the cost model
of the proposed SGQ optimizer framework by addressing the limitations arising from the
above assumptions. The improvements targeted in this thesis are restricted to cardinality
estimation.

In this thesis a cardinality estimation technique, calledGraphSketch is developed that
more accurately estimates cardinalities of persistent queries over streaming graphs. The
contributions of the thesis can be summarized as follows:

ˆ We analyze the existing cardinality estimation techniques and demonstrate that none
of these techniques are su�cient to capture the requirements for streaming graphs.

4



ˆ We develop a novel algorithm and model to estimate characteristics of streaming
graphs to improve the accuracy of cost estimations performed by SGQ optimizers.
In particular, we study e�cient and accurate estimations of following streaming graph
characteristics:

1. the streaming rate and distribution of validity intervals over time;

2. degree distributions of the snapshot graph induced by input streaming graphs;
and

3. selectivity estimations for SGA operator predicates.

ˆ We integrate our benchmark with the prototype query optimizer. This generates an
optimized query plan while utilizing our new cardinality estimation method. This
testbed is used to verify the correctness of the optimizer's output and measure the
latency of query execution.

This thesis is organized as follows. Chapter 2 introduces related works along two
main background domains: cardinality estimation techniques for relational systems and
cardinality estimation techniques for graph data management. Chapter 3 discusses the
design of our proposed cardinality estimation method. Chapter 4 presents the evaluation
section and our experimental results. Finally, Chapter 5 presents the conclusions and
discusses the potential future work.

5



Chapter 2

Background Information and Related
Work

This chapter begins with providing background on streaming data processing semantics,
followed by an overview of well-known traditional cardinality estimation techniques, and
an examination of related work in this domain. Next, we describe prevalent cardinality
estimation techniques used in graph-based database management systems, including XML
and RDF. The chapter concludes with a detailed discussion of cardinality estimation in
streaming GDBMSs, highlighting the signi�cance and relevance of System R's cardinality
estimation technique in this context.

2.1 Streaming Graph Semantics

Before delving into the core concepts of this thesis, we de�ne the streaming graph model
that is used in the thesis. These de�nitions form the basis of the discussions and method-
ologies that follow.

De�nition 1 (Graph). A directed labeled graph is a quintupleG � p V; E; � ;  ; � q whereV
is a set of vertices,E is a set of edges,� is a set of labels, : E Ñ V � V is an incidence
function, and � : E Ñ � is an edge labeling function.

Building upon the concept of a graph, we next consider paths within these structures
and how they are labeled, further enriching our understanding of graph dynamics.
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De�nition 2 (Path and Path Label). Given verticesu; v P V, a path p from u to v in
graph G is a sequence of edgesu

p
ÝÑ v : xe1; : : : ; eny such that for each edgeei P E, the

endpointsx i ; yi PV satisfy yi � x i � 1 for i P r1; nq. The label sequence of a pathp is de�ned
as the concatenation of edge labels, i.e.,� pppq � � pe1q �: : : � � penq P� � .

Next, we de�ne the time domain, an essential aspect in streaming data, which lays the
groundwork for understanding how streaming graphs evolve over time.

De�nition 3 (Time Domain). Let T � p T;¤q denote a discrete, totally ordered time
domain, wheret P T is a timestamp representing a speci�c time instant. In this thesis,
non-negative integers are used to represent timestamps.

With the time domain established, we now introduce the concept of streaming graph
edges, which are fundamental to the notion of streaming graphs.

De�nition 4 (Streaming Graph Edge). A streaming graph edge (sge) is a quadruple
psrc; trg; l; t q wheresrc and trg are vertices, l represents the label of the sge, andt P T is
the event (application) timestamp assigned by the external data source.

Extending from individual edges, we consider the stream of these edges as it forms over
time, leading us to the de�nition of an input graph stream.

De�nition 5 (Input Graph Stream). An input graph stream is a continuously growing
sequence of streaming graph edgesSI � x sge1; sge2; : : :y where eachsgei � p srci ; trg i ; l i ; t i q
represents an edgee P E labeledl i P � between verticessrci ; trg i P V. The sges are
non-decreasingly ordered by their timestamps.

Closely linked to the concept of streaming graph edges is the notion of validity intervals,
which delineate the timeframes during which these edges are considered relevant.

De�nition 6 (Validity Interval) . A validity interval is a half-open time interval rts; expq
consisting of all distinct time instantst P T for which ts ¤ t   exp. Validity intervals
represent the period during which sges are considered valid.

Continuing from the previously established de�nitions, we delve deeper into the nuances
of timestamps and validity intervals, and their implications for the streaming graph data.
Timestamps play a pivotal role in the context of streaming graph edges (sges). They are
typically employed to denote the precise moment at which the interaction represented by
an sge occurs, as referenced in various studies [55, 51, 39]. In contrast, validity intervals are
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leveraged to represent the duration for which an sge retains its relevance or validity. The use
of these intervals contributes to a more compact representation, signi�cantly streamlining
the semantics of operators and dissociating the speci�cation of window constructs from
their implementation.

Time-based sliding windows are instrumental in the assignment of these validity inter-
vals. The speci�c windowing parameters of a query dictate the intervals, thereby aligning
the data processing with the temporal dynamics inherent to the query's nature. This
detailed exploration of timestamps and validity intervals underscores their signi�cance in
managing and interpreting streaming graph data. It sets the stage for a comprehensive
understanding of the dynamic and temporal aspects of graph streams, which are crucial
for the development and evaluation of queries within the proposed framework.

De�nition 7 (Window). A window indexed byk, denoted asWk , over a streaming graph
is a �nite multi-set of streaming graph edges represented as a rangerWbk ; Wek q, whereWbk

and Wek are the beginning and end borders of the window, respectively.

De�nition 8 (Time-based Sliding Window). A time-based sliding window with window
size |Wk | and slide parameter� is a window that moves forward every� time units. At
any time point t, the end borderWek is de�ned as tt{ � u� � , and the beginning borderWbk

is Wek � | Wk |.

De�nition 9 (Graph Snapshot). A graph snapshot at a given time pointt, denoted as
GW;t , is a pair of vertex and edge setsG � p V; Eq forming a graph constituted by the sges
within the corresponding windowWk . For ease of reference, the graph snapshotGW;t and
its corresponding windowWG are used interchangeably throughout this thesis.

De�nition 10 (Streaming Graph Tuple). A streaming graph tuple (sgt) is a quintuple
sgt � p src; trg; l; rts; expq; Dq wheresrc and trg are vertices in the graph.l is the label of
the sgt,rts; expq PT � T is a half-open time interval, representing the validity of the tuple,
and D is the payload associated with the sgt.

The streaming graph tuple generalizes standard graph edge representations (as delin-
eated in De�nition 4) to include not only input graph edges but also derived edges and
paths. Derived edges refer to new edges resulting from operator and query outputs, which
may not be a part of the original input graph. Paths, in this context, are sequences of
edges that also emerge as a result of operator and query outputs.

In our notation, E I € E denotes the set of edges that are part of the input graph. The
function � pE I q represents a �xed set of labels, speci�cally reserved for these input graph
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edges. The payloadD of an sgt, in cases where the sgt represents a path, embodies the
path p (i.e., a sequence of edges). In other scenarios, where the sgt represents an edge,D
is simply the edgee itself.

2.1.1 Precise De�nition of Objectives

Now that the streaming graph model is precisely de�ned, we can more accurately de�ne
the objectives of this thesis. We focus on developing methodologies for e�ciently and
accurately estimating key characteristics of streaming graph data. Our objectives are as
follows:

ˆ Estimation of Streaming Rate and Validity Interval Distribution: We aim to
accurately determine the rate at which new data arrives (streaming rate) and how the
validity of data changes over time. This involves analyzing the temporal distribution
of data validity intervals, which is critical for understanding the dynamics of the
streaming data and for optimizing data processing strategies.

ˆ Analysis of Degree Distributions in Snapshot Graphs: Another crucial aspect
is to study the degree distributions within snapshot graphs, which are generated for
each window. Understanding these distributions will enable us to better comprehend
the structural properties of the graph at di�erent time intervals. This analysis is vital
for tasks such as anomaly detection, graph pattern recognition, and optimization of
graph querying processes.

ˆ Identi�cation of Equivalent Query Plans: Finally, we seek to identify and eval-
uate various query plans that are equivalent in terms of their execution outcomes but
may di�er in their performance characteristics. By analyzing these plans, we aim to
establish methods to optimize query execution in terms of e�ciency and accuracy,
thereby enhancing the overall performance of streaming graph data management
systems.

2.1.2 Handling High Edge Arrival Rates in Streaming Graphs

This thesis acknowledges the challenges identi�ed in existing literature, where streaming
graphs, often seen in social networks and e-commerce, are characterized by high edge
arrival rates and their unbounded nature. Such traits present considerable di�culties for
conventional graph database management systems, which are typically not designed to
accommodate such intensive data ows [58, 20, 55, 52].
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2.1.3 Emphasis on Real-Time Processing for Streaming Graphs

Building upon the challenges outlined in existing works, this thesis focuses on streaming
graphs that necessitate real-time processing. This requirement marks a signi�cant depar-
ture from the more traditional static graph model, where the graph does not change and,
more importantly, is fully accessible for queries. In contrast, streaming graphs continu-
ously evolve and there is a need for processing updates without the entire graph available
[13, 60, 62, 68, 66, 67, 9, 7, 34, 36, 57].

2.1.4 Unboundedness

Bounded data, by de�nition, is �nite and possesses a distinct beginning and end. This
type of data is commonly linked with batch processing methods. Consequently, this data is
transferred to the database periodically, which could be weekly, monthly, or even annually.
Analytical processes are then executed on this data to generate insights and outcomes
through a batch procedure.

Unbounded data, conversely, is characterized as in�nite, lacking a distinct start or
termination point. This type of data is usually connected with stream processing method-
ologies. For instance, sensors persistently gather real-world data, such as temperature,
speed, and location parameters. This data collection process is uninterrupted and oper-
ates continuously around the clock. Streaming graphs are unbounded, requiring appropri-
ate techniques to deal with this characteristic.

2.1.5 Time-Based Sliding Window Model

To e�ectively manage unbounded streams in graph data, this thesis adopts the time-based
sliding window model, aligning with approaches found in existing literature [51]. This
model utilizes a �xed-size window that slides at predetermined intervals to accommodate
new edges and the expiration of old ones. Adopting this windowing technique is crucial
for bounding memory usage and ensuring that recent data is prioritized [20].

In the context of this thesis, the window size is essentially a measure of the `freshness'
of the data { only data points that have timestamps within the window size from the most
recent data point are considered `fresh' and thus kept within the window. This approach
ensures that analysis and processing are focused on the most relevant and current data.

Sliding windows in data processing are grouped by two principal semantics: implicit
and explicit. The implicit window approach is distinguished by its ongoing addition of

10



new results to the query output as new streaming graph tuples (sgts) arrive. It uniquely
maintains the validity of previously reported results, even as they become outdated and
the window progresses. This approach ensures that, in scenarios devoid of explicit edge
deletions, the query results are monotonic.

The implicit model facilitates the preservation of monotonicity in query results, leading
to the generation of an append-only result stream, particularly in cases where explicit
deletions are not present. Although users or applications have the capability to explicitly
remove previously arrived edges, the standard operational framework of this environment
anticipates the automatic elimination of tuples upon the expiration of the window. This
thesis aligns with the implicit model, o�ering an e�ective and adaptable implementation of
the time-based sliding window model, central to the analysis and processing of streaming
data.

2.1.6 Stream Generation

We assume that streaming graph tuples (sgts) originate from a single source and follow the
order of their respective source timestamps� i , establishing their ordering in the stream.
This assumption stems from the idea that handling unordered data or events arriving out
of sequence would require more sophisticated data structures or approaches. The challenge
of handling out-of-sequence delivery is deferred to future work.

2.2 Cardinality Estimation Techniques for Relational
Systems

A substantial amount of research has been conducted on estimating the cardinality of
queries in relational DBMSs. Traditional methods for cardinality estimation can be consid-
ered under six strategies: (1) summary tables, (2) wavelets, (3) histogram-based methods,
(5) sketching based methods and (5) sampling-based methods and (6) other methods.

1. Summary tables: This approach utilizes materialized tables that represent pre-computed
aggregate queries [1, 25]. This method is limited since it is not possible to get sum-
mary tables for all possible user queries.

2. Wavelets: Wavelets are mathematical functions that cut up data into di�erent fre-
quency components. In data synopsis context, this process computes a set of values,
namely wavelet coe�cients, which represent a compact data summary [10].
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3. Histogram based methods: A histogram is a special type of column statistic that
provides more detailed information about the data distribution in a table column.
A histogram sorts values into \buckets," and provides accurate estimates of the
distribution of column data. Histograms provide improved selectivity estimates in
the presence of data skew, resulting in optimal execution plans with non-uniform
data distributions [29, 17].

4. Sketching based methods: Sketching models aim to count distinct values (e.g., Hy-
perLogLog, [27]) or frequency of tuples (e.g., Count Min [16]) over a data stream.
This approach operates by hashing each element in the stream into a data struc-
ture called a \sketch". Then, the sketch is used to estimate the number of distinct
elements at query time. Summary of data streams di�ers from sampling, in that
sampling provides answers using only those items which were selected to be in the
sample, whereas the sketch uses the entire input, but is restricted to retain only a
small summary of it [65].

5. Sampling-based methods: Given a dataset, a small number of elements are selected at
random and a variety of statistics are computed over the sample, such as the sample
mean and variance. These statistics are then used to estimate the value of the query
result and provide bounds on the accuracy of the estimate [15]. Sampling-based
methods require no assumptions about the �t of the data to a probability distribu-
tion. Unlike histogram based methods, they do not require storing and maintaining
detailed statistics about the base data of the system. However, it has been proven
that almost the entire dataset needs to be sampled to be con�dent in obtaining a
highly accurate estimate [43]. Yet, sampling algorithms can still be useful when the
underlying distribution of the dataset is known.

6. Other methods: The methods listed above provide data summary and reduction. The
methods we list as \other methods" do not have a similar approach, such as graph-
based model, genetic programming, and online processing. Graph-based model gener-
ates a graph that summarizes both the join-distribution and the value-distribution of
a relational database [61]. Genetic programming approach corresponds to rewriting
the initial query to minimize the elaboration costs and maximizing the accuracy [54].
On-line processing approach continuously provides an estimate of the �nal answer to
each aggregate query and shows a preview of it during the elaboration [31].
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2.3 Cardinality Estimation Techniques for Graph Data
Management

Existing literature on graph query optimization predominantly focus on subgraph queries
[3, 44, 56]. These models do not handle path navigation queries that are abundantly found
in existing query logs [9]. Sparqling Kleene [24] incorporates reachability queries into
subgraph patterns by building a FERRARI [60] reachability index for every label in the
graph and uses the index size for cardinality estimation during query planning. Fletcher et
al. [19] propose a path speci�c histogram that can be used for path cardinality estimation
for RPQs. Similarly, unit-cost matrix proposed by Nguyen et al [47] encode frequency of
all length-2 paths in the input graph and use these frequencies to estimate the cardinality
of complex path expressions. However, all these works require o�ine processing of the
input graph to produce the underlying index structure and therefore cannot be used in the
streaming context. � -RA [30] extends relational algebra with a �xpoint recursion operator
and provides a set of transformation rules to manipulate recursive queries, enabling query
optimizers to consider queries with recursion.

All these focus on static graphs, and to the best of our knowledge, there is no work that
studies optimization of path navigation queries in the streaming model. Stream summaries
or sketches are used to provide approximate answers over data streams and they can be
used for estimating stream characteristics for query optimization. Existing literature on
stream summarization, by and large, focus on one-dimensional streams (i.e., the input is
a simple tuple) and cannot maintain the topology of the graph [14, 42, 69]. The use of
graph summaries and sketches for query planning has been investigated in the context
of static graphs, but high ingestion rates and ever-changing nature of streaming graphs
makes maintaining these summaries a challenging problem. There has been recent interest
in graph summarization in the streaming model [8, 63], and we plan to investigate their
use for the optimization of SGQs. In particular, a structural graph summary can be used
to estimate graph characteristics such as degree distributions, path-length etc. to be used
during cost estimation.

2.4 System R Cardinality Estimation Technique

As noted above, there is no work that tackles cardinality estimation over streaming graphs.
This makes it di�cult to �nd a baseline to compare with GraphSketch. Therefore, we've
modi�ed System R's technique to �t the unique needs of streaming GDBMS, and used it
in our benchmark studies.
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System R's method [59] is considered the classical approach to cardinality estimation.
It employs a set of statistics to assign a selectivity factor (F ) for each condition in the
predicate list. This factor roughly corresponds to the expected fraction of tuples satisfying
the predicate. The estimation technique relies on the number of distinct elements in the
relation columns and requires a propagation method up the query plan tree. We discuss
how we extend the statistics propagation for intermediate steps in Chapter 4.

This technique is built upon several key assumptions: uniform distribution of column
values, independence of values in di�erent columns, and inclusion. These assumptions play
a crucial role in simplifying the estimation process and making it computationally feasible,
though they may not always hold true in real-world data scenarios.

1. Uniformity Assumption: System R's uniformity assumption considers that values in
a database column are uniformly distributed across the possible range of values. This
means that every distinct value in a column has approximately the same frequency
of occurrence.

Under this assumption, the selectivity of a predicate (likecolumn = value) can
be approximated by dividing one by the number of distinct values in the column.
This assumption simpli�es the computation of selectivity factors but may lead to
inaccurate estimations in the presence of skewed data distributions.

2. Independence Assumption: The independence assumption holds that the distribution
of values in one column is independent of the distribution of values in another column.
In other words, the presence or absence of a particular value in one column does not
inuence the distribution of values in another column.

This assumption is particularly relevant for estimating the selectivity of queries with
multiple predicates, especially those involving joins or compound predicates (e.g.,
column1 = value1 AND column2 = value2). Under the independence assumption,
the selectivity of a compound predicate can be estimated as the product of the
selectivities of its individual components.

3. Inclusion Assumption: The inclusion assumption suggests that the set of values in
one column encompasses or includes the set of values in another column, especially
in the context of join operations. This is often assumed when one of the columns
serves as a foreign key referencing another table's primary key.

This assumption a�ects the estimation of join operations, where the selectivity of a
join predicate is based on the assumption that every value in the foreign key column
has a corresponding value in the referenced primary key column.
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While these assumptions simplify the process of cardinality estimation, they can also
be the source of estimation errors. Real-world data often exhibit patterns of skewness,
correlated columns, and varying inclusion relationships, which deviate from these idealized
assumptions. Modern database systems and advanced cardinality estimation techniques
strive to account for such complexities to improve the accuracy of their estimations.

To clarify how System R's cardinality estimation technique can be utilized in the context
of graph data and query, consider the query in Figure 2.1. In this case, there are two \edge
tables" (Table A and Table B) that are joined. We can assume, without loss of generality,
that each table contains the source vertex id and target vertex id of the edge labeled
accordingly. For this query, the join is between the target vertex column of Table A and
the source vertex column of Table B.

A B

Figure 2.1: A chain query with two edges.

System R estimates the cardinality of the join through the following formula:

|A| � | B | �
1

maxpdistinct targets of A; distinct sources ofBq

In Chapter 4, we will adapt System R to streaming graphs.
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Chapter 3

GraphSketch Design

This chapter presents the design of a sketch-based estimation method, calledGraphSketch,
that aligns with the constraints and requirements of streaming GDBMSs.GraphSketch
operates on windowed streams and constructs a data structure and performs cardinality
estimation on each window. It groups each graph stream according to the edge labels, and
summarize them into a concise summary structure. Cardinality estimation computation
then uses these summaries.

GraphSketchcompresses the graph and serves as a compact representation of the graph.
Each streaming graph tuple (sgt1), as discussed in Section 2.1, contains a source vertex
ID, a target vertex ID, and an edge label. When streaming sgts arrive, vertices incident to
each edge are hashed into one ofn buckets, wheren is a design parameter. This approach
translates the original graph's structure into a condensed graph withinGraphSketch. Each
sgt label has its ownGraphSketch, which consists of three components (see the class
de�nition in Listing 3.1): a matrix M of sizen � n (i.e., edgeSketch), a vector holding the
counts of source vertices incident on edges with that label (i.e.,distinctSourceCounts ), and
a vector holding the same count for target vertices (i.e.,distinctTargetCounts ). The entry
in the matrix edgeSketchr [i][j] (or M r ri; j s { we use both notations interchangeably)
stores the number of edges from a vertex in bucketi to a vertex in bucket j with label r
(we omit r in the remainder when it is not necessary).

This summarization leads to a trade-o� between e�ectiveness and e�ciency, a crucial
factor for meeting streaming requirements. WhileGraphSketch's detailed representations
enhance the accuracy of cardinality estimation, it also increases processing time due to
the complexity of construction and propagation mechanisms. The key advantage of this

1We use \edge" and \sgt" interchangeably since an sgt models an edge.
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Listing 3.1: Sketch Class Representation
public class GraphSketch {

public int bucketCount ;
private double [][] edgeSketch ;
private double [] d ist inctSourceCounts ;
private double [] d ist inctTargetCounts ;

}

approach lies in �nding the sweet spot where the accuracy loss is minimized while gain-
ing signi�cant improvements in processing time. We demonstrate this trade-o� through
empirical evaluation in Chapter 4.

In the remainder, we demonstrateGraphSketchconstruction by an example in Section
3.1, and more formally in Section 3.2, focusing on a single window. Section 3.2 also
discusses cardinality estimation usingGraphSketch. We present the extension to streaming
(multiple windows) in Section 3.3. Finally, a comparison ofGraphSketch and System R
techniques are provided in Section 3.4.

3.1 GraphSketch Construction Example

In this section, we detail the process of constructingGraphSketch. We exemplify this
process using a simple example graph with a single edge label given in Figure 3.1. The
edge table for this graph is shown in Table 3.1.

42 59 16

37 27 21

10 19

2040

200
A A

A A
A A

A

Figure 3.1: Example graph.

Suppose we aim to construct aGraphSketch with n � 3. We refer to such a sketch
as GraphSketch� 3 or GS � 3. The process involves employing a simple hash function
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Source Vertex Edge Label Target Vertex
42 A 59
59 A 16
37 A 16
27 A 19
21 A 19
200 A 20
10 A 40

Table 3.1: Edge table for the example graph

f pxq � x mod 3, wherex is the vertex ID, to assign each vertex to a bucket. For this
example, vertex IDs 42, 27, and 21 are assigned to bucket 0; IDs 59 and 10 are assigned to
bucket 1; and IDs 59 and 100 are assigned to bucket 2. Following this mapping, we count
the number of edges originating from vertices in one bucket (source) and ending at vertices
in another bucket (target). As an example, consider the �rst entry:

Source Vertex Relation Target Vertex
42 A 59

As vertex 42 is mapped to bucket 0 and vertex 59 is mapped to bucket 2, we indicate
the presence of this edge by incrementing the entryM r0; 2s in the graph sketch matrix
by 1. The dimensions ofM are 3� 3 (since we have 3 buckets). The resulting graph
sketch matrix M contains the number of edges between each pair of buckets, providing a
compact representation of the graph data while preserving its topological characteristics.
One notable point is that the total sum of counts in the matrix equals the number of edges
in the GraphSketch. For the given data, we obtain the following edge matrixMA :

MA �

�

�
0 2 1
0 2 0
0 1 1

�

�

GraphSketch matrix MA can be visualized as in Figure 3.2. This visualization demon-
strates the relationships captured within the sketch. The numbers on the edges indicate
the count of connections between vertices, and self-loops represent multiple connections
among vertices in one bucket.
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0 1 2

2

1

2 1
1

Figure 3.2: GraphSketch-3 visualization of edge label A.

As each sgt is processed, the number of unique source and target elements for each label
are counted and stored in two arrays:distinctSourceCounts and distinctTargetCounts .
Each entry i of these arrays stores the count of unique elements in bucketi that are source/-
target vertices of an edge. Consider again the �rst entry in the edge table. For the given
edge 42AÝÑ 59, vertex 42 is a distinct source element that is assigned to bucket 0. Therefore,
the corresponding element at index 0 in the distinct source arraydistinctSourceCounts is
incremented by 1. Similarly, as vertex 59 is a distinct target element assigned to bucket 1,
the corresponding element at index 1 in the distinct target arraydistinctTargetCounts is
incremented by 1.

After processing the entire dataset, we end up with the following arrays:

Distinct Source Vertices� r 3; 2; 2s

Distinct Target Vertices � r 0; 3; 2s

3.2 GraphSketch Construction and Cardinality Esti-
mation

The query processor for which we are developing the cardinality estimation subsystem
maps graph patterns to (self-)joins on the edge table. The cardinality estimation, therefore,
produces estimates for these joins. There are four distinct graph patterns, so we explore
four distinct forms of joins. The Source-Source pattern, denoted PatternType.SS, (Figure
3.3) has a vertex (v1) that has two outgoing edges tov2 and v3. When this pattern
is evaluated, the query processor performs a join over the edge table looking for edges
where v1 is the source and the edge labels match. This is called Source-Source, because
v1 is the source of both edges (ÝÝÝÑv1; v2 and ÝÝÝÑv1; v3). The other patterns and their execution
are de�ned similarly. The Source-Target pattern, denoted PatternType.ST, (Figure 3.4)
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has a vertex (v1) that has two incoming edges fromv2 and v3. Target-Source pattern
(PatternType.TS), is the inverse of Source-Target, but since we are working with directed
graphs, it is considered a separate pattern (Figure 3.5). Finally, the Target-Target pattern
(PatternType.TT) has one vertex (v1) that is the target of two edges (Figure 3.6). The
evaluation of queries with the last three patterns follows the same approach that is speci�ed
for the Source-Source pattern.

v2 v1 v3

Figure 3.3: Source-Source Pattern

v2 v1 v3

Figure 3.4: Source-Target Pattern

v2 v1 v3

Figure 3.5: Target-Source Pattern

v2 v1 v3

Figure 3.6: Target-Target Pattern

v1 v2 v3 v4
X Y Z

Figure 3.7: A chain query with three edges.

Consider the example query pattern shown in Figure 3.7, which is a chain query with
three edges with di�erent labels. The query processor evaluates this query as a sequence of
join operations. The �rst join is over the target vertex of edge X2 and the source vertex of
edge Y, i.e., we are looking for matches between these two vertices. More precisely, the �rst
join operation is between the sgts (edges) in the incoming graph stream with label X and
sgts with label Y, where target of X and source of Y are bothv2, producing intermediate
result I XY . This is then followed by a join of the intermediate result with the sgts with
label Z such that the target vertices ofI XY and the source vertex of Z are bothv3. This
is a binary join depicted in Figure 3.8.

Our objective is to estimate the cardinality of this query plan. This is performed
iteratively, starting from the leafs and ending at the root. Recall that the sum of counts
in edgeSketch in GraphSketch equals the number of edges (modeled as sgts) that is the
result of the computation at that node, which gives the cardinality of that computation.

2We are abusing the notation slightly by using the edge label to refer to the edge.
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' I XY .trg=Z.src

' X.trg=Y.src

X Y

Z

I XY

Figure 3.8: Logical plan for the query in 3.7

The �rst step is to construct the GraphSketch for each of the leaf nodes X, Y, and
Z (i.e., constructing GraphSketch for each edge label), referred asGraphSketch(X),
GraphSketch(Y), and GraphSketch(Z), respectively. These provide the cardinality of
the sgts (edges) in the input stream with that speci�c label3. The algorithm to construct
GraphSketch for a leaf node is given in Algorithm 1.

We demonstrate the construction by reference to the example graph given in Figure 3.9
whose edge table is given in Table 3.2.

Edge Label X:

MX �

�

�
0 1 1
2 0 0
2 0 0

�

�

Distinct Source Node Counts: [2, 2, 1]

Distinct Target Node Counts: [3, 1, 1]

Total Edge Count: 6

Edge Label Y:

MY �

�

�
0 2 2
0 1 1
0 1 1

�

�

3This is analogous to treating a leaf node in relational query trees asscan operator.
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10

21

20

25

30

33

15

27

32

34

59 16

40

41

42 37

19

200

X
X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Z

Z

Z

Z

Z

Z

Z

Figure 3.9: A second example graph.
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Source Vertex Edge Label Target Vertex
10 X 15
20 X 15
20 X 21
25 X 27
30 X 32
33 X 34
15 Y 59
15 Y 16
21 Y 10
21 Y 20
32 Y 40
32 Y 41
34 Y 40
34 Y 41
42 Z 59
59 Z 16
37 Z 16
27 Z 19
21 Z 19
200 Z 20
10 Z 40

Table 3.2: Edge table for the example graph in Figure 3.9.
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Algorithm 1 GraphSketch Construction for Leaf Nodes
1: function AssignToBucket (vertexID; bucketCount)
2: return vertexID mod bucketCount
3: end function
4: procedure ConstructGraphSketch (n; edges)
5: M Ð an n � n zero matrix
6: src set; trg set Ð arrays of n empty sets each
7: for each edge (srcID, trgID) in edgesdo
8: src bucketÐ AssignToBucket psrcID; n q
9: trg bucketÐ AssignToBucket ptrgID; n q

10: src setrsrc buckets:addpsrcID q
11: trg setrtrg buckets:addptrgID q
12: M rsrc bucket; trg buckets Ð M rsrc bucket; trg buckets � 1
13: end for
14: for k Ð 0 to n � 1 do
15: M:update dist src count arraypk; lenpsrc setrksqq
16: M:update dist trg count arraypk; lenptrg setrksqq
17: end for
18: return M
19: end procedure

Distinct Source Node Counts: [2, 1, 1]

Distinct Target Node Counts: [0, 3, 3]

Total Edge Count: 8

Edge LabelZ :

M z �

�

�
0 2 1
0 2 0
0 1 1

�

�

Distinct Source Node Counts: [3, 2, 2]

Distinct Target Node Counts: [0, 3, 2]

Total Edge Count: 7
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Once theGraphSketch for the leaf nodes are constructed, the process moves up in the
query plan tree. TheGraphSketch construction for a non-leaf node uses those of its chil-
dren nodes. For example, performing X' X. trg � Y. src Y involves joining sgts (edges) whose
labels are X and Y, respectively and where the target vertex of the sgts with label X is the
same as the source vertex of sgts with label Y. This produces intermediate resultI XY . Esti-
mating the cardinality of this join node requires constructingGraphSketchpX ' X. trg � Y. src

Yq(we simplify this by referring to the intermediate result sketchGraphSketchpI XY )) that
usesGraphSketch(X) and GraphSketch(Y). Moving up the query plan tree, estimating the
cardinality of nodeI XY ' I XY: trg � Z.src Z requires construction ofGraphSketchpI XY ' I XY: trg � Z.src

Zq using GraphSketchpI XY q and GraphSketch(Z). GraphSketch at the root node is used
for the cardinality estimate for the entire query. This iterative process ofGraphSketch
construction for non-leaf nodes is shown in Algorithm 2.

Algorithm 2 Cardinality Estimation for Graph Patterns
1: procedure EstimateCardinality (joinPattern, leftSketch, rightSketch)
2: cardinality Ð 0
3: if joinPattern.getPattern() = PatternType.TS then
4: for i Ð 0 to leftSketch.bucketCountdo
5: for j Ð 0 to leftSketch.bucketCountdo
6: if lef tEdgeSketchrisrj s ¡ 0 then
7: lef tEdgeCount Ð lef tEdgeSketchrisrj s
8: for k Ð 0 to rightSketch.bucketCountdo
9: if joinPattern = PatternType.TS and rightEdgeSketchrj srks ¡ 0

then
10: rightEdgeCount Ð rightEdgeSketchrj srks
11: distinctCountLef t Ð lef tSketch:getDistinctT rgF romBucket pj q
12: distinctCountRight Ð rightSketch:getDistinctSrcF romBucket pj q
13: � cardinality Ð lef tEdgeCount � rightEdgeCount

distinctCountLef t � distinctCountRight �
minpdistinctCountLef t; distinctCountRight q

14: cardinality Ð cardinality � � cardinality
15: end if
16: end for
17: end if
18: end for
19: end for
20: end if
21: end procedure
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Algorithm 2 o�ers a structured approach to estimating cardinality in graph join patterns
by utilizing sketches. The example query in this section has a Target-Source pattern, where
the join connects the target vertex of the left edge with the source vertex of the right edge.
The algorithm refers toleftEdgeSketchandrightEdgeSketch{ these are theedgeSketches for
the left and right inputs to that join operator, respectively. The notationleftEdgeSketch[i][j]
in the algorithm refers toM ri; j s. The process begins by traversing nested loops to examine
bucket pairs in the leftEdgeSketch. When encountering non-zero edge counts, these are
captured in leftEdgeCount. The algorithm then examines the right sketch to establish
a connection fromlef tEdgeSketchrisrj s to rightEdgeSketchrj srks, forming a topological
sequenceris Ñ rj s Ñ rks that aligns with the query pattern. This indicates the existence
of a path from a vertex in bucketris in the lef tEdgeSketch to a vertex in bucket rks in
rightEdgeSketch transitively through a vertex in bucket rj s in both edge sketches (since
this is the join condition).

Let us now consider how this computation is performed for the example query plan. The
�rst join X ' X. tgr � Y. src Y that produces I XY is summarized inGraphSketchpI XY q{ we fo-
cus on its edge matrixedgeSketchpI XY qrisrks, which is computed fromlef tEdgeSketchrisrj s �
edgeSketchpXq and rightEdgeSketchrj srks � edgeSketchpYq.

Consequently, the following calculations demonstrate the creation of the output sketch
for the given example wherelef tEdgeSketch and rightEdgeSketch are abbreviated as
lef tES and rightES , respectively:

lef tES r0sr1s ' rightES r1sr1s ñ edgeSketchpI XY qr0sr1s �
�

1
1



�

�
1
1



� 1 � 1:0

lef tES r0sr1s ' rightES r1sr2s ñ edgeSketchpI XY qr0sr2s �
�

1
1



�

�
1
1



� 1 � 1:0

lef tES r0sr2s ' rightES r2sr1s ñ edgeSketchpI XY qr0sr1s � 1 �
�

1
1



�

�
1
1



� 1 � 2:0

lef tES r0sr2s ' rightES r2sr2s ñ edgeSketchpI XY qr0sr2s � 1 �
�

1
1



�

�
1
1



� 1 � 2:0

lef tES r1sr0s ' rightES r0sr1s ñ edgeSketchpI XY qr1sr1s �
�

2
3



�

�
2
2



� 2 � 1:333

lef tES r1sr0s ' rightES r0sr2s ñ edgeSketchpI XY qr1sr2s �
�

2
3



�

�
2
2



� 2 � 1:333

lef tES r2sr0s ' rightES r0sr1s ñ edgeSketchpI XY qr2sr1s �
�

2
3



�

�
2
2



� 2 � 1:333
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lef tES r2sr0s ' rightES r0sr2s ñ EdgeSketchpI XY qr2sr2s �
�

2
3



�

�
2
2



� 2 � 1:333

This results in the following edgeSketchpI XY q:

edgeSketchpI XY q � M I XY �

�

�
0 2:0 2:0
0 1:33 1:33
0 1:33 1:33

�

� (3.1)

with a total estimated edge count of 9.33.

Algorithm 2 speci�es the GraphSketch construction and cardinality estimation when
the query pattern type is Target-Source. Similar algorithms exist for the other three
pattern types. The cardinality estimation process involves iterating over pairs of buckets
in the leftEdgeSketchand examining the corresponding buckets in therightEdgeSketch
with respect to the query pattern. Speci�cally, for PatternType.TT, PatternType.ST, and
PatternType.SS, the only change required is in the indexing of theedgeSketchmatrices
to align with the respective join conditions; and these changes are as follows:

For TS and TT pattern types:

ˆ For a TS query, represented asris leftLabelÝÝÝÝÝÑ r j s
rightLabel
ÝÝÝÝÝÝÑ r ks, and a TT query, repre-

sented asris leftLabelÝÝÝÝÝÑ r j s
rightLabel

ÐÝÝÝÝÝÝ r ks, the logic is as follows:

lef tEdgeCount = lef tEdgeSketch [ i ][ j ];
if ( PatternType .TS && rightEdgeSketch [ j ][ k ] > 0) {

r ightEdgeCount = r ightEdgeSketch [ j ][ k ];
}

else if ( PatternType .TT && rightEdgeSketch [k ][ j ] > 0) {
r ightEdgeCount = r ightEdgeSketch [k ][ j ];
}

}

For ST and SS pattern types:

ˆ For an ST query, represented asris leftLabelÐÝÝÝÝÝ r j s
rightLabel

ÐÝÝÝÝÝÝ r ks, and an SS query,

represented asris leftLabelÐÝÝÝÝÝ r j s
rightLabel
ÝÝÝÝÝÝÑ r ks, the logic is:
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lef tEdgeCount = lef tEdgeSketch [ j ][ i ];
if ( PatternType .ST && rightEdgeSketch [k ][ j ] > 0) {

r ightEdgeCount = r ightEdgeSketch [k ][ j ];
}

else if ( PatternType .SS && rightEdgeSketch [ j ][ k ] > 0)
{

r ightEdgeCount = r ightEdgeSketch [ j ][ k ];
}

In all cases, the end cardinality estimation formula is:

cardinality � �
�

lef tEdgeCount
distinctCountLef t



�

�
rightEdgeCount

distinctCountRight




� minpdistinctCountLef t; distinctCountRight q (3.2)

In the algorithmic implementation for populating the GraphSketchpI XY q, we traverse
three nested loops with indicesi , j , and k. This approach is straightforward for a Target-
Source (TS) join pattern, where �lling the matrix cell risrksis intuitive and straightforward.
However, for other patterns like Target-Target or Source-Source, the correct index determi-
nation in GraphSketchpI XY qcan be complex. To accommodate the variability inherent in
di�erent join patterns, we utilize the getOutputIndex function. This function intelligently
adjusts to the speci�c join pattern and is described as Algorithm 3.

This algorithm adapts to various graph join patterns like TT, TS, ST, and SS. Depend-
ing on the pattern, it calculates the appropriate indices for theedgeSketchpI X;Y q matrix.
The logic within the function uses aswitch statement to assign the right index based on the
pattern type and the speci�c �eld (source or target) in the join operation. This dynamic
approach ensures accurate cardinality estimations and updates to theedgeSketchpI X;Y q
matrix, accommodating di�erent graph join scenarios.

SinceGraphSketch requires distinct counts for the vertices involved in the join opera-
tion, we lastly explain the distinct count calculation. Obtaining statistics is straightforward
for the leaf nodes of the join tree as we can directly count distinct elements and edge oc-
currences without requiring any propagation mechanism. However, at intermediate levels,
directly counting these elements or occurrences is not feasible. Instead of counting, we
need a method to derive these values from the operator and its inputs. To estimate dis-
tinct counts, we �rst create a bound for our estimation and then employ a uniform sampling
with a replacement model for estimation. This is depicted in Algorithm 4.
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Algorithm 3 Output Index Determination For Graph Patterns
1: function getOutputIndex (outputField, type, i, j, k)
2: index Ð 0
3: if type = PatternType.TT then
4: index Ð switch (outputField)
5: case SRC1: return i
6: case SRC2: return k
7: case TRG1, TRG2: return j
8: else if type = PatternType.TS then
9: index Ð switch (outputField)

10: case SRC1: return i
11: case TRG1, SRC2: return j
12: case TRG2: return k
13: else if type = PatternType.ST then
14: index Ð switch (outputField)
15: case SRC1, TRG2: return j
16: case SRC2: return k
17: case TRG1: return i
18: else if type = PatternType.SS then
19: index Ð switch (outputField)
20: case SRC1, SRC2:return j
21: case TRG1: return i
22: case TRG2: return k
23: end if
24: return index
25: end function

Note that the number of distinct counts varies for each bucket, and therefore this
calculation should be done for each bucket separately. By the end of this process, we
�ll the arrays distinctSourceCounts and distinctTargetCounts in Listing 3.1. These
arrays havebucketCount number of elements. Consider, again, the �rst join in example
query given in Figure 3.8: X' X:trg � Y :src Y. The process starts with a loop iterating over
each bucket in theedgeSketchpI XY q. We �rst retrieve the total number of elements inside
the bucket to use it as a bound for our estimation. We compute the number of edges per
bucket by adding incoming edges to that bucket and outgoing edges from that bucket.
If we need to compute the number edges for bucketi , we retrieve the total sum of the
elements in the columns and rowsi of edgeSketchmatrix.
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Algorithm 4 Distinct Count Calculation in Graph Sketch
1: for i Ð 0 to GraphSketch.bucketCountdo
2: resultSize � edgeSketch:getBucketSizepiq
3: srcEstimate Ð estBucketwiseDistCnt plef tSketch; rightSketch;

joinPattern; outputSrc; i q
4: distSrcCount Ð minpsrcEstimate; resultSize q
5: trgEstimate Ð estBucketwiseDistCnt plef tSketch; rightSketch;

joinPattern; outputT rg; i q
6: distT rgCount Ð minptrgEstimate; resultSize q
7: GraphSketch:setDistinctSrcForBucket pi; distSrcCount q
8: GraphSketch:setDistinctT rgForBucket pi; distT rgCount q
9: end for

The estBucketwiseDistCnt function is employed to perform distinct count estima-
tions (Algorithm 5). It has �ve arguments: lef tSketch, rightSketch, and joinPattern
are obvious;i speci�es the bucket number for estimation inestBucketwiseDistCnt , and
outputF ield determines whether to estimate distinct source or target counts. Last pa-
rameter is set bypattern:getOutputT rgpqor pattern:getOutputSrcpq, respectively, to suit
speci�c join needs. Initially, the function assesses the join pattern and output �elds. In
cases where the join pattern is Source-Source, the function compares the number of distinct
source counts from both the left and right inputs. It then returns the minimum of these
counts, reecting the smallest set of distinct elements involved in the join.

For other join patterns, this function adopts a di�erent approach. It estimates the
number of distinct counts by utilizing a uniform sampling with replacement model. This
model is particularly e�ective in cases where direct calculation of distinct counts is not
feasible due to the complexity or size of the data.

Algorithm 5 takes the product of the bucket sizes of the left and rightedgeSketches
and assigns this toproductSize, which reects the total number of combinations resulting
from this join. productSize is used as a bound for the estimation. Then, based on the
indices, the algorithm picks the corresponding vertex counts from corresponding buckets.
Lastly, it retrieves the size of the desired bucket. These three values are used as parameters
to call function estimatePopulationSize that computes

(a) the degreeof both the source and the target (reecting the average number of con-
nections per element and o�ering insights into the elements' connectedness),

(b) the samplingRatio, which is the ratio of the estimated cardinality to theproductSize
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(assessing the representativeness of our sample in the context of the join's total
combinations),

(c) the probability of no edge being sampledprobNoEdgeSampled(represents the prob-
ability of an individual edge not being in the sample), and

(d) the probability of an edge being sampledprobEdgeSampled(represents the proba-
bility that any given vertex has at least one of its edges included in the sample).

Since the graph hasnV ertices vertices, estimatePopulationSize returns the product of
nV ertices and probEdgeSampledas the expected number of vertices that are e�ectively
connected through the sampled edges. The result is an estimation of the size of the \active"
or \connected" vertex population within the context of the sampled graph.
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Algorithm 5 Estimate Bucketwise Distinct Vertex Count
1: function estBucketwiseDistCnt (leftSketch, rightSketch, joinPattern, output-

Field, i)
2: resultSize Ð edgeSketch.getBucketSize(i)
3: lef tSrc Ð leftSketch.getDistinctSrcFromBucket(i)
4: rightSrc Ð rightSketch.getDistinctSrcFromBucket(i)
5: lef tT rg Ð leftSketch.getDistinctTrgFromBucket(i)
6: rightT rg Ð rightSketch.getDistinctTrgFromBucket(i)
7: lef tPatternCount Ð joinPattern.isFirstSource() ? leftSrc : leftTrg
8: rightPatternCount Ð joinPattern.isSecondSource() ? rightSrc : rightTrg
9: if ((outputField.isFirst() and joinPattern.isFirstSource() == outputField.isSrc())

or (not outputField.isFirst() and joinPattern.isSecondSource() == output-
Field.isSrc())) then

10: return minplef tPatternCount; rightPatternCount q
11: end if
12: lef tSize Ð leftSketch.getBucketSize(i)
13: rightSize Ð rightSketch.getBucketSize(i)
14: productSizeÐ multiply(leftSize, rightSize)
15: originalV ertexCount Ð outputField.isFirst() ? (outputField.isSrc() ? leftSrc :

leftTrg) : (outputField.isSrc() ? rightSrc : rightTrg)
16: return estimatePopulationSize(productSize, originalVertexCount, resultSize)
17: end function
18: function EstimatePopulationSize (nEdges; nV ertices; sampleSize)
19: degreeÐ nEdges{nV ertices
20: samplingRatio Ð sampleSize{nEdges
21: probNoEdgeSampledÐ Math.powp1:0 � samplingRatio; degreeq
22: probEdgeSampledÐ 1:0 � probNoEdgeSampled
23: return nV ertices � probEdgeSampled
24: end function
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Applying our example data to Algorithm 4 yields the following results:

Distinct Source Node Counts: [2, 1, 1]

Distinct Target Node Counts: [2, 1, 1]

These counts reect the distinct sources and targets in each bucket after processing.
Additionally, we refer back to the edge sketch matrix we constructed earlier:

MXY �

�

�
0 2:0 2:0
0 1:33 1:33
0 1:33 1:33

�

� (3.3)

Finally, we join this resulting graph stream I XY with Z to complete the three-edge
query. After applying our algorithms, we retrieve the cardinality estimation result of 9.33.

This demonstrates the basic functionality of the proposed algorithm. By creating
sketches of each graph stream and subsequently joining these sketches, the result of com-
plex graph queries can be estimated e�ciently. This methodology allows for querying even
very large graphs in a practical and timely manner.

3.3 Incremental Updates of the GraphSketch

Up to now, we have not considered streaming graphs and considered the original edge
table as static and fully available. Considering the streaming nature of the input, the
computation (both the construction ofGraphSketchand the computation of cardinalities)
has to be done incrementally and fast. As noted earlier, we use sliding windows to manage
streaming sgts. We perform theGraphSketch construction and cardinality estimation per
window.

In this section, we �rst describe our approach to managing time-based sliding windows.
Following this, we outline our baseline method. Then, we detail our method for performing
incremental updates onGraphSketch structures with a focus on e�ciency.
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3.3.1 Window Management in Streaming Environment

We maintain a data structure that represents the sliding window into which new sgts
are inserted and from which expired sgts are deleted. The processing of continuous data
streams are managed through Algorithm 6.

Algorithm 6 Window Management in Streaming Environment
1: global variables
2: WINDOW SIZE f total duration of the windowg
3: SLIDE INTERV AL f number of time units for the window's shiftg
4: WINDOW START f start timestamp of windowg
5: WINDOW END f end timestamp of windowg
6: end global variables
7: WINDOW START Ð 0 f this is the initial window start g
8: WINDOW END Ð WINDOW START � WINDOW SIZE
9: currentW indowData Ð initialize current window

10:

11: function slideWindow
12: WINDOW START Ð WINDOW START � SLIDE INTERV AL
13: WINDOW END Ð WINDOW START � WINDOW SIZE
14: end function
15:

16: while true do
17: if sgt:timestamp ¥ WINDOW SIZE then f sgt is the new arriving oneg
18: processCurrentWindow( currentW indowData )
19: slideWindow()
20: evictExpiredEdges( currentW indowData )
21: end if
22: currentW indowData:addpsgtq
23: end while

ˆ Initialization: Algorithm 6 uses two global variables:WINDOWSIZE, which spec-
i�es the total duration of the sliding window, and SLIDEINTERVALspeci�es when
the window slides forward. The variableWINDOWSTARTis initialized to set the com-
mencement time of the window, marking the beginning of the time frame for data
processing. Furthermore,WINDOWENDis calculated as the sum ofWINDOWSTART
and WINDOWSIZE, e�ectively determining the window's termination point in time.
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This endpoint signi�es the closure of the current window's active period. Lastly,
currentWindowData is initialized to establish a data structure for storing and man-
aging the window's current content, providing a foundation for subsequent data pro-
cessing and analysis within the de�ned time frame.

ˆ Processing sgts (edges): The algorithm iterates over each sgt (edge) in the stream-
ing data. Each sgt is added to thecurrentWindowData as they arrive.

ˆ Window Slide: When an sgt's timestamp exceeds theWINDOWSIZE, the algorithm
slides the window by prede�ned variableSLIDINGINTERVAL. This is an easy way to
detect that time has moved beyond the currentWINDOWEND. Window movement is
achieved through theslideWindowpqfunction, which updates the window's temporal
boundaries through sliding the window forward.

ˆ sgt (edge) eviction: evictExpiredEdgespcurrentW indowData q function is called
to remove edges that are no longer within the new window.

3.3.2 Baseline Approach

The baseline approach is to constructGraphSketch from scratch every time the window
moves. TheprocessCurrentW indowpqfunction (Algorithm 7) handles GraphSketch con-
struction and query processing.

Algorithm 7 Baseline Window Processing and Sketch Construction
1: function processCurrentWindow (currentWindowData)
2: edgesByLabelÐ groupEdgesByLabel pcurrentW indowData q
3: for each edge labeldo
4: edgesForLabelÐ edgesByLabel:getplabelq
5: ConstructGraphSketch( n; edgesForLabel) f n is bucketCountg
6: end for
7: end function

Algorithm 7 is straightforward and implements the techniques discussed in the previous
two sections on the contents of the current window. Its operations are as follows:

1. Groups edges by labels usinggroupEdgesByLabel, segregating edges fromcurrentWindowData
by label.
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2. Iterates over each label and for each label (assume there aren labels), it:

ˆ obtains edges for the corresponding label usingedgesByLabel:getplabelq,

ˆ updates the sketch with these edges by invoking theConstructSketch function,
as detailed in Algorithm 1.

3.3.3 Updating GraphSketch Incrementally

Constructing sketches from scratch for each window certainly works, but can incur signif-
icant costs, particularly as the window duration increases. Thus, we develop an approach
to incrementally maintain GraphSketchesas windows move.

For ease of presentation, in the following, we assume that all labels are known. This
allows us to describe processes and structures using an array. We maintain an array,
SketchList , which comprises aGraphSketchfor each label. Similar to the role ofcurrentWindow
in managing the window's state,SketchList maintains GraphSketch instances for each
label. TheseGraphSketch instances are initially constructed as outlined in Algorithm
1, and then utilized consistently throughout the entire processing period. As windows
move, SketchList is updated to reect both the addition and deletion of edges. These
changes are applied to the respectiveGraphSketch instances inSketchList , maintaining
an up-to-date graph state representation for each label.

Algorithm 8 shows the revised window management; compared with Algorithm 6,
the main di�erence is that processCurrentW indow and evictExpiredEdges now gets
SketchList as a parameter in addition tocurrentWindowData. This is necessary, as
it allows for the direct interaction between the window's current state and the correspond-
ing GraphSketch instances. Through the use ofSketchList , processCurrentW indow
integrates incoming edges into eachGraphSketch instance based oncurrentWindowData.
Similarly, evictExpiredEdges utilizes SketchList to systematically remove edges that are
no longer within the current window from their respectiveGraphSketch instances. After
these operations,GraphSketch instances inSketchList align with the latest state of the
window.

Algorithm 9 details the addition of new streaming edges to their respectiveGraphSketch
instance inSketchList as they enter the window. Algorithm 11 describes the removal pro-
cess for edges that are no longer within the window. These processes provide a method for
the ongoing update ofGraphSketch instances, di�erentiating from the original approach
of constructing them from scratch as shown in Algorithm 7. The critical components are
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Algorithm 8 Incremental Window Management
1: global variables
2: WINDOW SIZE f total duration of the windowg
3: SLIDE INTERV AL f number of time units for the window's shiftg
4: WINDOW START f start timestamp of windowg
5: WINDOW END f end timestamp of windowg
6: end global variables
7: WINDOW START Ð 0 f this is the initial window start g
8: WINDOW END Ð WINDOW START � WINDOW SIZE
9: SketchList Ð initialize GraphSketch instances

10: currentW indowData Ð initialize current window
11: function slideWindow
12: WINDOW START Ð WINDOW START � SLIDE INTERV AL
13: WINDOW END Ð WINDOW START � WINDOW SIZE
14: end function
15:

16: while true do
17: if sgt:timestamp ¥ WINDOW SIZE then f sgt is the new arriving oneg
18: processCurrentWindow( currentW indowData; SketchList )
19: slideWindow()
20: evictExpiredEdges( currentW indowData; SketchList )
21: end if
22: currentW indowData:addpsgtq
23: end while

how these incremental updates are accomplished. These are described in Algorithms 10
for sgt additions, and 12 for sgt deletions.

Building upon the framework established in Algorithm 8, Algorithm 10 further elab-
orates on the speci�c procedures for incorporating new sgts (edges) intoGraphSketch
instances. It details how sgts, associated with particular labels, are incorporated into the
correspondingGraphSketch instances. The addition process includes several steps:

1. Vertex storage initialization. The function begins by initializing a data structure,
vertexStorage , to hold distinct source and target vertices for each bucket.

2. sgt (edge) processing. For each edge in the provided listedgesForLabel, the
function performs the following:
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Algorithm 9 E�cient Addition Algorithm
1: function processCurrentWindow (currentWindow, SketchList)
2: edgesByLabelÐ groupEdgesByLabel pcurrentW indowq
3: for each edge labeldo
4: edgesForLabelÐ edgesByLabel:getplabelq
5: SketchList:getplabelq:addpedgesForLabelq
6: end for
7: end function

ˆ Computes hash values for both the source and target vertices of the edge.

ˆ Increments the edge count between the corresponding source and target buckets
in edgeSketch.

ˆ Stores the vertices invertexStorage , ensuring that each bucket maintains a
record of distinct source and target vertices.

3. Distinct count update. The function concludes by updating the distinct source
and target counts for each bucket. It calculates these counts based on the size of the
vertex sets stored invertexStorage .

Through these operations, theadd function e�ectively integrates new edge data into
the sketch, keeping it updated with the latest information from the streaming data.

Now consider edge deletions (Algorithm 11). It details how sgts, associated with par-
ticular labels, are deleted from the existingGraphSketch instances. The deletion process
includes several steps:

1. Edge (sgt) identi�cation: The function begins by identifying edges to be deleted
with getEdgesToDeletemethod. It �lters which edges in currentWindowData are
outside the current window.

2. Edge (sgt) categorization: Then, these edges are categorized by their respec-
tive labels and stored in a map structure, denoted asedgesByLabel = MapxLabel,
List xEdgeyy. In this structure, each label acts as a key, mapping to a corresponding
list of edges that are identi�ed for removal under that speci�c label.

3. Edge (sgt) deletion: The deletion process for each label involves three steps. First,
the list of edges,edgesForLabel, for the speci�c label are retrieved. Next, the
correspondingGraphSketch is accessed from theSketchList . Finally, the delete
method is executed on the sketch withedgesForLabel to remove these edges.
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Algorithm 10 Sketch Addition Algorithm
1: procedure add (edgesForLabel)
2: vertexStorageÐ new ArrayList< ArrayList < HashSet< Integer>>> ()
3: for i Ð 0 to bucketCount� 1 do
4: innerList Ð new ArrayList< HashSet< Integer>> ()
5: for j Ð 0 to 1 do
6: innerList: addpnew HashSet< Integer> ()q
7: end for
8: vertexStorage:addpinnerList q
9: end for

10: for each edgein edgesForLabeldo
11: srcHashV al Ð hashpedge:getSourceIDpq; bucketCountq
12: trgHashV al Ð hashpedge:getTargetIDpq; bucketCountq
13: edgeSketchrsrcHashV alsrtrgHashV als � �
14: vertexStorage:getpsrcHashV alq:getp0q:addpedge:getSourceIDpqq
15: vertexStorage:getptrgHashV alq:getp1q:addpedge:getTargetIDpqq
16: end for
17: for i Ð 0 to bucketCountdo
18: distinctSourceCountsris� � vertexStorage:getpiq:getp0q:sizepq
19: distinctTargetCountsris� � vertexStorage:getpiq:getp1q:sizepq
20: end for
21: end procedure

4. Window Update: The function concludes by updatingcurrentWindow. It removes
edgesToDelete from the window, thereby ensuring that only the current active edges
are retained.

The deletefunction in Algorithm 12 removes expired edge data from eachGraphSketch
instance to reect the current state of the graph. The design of thedeletefunction mirrors
that of the add function, outlined in Algorithm 10. While the add function incorporates
edges through addition, thedelete function executes their removal through subtraction.

3.4 Comparison with System R's Method

Since we use System R as our baseline, it is helpful to highlight the di�erences of GraphS-
ketch with System R. For the given dataset, join operation, and join tree, System R would
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Algorithm 11 E�cient Deletion Algorithm
1: function evictExpiredEdges (currentWindowData, SketchList)
2: edgesToDeleteÐ getEdgesToDelete pcurrentW indowData q
3: edgesByLabelÐ groupEdgesByLabel pedgesToDeleteq
4: for label Ð 0 to n do
5: edgesForLabelÐ edgesByLabel:getplabelq
6: SketchList:getplabelq:deletepedgesForLabelq
7: end for
8: currentW indow:deletepedgesToDeleteq
9: end function

operate as follows.

First, it processes the join between X.trg and Y.src:

|X | � | Y | �
1

maxpdistinct targets of X; distinct sources ofYq

This would produce the following value:

6 � 8 �
1

maxp5; 4q
� 9:6

This value would be System R's cardinality estimate for the join between X.trg and
Y.src. However, an additional step is also required to perform the join operation, and
System R would require distinct count statistics for the intermediate streamI XY .

For the leaves, obtaining statistics is straightforward: the distinct elements and edge
occurrences can be counted. However, for non-leaf nodes, directly counting these elements
or occurrences is impractical. Instead of counting, System R employs a uniform sampling
with a replacement model. The statistics derivation is as follows:

Given Cartesian productI XY � | X|�| Y| � 6� 8, the sampling ratio is SamplingRatio�
Estimated Cardinality

|I XY | � 9:6
48 .

Next, the maximum distinct sources and targets are determined: maxDistinctSource�
maxp4; 5q � 5 and maxDistinctTarget � maxp5; 6q � 6.

The degrees asdegree� Number of Edges
Number of Vertices � |I XY |

maxpmax(DistinctSource) ;max(DistinctTarget) q. Hence,
for sources, Source Degree� 48

5 � 9:6, and for targets, Target Degree� 48
6 � 8.
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Algorithm 12 Sketch Deletion Algorithm
1: procedure delete (edgesForLabel)
2: vertexStorageÐ new ArrayList< ArrayList < HashSet< Integer>>> ()
3: for i Ð 0 to bucketCount� 1 do
4: innerList Ð new ArrayList< HashSet< Integer>> ()
5: for j Ð 0 to 1 do
6: innerList: addpnew HashSet< Integer> ()q
7: end for
8: vertexStorage:addpinnerList q
9: end for

10: for each edgein edgesForLabeldo
11: srcHashV al Ð hashpedge:getSourceIDpq; bucketCountq
12: trgHashV al Ð hashpedge:getTargetIDpq; bucketCountq
13: edgeSketchrsrcHashV alsrtrgHashV als � �
14: vertexStorage:getpsrcHashV alq:getp0q:addpedge:getSourceIDpqq
15: vertexStorage:getptrgHashV alq:getp1q:addpedge:getTargetIDpqq
16: end for
17: for i Ð 0 to bucketCountdo
18: distinctSourceCountsris� � vertexStorage:getpiq:getp0q:sizepq
19: distinctTargetCountsris� � vertexStorage:getpiq:getp1q:sizepq
20: end for
21: end procedure

With this, System R is able to calculate for each vertex:

Probability of No Edge Sampled� p 1 � SamplingRatioqdegree

and (using the calculated distinct count formula):

CalculatedDistFormula � p 1� Probability of No Edge Sampledq� Number of Distinct Vertices

For the example:

Distinct Sources� p 1 � p 0:8q9:6q � 5 � 4:41

Distinct Targets � p 1 � p 0:8q8q � 6 � 4:99

For the �nal step, the derived statistics are used to calculate the cardinality of the root
node :
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|I XY | � | Z| �
1

maxpdistinct targets of I XY ; distinct sources of Zq

� 9:6 � 7 �
1

maxp4:99; 7q
� 9:6

When GraphSketch operates with a single bucket, GS-1, it provides the coarsest level
of detail, and produces the same result as System R. To demonstrate this equivalence, we
reexamine a speci�c example. Let's start by constructing individual sketches for the leaf
nodes.

Edge Label X:

MX �
�
6
�

Distinct Source Node Counts: [5]

Distinct Target Node Counts: [5]

Total Edge Count: 6

Edge Label Y:

MY �
�
8
�

Distinct Source Node Counts: [4]

Distinct Target Node Counts: [6]

Total Edge Count: 8

GS-1 comprises a single-element matrix, representing the total count of edges with this
label. For edge label X, the distinct source and target node counts are both 5, indicating
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the diversity of connections in this edge set. Edge label Y has a sketch with 4 unique
sources and 6 unique targets.

When the sketch for the �rst join X ' X:trg � Y :src (Yq is computed and the estimation
algoiritm is applied, we obtain the following sketch result:

lef tES r0sr0s ' rightES r0sr0s ñ edgeSketchpI XY qr0sr0s �
�

6
5



�

�
8
4



� 4 � 9:6

The estimated cardinality of joining the sketches for X and Y, i.e., estimate ofI XY is
9.6. We then move to the join at the root of the query plan:I XY ' I XY :trg � Z:src Z. For
these the following computations are done:

For I XY :

MXY �
�
9:6

�

Distinct Source Node Counts: [5]

Distinct Target Node Counts: [4]

Total Estimated Edge Count: 9.6

Edge Label Z:

MZ �
�
7
�

Distinct Source Node Counts: [7]

Distinct Target Node Counts: [5]

Total Edge Count: 7

And �nally:
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lef tES r0sr0s ' rightES r0sr0s ñ EdgeSketchpI X;Y qr0sr0s �
�

9:6
4



�

�
7
7



� 4 � 9:6

This computation con�rms that the cardinality estimate for the joined graph remains
consistent at 9.6, thereby establishing the equivalency of GraphSketch-1 with the System
R method.
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Chapter 4

Implementation and Evaluation

4.1 Implementation

GraphSketch cardinality estimation technique has been implemented on top of the S-
Gra�to Streaming Graph Management System1. S-Gra�to query processor encompasses
multiple components. In this project, we enhanced the S-Gra�to system by integrating
parsers and implementing a novel cardinality estimation technique, as detailed in Chapter
3, to facilitate a more streamlined and e�cient query optimization and processing pipeline.

The system includes a parser, a query optimizer, and a query execution engine. Al-
though the S-Gra�to system implements a powerful streaming graph query (SGQ) model
[49], our focus is limited to cardinality estimation of simple paths, stars and cycles. These
queries can easily be formulated by standard SQL and the workload generator produces
SQL queries that are input to the parser that generates logical query plans as output.
These query plans are subsequently input into the query optimizer, where they undergo
optimization in accordance with Streaming Graph Algebra operators [49], resulting in op-
timized plans as output. Finally, the query execution engine takes the optimized query
plans as input, executes them, and measures their latencies. We give more details about
the query optimizer component as it's the main focus of this thesis. It should be noted that
each of these components undergoes slight implementation modi�cations to accommodate
the experiments we conduct. Our query processing pipeline is visualized in Figure 4.1.

1https://dsg-uwaterloo.github.io/s-graffito/
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Physical PlansLogical Plans

Figure 4.1: SGra�tto's Query Processing Pipeline.

4.2 Source Code

Each component of our system is implemented in a di�erent programming language because
of practical reasons. The query parser implementation is in Python, utilizing the SQL Glot
library. The query optimizer extends Apache Calcite's in-memory implementation, utilizing
Java 13. Lastly, the query execution engine is written in Rust, which leverages the Timely
Dataow [46] framework for managing and executing data-parallel dataow computations.
Consequently, we have three separate repositories for the source code. Our source code for
this project is available at the following links:

ˆ https://github.com/keremakillioglu/sgraffito-ground-truth-generator

ˆ https://github.com/keremakillioglu/sgq-cardinality-estimation

ˆ https://github.com/keremakillioglu/sgraffito-query-execution .

Instructions on how to run the code are provided in the repository readme.

4.3 Experimental Platform

Experiments are run on a Linux server of Xeon(R) Platinum 8380 CPU with 160 cores and
2 threads per core, resulting in a total of 320 logical processing units and 1 Terabyte of
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DDR4 RAM. The memory architecture was complemented by a multi-level cache hierarchy.

4.4 Evaluation

Our evaluation of the cardinality estimation method encompasses three key aspects: ac-
curacy, e�ectiveness, and e�ciency. In our accuracy evaluation, we check how close our
estimations are to the true cardinalities of queries. In the e�ectiveness evaluation, we ex-
amine the reduction in query latency attributed to our accurate estimations. Finally, the
e�ciency evaluation concentrates on the promptness of our method in a streaming envi-
ronment, highlighting the signi�cance of our implementation's incremental maintenance.

It should be noted that the accuracy experiments are conducted in a static environ-
ment, recognizing that streaming constraints do not a�ect accuracy. Implementing sliding
windows at this stage would necessitate processing each query with every window slide,
a method that is impractical and does not inuence the accuracy of results. For the ef-
fectiveness experiments, we measure the latency of the queries optimized in the accuracy
experiments. Finally, we demonstrate our method's e�ectiveness in the streaming experi-
ments.

4.5 Dataset

In our experiments, we utilize gMark graph data generator [6] to create a synthetic dataset
that mimics the �rst three months of the StackOverow graph [53]. StackOverow dataset
is a temporal graph, and its �rst three months capture 99,689 interactions (edges) among
9,872 users (vertices), with the interactions categorized under 3 labels. Each directed edge
pu; vqwith timestamp t denotes an interaction between two users: (i) useru answered user
v's questions at timet, (ii) user u commented on userv's question, or (iii) comment at time
t. For the StackOverow dataset's �rst three months, the source vertex degree distribution,
target vertex degree distribution, and the edge label distribution are respectively illustrated
in Figures 4.4, 4.6 and 4.2.

Transitioning to the objectives behind our synthetic dataset creation, we intended not
only to reect the StackOverow data's real-world characteristics|such as edge count,
distinct vertex count, and vertex degree distribution|but also to incorporate a wider range
of labels. This approach allows us to assess the robustness of our method in a context that
is reective of the StackOverow dataset's complexity with an added dimension of label
diversity.
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Our synthetic dataset mirrors the characteristics mentioned above while featuring 9,553
unique vertices and maintaining the same edge count; but expands the number of edge
labels to 10. The corresponding source vertex degree distribution, target vertex degree
distribution and edge label distribution for our dataset are presented in Figures 4.5, 4.7
and 4.3, respectively. Since we maintain the same edge count as the dataset we modeled
after, we assigned identical timestamps for the corresponding edges.

Figure 4.2: Edge Label Distribution: First Three Months of StackOverow Graph
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Figure 4.3: Edge Label Distribution: Synthetic Graph

Figure 4.4: Source Vertex Distribution: First Three Months of StackOverow Graph
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Figure 4.5: Source Vertex Distribution: Synthetic Graph

Figure 4.6: Target Vertex Distribution: First Three Months of StackOverow Graph
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Figure 4.7: Target Vertex Distribution: Synthetic Graph
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4.6 Workloads

To comprehensively evaluate our method, we generate a query template encompassing
diverse types and lengths, including chains, cycles, and stars with 4 to 8 edges. This
range of queries allow us to address various complexity levels e�ectively. For clarity, each
query is identi�ed by its type and edge count. For example, a star-shaped query with 6
edges is denoted as star-6. We visually illustrate chain-6, cycle-6, and star-6 queries in
Figures 4.8, 4.9, and 4.10 respectively, to exemplify our query set. These �gures, however,
represent only a portion of our query workload, speci�cally queries with 6 edges, and are
not comprehensive of the entire spectrum of queries utilized in our evaluation.

v1 v2 v3 v4 v5 v6 v7
3 9 2 7 1 4

Figure 4.8: A chain query with six edges.

v1 v2

v3

v4v5

v6

3

9

2

7

1

4

Figure 4.9: A cycle graph query with six edges.

In every experimental iteration, we randomly select edges from the label pool, numbered
0 to 9, to create a uniform permutation order for the entire query set. This technique
guarantees consistency across di�erent queries; speci�cally, star-4, cycle-4, and chain-4
queries each employ an identical sequence of 4 labels. Additionally, queries with fewer
edges are subsets of those with more edges, implying that the labels used in a star-4 query
are a subset of those in a star-8 query. We generate 100 permutations and apply each to
the same query template. We ensure a random but uniform label assignment across our
queries. Each template, encompassing three query types (chain, cycle, star) in �ve edge
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Figure 4.10: A star query with six edges.

length variations (4 to 8), results in 15 unique queries. As we generate 100 permutations,
our comprehensive workload contains a total of 1,500 queries.

4.7 Accuracy Experiments

The accuracy experiments are designed to measure the precision of the cardinality estima-
tions against the actual cardinalities of the queries. The objectives of these experiments
are to demonstrate three critical aspects: (i) that GS-1 has the same accuracy as System R
(validation of the correctness ofGraphSketch, (ii) that the accuracy of the GraphSketch
estimations improve with increasing bucket count, and (iii) that improvements in estima-
tion accuracy lead to more changes in the query plan.

The accuracy experiments follow a systematic procedure, graphically depicted in Figure
4.11, enabling a thorough assessment of our method's precision. We employ a Ground
Truth Generator for workload generation, creating star, cycle, and chain graph queries
in SQL, executing these in PostgreSQL, and capturing the ground truth cardinalities.
This process encompasses 100 query sets totaling 1,500 queries, with each set's results
compiled into an individual output �le. These �les then serve as input for our Query
Optimizer to estimate cardinalities, comparing both the System R cardinality estimations
and GraphSketch estimations.

For evaluation, we adopt the widely used Q-error metric [45] to assess the accuracy of
our estimations, reecting the ratio between the true cardinality and predicted cardinality
of a query, and is computed as:

Q-error � maxp
true

predicted
;
predicted

true
q
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Figure 4.11: Evaluation Workow for Accuracy Experiments.
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A lower Q-error is better, with 1 being a perfect solution. In practice, to avoid division
by zero, we replace true� maxptrue; 1q and predicted � maxppredicted; 1q. It should be
noted that Q-error serves as an approximate measure for quantifying accuracy. Further-
more, lower Q-errors do not necessarily translate to shorter execution times for query plans
[26]. The cardinality estimation function is applied to multiple sub-plan queries to deter-
mine the optimal query plan. The estimation errors for these various sub-plan queries a�ect
the overall performance of the �nal query plan in di�erent ways [26]. The Q-error metric,
however, fails to di�erentiate between these impacts and treats all query estimation errors
uniformly. Consequently, this can lead to situations where a more accurate estimation as
indicated by Q-error might result in a less e�cient query execution plan in practice.

4.7.1 Limitations

During implementation, we faced limitations in various aspects. On the PostgreSQL side,
we encountered memory limitations and scalability problems when executing larger queries
on the dataset used in our evaluation. A notable example is a single 9-edge query failing
to complete after three days. This issue compounded as the dataset size increased, making
the execution of even smaller queries di�cult. Additionally, increased density in the input
graph, de�ned by the ratio of edges to vertices, led to signi�cant bottlenecks in processing
intermediate results. On the query optimizer side, scalability issues also emerged in the
query optimizer when attempting to use a bucket count larger than 900, restricting our
ability to expand this parameter.

Transitioning to the physical implementation of Streaming Graph Algebra, the JOIN
operation in relational algebra is translated as a PATTERN formed from two tuples. This
method constrains the simultaneous construction of concurrent patterns necessary for mod-
eling dual joins, inuencing our strategy for cycle query construction. To form a cycle, we
initially build a chain query and conclude it with a FILTER operator. However, we leave
developing a custom FILTER forGraphSketch as future work due to the implementation
overhead it requires. Currently, we employ the same FILTER operator used in System R.

Although structurally di�erent, this approach does not a�ect the results, maintaining
logical equivalence to direct cycle formation. This method ensures that the source vertex
at the beginning of the chain aligns with the target vertex at its end. As an example,
consider the chain query in Figure 4.8. To make this a cycle, a FILTER operator is added
to ensure the source of edge 3,v1, is the same as the target of edge 4,v7. This technique
preserves the cycle's integrity within the constraints of our query construction approach.
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4.7.2 Accuracy Equivalence of GraphSketch and System R

This section provides experimental validation for the concepts discussed in Section 3.4.
The experiments test the hypothesis thatGraphSketch using one bucket should provide
the same accuracy in cardinality estimation as System R.

The results in Table 4.1 validate the hypothesis.

Table 4.1: Comparative Analysis of Average Q-error: GS-1 vs. System R
Query Avg Q-error GS-1 Avg Q-error System R
chain-4 24.91 24.91
cycle-4 11.36 11.3
star-4 27.21 27.21

chain-5 234.31 234.31
cycle-5 35.84 35.85
star-5 210.79 210.79

chain-6 1157.79 1157.79
cycle-6 139.6 139.1
star-6 2349.58 2349.58

chain-7 24195.46 24195.46
cycle-7 473.77 473.01
star-7 27052.62 27052.62

chain-8 200516.72 200516.72
cycle-8 1642.55 1642.51
star-8 315186.02 315186.0

Our experiments validate our hypothesis. Moreover, we observed that in each case, the
cardinality estimates resulted in identical query plans.

4.7.3 Impact of Bucket Count on GraphSketch Accuracy

In this part of our study, we explore how varying bucket counts inGraphSketch a�ect
its accuracy. The hypothesis that is tested is that the accuracy ofGraphSketch should
improve as the number of buckets increase as it is possible to do �ner granularity estima-
tions. We compare the performance across three distinct bucket counts: 1, 300, and 900.
By examining these di�erent settings, we aim to understand the optimal balance between
accuracy and computational e�ciency in GraphSketch's implementation. The results of
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this comparison are presented in the Table 4.2. Additionally, we present bar plots featur-
ing con�dence intervals for chain, cycle, and star queries in Figures 4.12, 4.13, and 4.14,
respectively.

Table 4.2: Average Q-error Across Di�erent Bucket Counts
Query Avg Q-error GS-1 Avg Q-error GS-300 Avg Q-error GS-900
chain-4 24.91 17.59 13.65
cycle-4 11.36 9.67 12.84
star-4 27.21 12.54 3.41

chain-5 234.31 165.03 159.29
cycle-5 35.84 33.92 46.83
star-5 210.79 48.01 6.22

chain-6 1157.79 919.37 882.59
cycle-6 139.6 91.31 100.43
star-6 2349.58 208.19 12.61

chain-7 24195.46 20262.44 17212.87
cycle-7 473.77 306.61 470.98
star-7 27052.62 972.59 27.6

chain-8 200516.72 225776.7 153930.63
cycle-8 1642.55 1116.2 1063.73
star-8 315186.02 3821.64 58.84

In our evaluation, signi�cant insights were drawn regarding Q-error reductions:

1. Overall Q-error reduction: The reduction in Q-error from GS-1 to GS-300 is sig-
ni�cant at 55.7%, demonstrating the impact of increasing bucket count on estimation
accuracy. This improvement is further ampli�ed when moving from GS-1 to GS-900,
where the Q-error reduction reaches 69.6%, showcasing the method's robustness in
�ner bucket con�gurations.

2. Star queries: The performance in star queries is particularly remarkable. The Q-
error plummets by 98.3% when transitioning from 1 to 300 buckets, indicating a
substantial enhancement in estimation precision. An even more dramatic decrease of
99.97% is observed when shifting from 1 to 900 buckets, underscoring the exceptional
accuracy attainable in high-bucket scenarios for star queries. Furthermore, the tight
con�dence intervals depicted in the plots in Figure 4.14 reinforce the e�ectiveness of
this method.
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3. Chain queries: In chain queries, the reduction of Q-error by 23.9% as bucket count
increases from 300 to 900 suggests a notable improvement in accuracy, albeit less
pronounced than in star queries. This reduction indicates that higher bucket counts
can re�ne the cardinality estimation in chain queries, although the magnitude of
improvement varies with query type. We acknowledge that the con�dence intervals
shown in the plots in Figure 4.12 make the Q-error di�erences statistically insignif-
icant. Therefore, we conclude that it would be a better strategy to evaluate this
section with the number of query plan changes in Section 4.7.4.

4. Cycle queries: The Q-error reductions in cycle queries are inconsistent, likely in-
uenced by our methodology, which excluded speci�c �lters and did not eliminate
queries yielding zero results as true cardinalities. This limitation in our experimental
setup a�ects the calculated Q-error reduction across di�erent query length, suggest-
ing that cycle queries may require a more tailored approach for accurate cardinality
estimation.

5. Query length analysis: The analysis of Q-error reductions across di�erent query
lengths with varying bucket counts reveals the following:

(a) Size 4 queries: The Q-error reduction is 37.3% from 1 to 300 buckets, and
52.9% from 1 to 900 buckets. From 300 to 900 buckets, the reduction is 25.0%.

(b) Size 5 queries: Q-error decreases by 48.5% from 1 to 300 buckets, 56.2% from
1 to 900 buckets, and 15.0% from 300 to 900 buckets.

(c) Size 6 queries: There is a 71.9% reduction in Q-error from 1 to 300 buckets,
72.7% from 1 to 900 buckets, and a modest 2.9% from 300 to 900 buckets.

(d) Size 7 queries: Q-error initially increases from 1 to 300 buckets, then decreases
by 65.8% from 1 to 900 buckets, and 92.8% from 300 to 900 buckets, indicating
a signi�cant improvement.

(e) Size 8 queries: The reduction in Q-error is 55.4% from 1 to 300 buckets, 70.0%
from 1 to 900 buckets, and 32.8% from 300 to 900 buckets.

Our hypothesis posits that the accuracy of cardinality estimators, notably System R
and GraphSketch, tends to decrease as the length of queries increases. This decrease
in accuracy is attributed to the underlying assumptions of uniformity, independence,
and inclusion that these estimators rely on. In larger queries, these assumptions
become increasingly unreliable, leading to error accumulation at each step. The
uniformity assumption becomes more erroneous in diverse data distributions, inde-
pendence assumptions might not hold in interconnected datasets, and the inclusion
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principle may be challenged by complex query structures. Consequently, errors in-
herent in the initial stages of a query are not just carried forward but often magni�ed
in subsequent steps, leading to a compounding e�ect.

This hypothesis is supported by empirical observations in the performance of GraphS-
ketch. The data indicates a pronounced reduction in Q-error for longer queries, par-
ticularly those spanning 7 and 8 edges, when adjusting the bucket count in GraphS-
ketch. This suggests that while increased query length typically exacerbates er-
ror propagation due to the initial assumptions, GraphSketch's adaptability through
bucket count adjustment counters this trend e�ectively.

These results not only a�rm the hypothesis regarding the impact of query length on
estimator accuracy but also underscore the capability of GraphSketch to adapt and
mitigate the challenges posed by longer queries. This adaptability is a crucial factor
in maintaining accuracy in cardinality estimation across varying query lengths and
complexities.

These �ndings underscore the importance of bucket count in improving estimation
accuracy, with star queries showing remarkable improvements and cycle queries indicating
areas for further optimization.
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