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Statement of Contributions

Chapter3 introduces Fatecode, the first algorithm developed during my PhD. Fatecode is a
computational method designed to predict cell fate regulators solely from ss&iNdata. By
learning a latent representation through a deep leab@egd classificatierupevised
autoencoder, it enables in silico perturbation experiments. These experiments identify genes that,
when perturbed, can shift cell type distributions, either increasing or decreasing the population of
specific cell types. The research titlEdtecode Enables Cell Fate Regulator Prediction Using
ClassificationSupervised Autoencoder Perturbatimas conducted with Prof. Anita T. Layton,

Prof. Sidhartha Goyal, and Prof. Gary Bader and has been published in Cell Reports §1gthods

Chapter4 presents CLERA, a novel computational framework for uncovering dynamic models
and identifying active gene programs from sirggdl RNA sequencing data. By combining a
supervised autoencoder with Sparse Identification of Nonlinear Dynamics, CLERA uges prio
knowledge to extract lowlimensional representations and reveal the driving forces behind cellular
processes. It pinpoints central genes, reconstructs gene expression dynamics, and captures key
regulatory genes and temporal patterns acrossugdell types using personalized page rank. The
research titlediscovering Governing Equations of Biological Systems through Representation
Learning and Sparse Model Discovemas conducted in collaboration with Vasu Swaroap (
undergrad student in our lab at the time of the study), and is currently under rewnNewwlémc

Acids Researcjournal (2).

Chapter5 introduces FateNet, a computational approach that integrates dynamical systems theory
with deep learning to explore the timing of cell decismaking using scRNAeq data. By
leveraging information about normal forms and scaling behavior near bifurcasiteiset predicts

when cell decisions occur with greater accuracy than conventional methods, while offering a
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https://sciwheel.com/work/citation?ids=16657868&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17003553&pre=&suf=&sa=0&dbf=0

gualitative understanding into the specific type of bifurcation the system is likely to experience.
The work titledFateNet: An Integration of Dynamical Systems and Deep Learning for Cell Fate
Predictionwas conducted with Dr. Thomas Bury and published in Bioinformatics in (3)24

Chapter 6delves into scVAEDer's capabilities, the first scalable deaming model that
integrates autoencoders and deep diffusion macetg SCRNAseq dataThis approach learns a

latent representation of data, which captures both global patterns and local variations. The chapter
demonstrates scVAEDer's accuracy by showing its ability to generate new high quality-scRNA
seq data, predict perturbation effeatsross cell types, track gene expression changes during
dedifferentiation, and identify key regulators in biological processes. The workTtike@ower

of Two: Integrating Deep Diffusion Models and Variational Autoencoders for SGglle
TranscriptomicAnalysiswas conducted with Prof. Antia Layton and is currently under review at

the Genome Biologjournal (4).

Chapter7 highlightsDeep Lineage, a novel de&garning method for analyzing tirseries
scRNA-seq data with matched lineatfacing data. Our method accurately predicts early cell fate
biases and gene expression profiles at different time points within a clone, surpassimgstate
of-the-art methods in fate prediction accuracy. Also, through in silico perturbations in cellular
reprogramming and hematopoiesis data, we show that Deep Lineage accnoatelsdynamic
multicellular responses while identifying key genes aatdhways associated with cell fate
determination. This research was conducted in collaboration with Allen Zaangn¢ergrad
student in our lab) and Prof. Gary Bad€he work titledDeep Lineage: Singi€ell Lineage
Tracing and Fate Inference Using Deep Learnggurrently under review &ell Systemgs).
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Abstract

Cellular decisiommaking is a complex process that governs how cells respond to their
environment, differentiate, or commit to specific fates. Understanding the mechanisms that drive
these decisions is critical for advancing fields such as regenerativeimaedancer research, and
developmental biology. The ability to investigate cellular decisnaking at the singteell level,
particularly through higiresolution technologies like singtell RNA sequencing (scRNA&eq),
opens new doors for dissectirfgetintricate regulatory networks that guide cell fate. With this
information, we can better predict how cells transition between states, respond to external stimuli,

or contribute to disease progression.

In this thesis, the objective is to develdifferent deep learning methods for analyzing
cellular decisiormakingprocessesising sSCRNAseq data. These computational approaches aim
to reveal the molecular programs governing cell fate and to predict how gene perturbations can
alter cellular outcomes. Central to this effort isfinding of the accurati&tentrepresentation of
high-dimensional data. By learning meaningful and compressed representations, we can improve
the interpretability and accuracy ofowinstream analyses, including clustering, trajectory
inference, gene regulatory network reconstruction, and the identification of key gene regulators.

Also, these representations can be dsdtierto generate high quality gene expression data.

We developedseveral methodso capture the dynamics of celluldecision making
Fatecode a classificatiorsupervised autoencoder, predicts cell fate regulators by learning latent
representations from scRNgeq data. It enables in silico perturbation experiments to identify
genes that can shift cell type distributions, offering insightskajoregulators of differentiation.
CLERA combines a supervised autoencoder with Sparse Identification of Nonlinear Dynamics
(SINDy) to uncover dynamic models and active gene programs. By leveraging prior knowledge,
CLERA extracts lowdimensional represeritans, reconstructs gene expression dynamics, and
identifies central regulatory genes in various cell typedeNet integrates dynamical systems
theory with deep learning to predict the timing of cell decisions. By analyzing scaling behavior

near bifurcations, FateNet provides insights into key decision points in cellular processes,
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improving our understanding of these transitia@td/AEDer is agenerativadeeplearning model

that integrates autoencoders with deep diffusion models. It captures both global patterns and local
variations in scRNAseq data, enabling higjuality synthetic data generation, prediction of
perturbation effects, and tracking of gemression changes over time. FinalDgep Lineage
analyzes timeseries SCRNAseq data alongside lineagyacing information, predicting early cell

fate biases and gene expresoofiles with high accuracy. Through in silico perturbations, Deep
Lineage reveals dynamic multicellular responsesr timeand identifies key genes and pathways

involved in cell fate decision making.

I hope the methods presented in this thesmadvance the integration of deep learning into
the study of cellular dynamics, helping to identify important gene programs and regulators
involved in decisiormaking processe3hese computational tools provide valuable resources for
advancing research in regenerative medicine, developmental biology, and disease modeling. By
improving our ability to model and predict cellular behavior, these methods can contribute to more
effedive therapies and a deeper untemding of the molecular processes driving development
and disease.
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List of Figures

Figure1-1: Thenatural world showcases remarkable examples of longevity and potential
immortality. (a) The bowhead whale, capable of living over 200 years, thrives in Arctic waters.
(b) The Aldabra giant tortoise, known for its lifespan of up to 250 years. (c) The @rdehlark,
one of the longediving vertebrates, can live up to 500 years in the deep ocean [Photo credit:
Hemming1952]. (d) The Immortal Jellyfish (Turritopsis dohrnii) uniquely reverts to its juvenile
form through transdifferentiation, effectively rasiag its life cycle and achieving a form of

biological immortality[Photo credit: Chen Yimingl..........cueeeeiiiiiiiiiieenee e, 2

Figure 1-2: Throughout history, the quest for immortality has captivated human
imagination, as depicted in various myths and legends. (a) The Epic of Gilgamesh illustrates an
early tale of seeking eternal life. (b) Qin Shi Huang, the First Emperor of Chinaggunsuelixir
of life. (c) Persian mythology tells of King Jamshid's long reign and eventual downfall due to
arrogance. (d) The mythical elixir of life symbolizes humanity's enduring hope for immortality.
(e) The Fountain of Youth represents a legendauycsoof rejuvenation. (f) In Greek mythology,
Tithonus was granted eternal life without eternal youth, highlighting the potential curse of
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Figure 1-3: Two complementary strategies to combat aging: regenerative medicine and
enhancing cellular resistance. Regenerative medicine involves replacing or repairing damaged and
aged cells, akin to replacing weout parts in a car. This process, such as regengrasisues
through stem cell therapy or partial reprogramming, relies heavily on the concept of cellular
decisionmaking, where cells assess environmental signals and gene programs to choose between
repair or regeneration. Enhancing cellular resistancéh@wother hand, fortifies the resilience of
existing cells, similar to reinforcing a car to endure tough conditions. This strategy includes the

use of metabolic interventions to optimize cellular health and performance. Both approaches work
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together to address the hallmarks of aging, promoting extended lifespan and improved healthspan.

[Hallmark figure from Ref(13) and other figs generated by DBIB]..............ceeeeiiiiiiiiiiceennnne. 9

Figure 2-1: Renormalization in the Ising Model and JPEG Image Compression. (a)
Renormalization in the Ising model, where spins on a fine lattice are grouped into blocks to form
a coarser representation of the system's magnetization. (b) JPEG image compressiaragethe i
showing the progressive reduction in detail through increasing levels of compression. Both
processes highlight the principle of discarding {fsowale details to emphasize largenle
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Figure2-2: Identifiability of ICA and its application on blind source separation illustrated.
Demonstration of ICA ldentifiability and Source Separation. The top row displays the original
signals, which are then combined either linearly or nonlinearly, shotreimiddle and bottom
rows, respectively. Linear ICA and nonlinear ICA are applied to these mixtures, successfully
recovering the original signals in the rightmost column. In contrast, when PCA and its nonlinear
variant, VAE (without further constraintsare applied to the same mixtures (middle column),

separation is not achieved. Figure from Ref. (40)........ccccoeviiiiiiiiiiceeiiicii e 25

Figure2-3: Bifurcation diagrams for theaddl& node, transcritical, pitchfork ¢dimension
1 bifurcation. The plot shows the stability properties of dynamical systems depending on the

bi furcation parameter U and the init..aB2 condi

Figure3-1: Fatecode workflow for in silico perturbation experiments and cell fate regulator
detection. The 3D model (top) represents a Waddinljtenlandscape depicting cellular
reprogramming processes. We seek to identify genes (question marks) that regusate plais
landscape (wavy lines), by transitioning them to another path (red arrows). A classHication
supervised autoencoder learns a latent space representing the original data, optimized for both
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input reconstruction and cell type classification. The latent layer is systematically perturbed and
by investigating all resulting perturbatiggenerated cell type distributions, distributions with an
increase or decrease in a cell type of interest argifigel. Perturbation output is simulated by
subtracting the perturbed from unperturbed latent layers and feeding it to the decoder to identify a
cell by gene matrix of prioritization scores that can help us to prioritize genes predicted to be
important fa achieving a desired cell population distribution. An average of the cell fate regulator
prioritization scores across cells in each cell type is computed. By sorting these genes based on
their prioritization scores for a cell type of interest, the modeipts genes that are important for

regulating the levels of a given Cell tyPe.........ooo v 40

Figure3-2: Comparison of autoencoder architecturesafalyzing data for hematopoiesis
regulation in zebrafish blood a, Comparison of correlation between inpubwpdt of AE,
variational autoencoder (VAE), and conditional variational autoencoder (CVAE). b, Mean square
error between input and output of the three autoencoder architectures showing that AE produces
the lowest error rate for this data set. c, UMAP aimation of the latent layer of the under
complete autoencoder (AE). d, Confusion matrix for the classifier connected to the latent layer of

AE demonstrating excellent classification performance.............cccooeeeiieeciiiiiiie e, 42

Figure3-3 Fatecode detects known regulators using simulated data generated by SERGIO.
a, The schematic structure of the gene regulatory network to generate-selNRed nodes are
known regulators and green nodes are-megulators whose production rates are deitegth by
their associated regulators. Our goal is to identify known regulators from the generated ScCRNA
seq data using Fatecode. b, Benchmark comparisons of the detection rate of predefined regulators
generated by SERGIO using Fatecode compared with a diffieential gene expression (DGE)
baseline. The red and green areas represent the performance of Fatecode and DGE, respectively,
on the simulated data with 400 cells. ¢, Benchmark comparisons of the detection rate of known
regulators using Fatecode, st#sa and DGE on simulated data with 2700 cells. d, Venn diagram
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showing the similarity between the number of known regulators uncovered by Fatecode across

Various latent [aYEr SIZES.........cccccuiiiiiiiiiiiceeiiit e A

Figure 3-4: Fatecode accurately detects regulators and predicts the effect ofcaligle
perturbations. &;lematopoiesis data from Paul et al. (80) visualized as a UMAP and clustered into
9 cell types. b,d, The results of in silico perturbations that change the initial cell frequency to the
desired distribution (for b our objective is to promote monocytesewkilucing the number of
erythrocytes. As for d, we aim for an increase in the erythroid population and a decline in MEP
and megakaryocytes). c,e, Gene prioritization scores per cell typré8fandCebpa f, Pathway
enrichment analysis results. Geneabogy (GO) biological processes show significant processes
related to cell development and hematOpPOIESIS. .........oovi i 47

Figure 3-5: In silico experiments to indudeematopoietic stem/progenitor cellsing
hematopoiesis in zebrafish. a, A series of latent layer perturbations and their effect on cell
distribution. b, Cells that switch from their initial cell type to HSPCs are highlighted......49

Figure3-6 :Fatecode identifies key genes in mouse neurogermedibMAP embedding of
fourteen major cell types. b, latent layer node perturbation leads to an increase in mature granule
cells while a decrease in immature granule cells. ¢ pathway enrichment analysis shows the relevant
biological process using the top 200 genes selected lastneir prioritization scores for mature

[0 =T LU 1= =1 PP 52

Figure4-1. CLERA discovers dynamical systems and gene programs from simulated data.
a, Schematicofatwgene regul atory network (G and G )
and parameters shown. b, Comparison of generated gene expression data (top) ansl fsofatio
equations discovered by SINDy (bottom) for the 4geme system over time. Gene 1 and Gene 2
expression levels are plotted against time. ¢, Gene interaction networks for cell type 7 derived from
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SERGIO ground truth (top) and CLERA (bottom). Nodes represent genes, coloured by gene
programs identified through clustering. d, Heatmaps showing Jaccard similarity between SERGIO
and CLERAderived gene program clusters across nine cell types (CellTyp€@lfdype8).

Colour intensity indicates the degree of similarity, with lighter colours representing higher

similarity and darker colours lower Similarity................oouvuiiiicccreeeeeeeee e 68

Figure4-2: CLERA uncovers dynamics and gene programs in pancreatic development. a,
Discovered differential equations governing mouse pancreas development data fromsstRNA
showing sparse and interpretable models and connections between latent variables. b| Tempora
dynamics of latent variables, which illustrate distinct patterns across cell types. c, Interaction
graphs for various stages of pancreatic development, show dynamic gene interactions over time
for different cell types. d, Clustering results showing gemoggram similarities across cell types,
with shared genes in cluster 1 among Ductal, Ngn3 loweB&ocrine progenitprand Ngn3 high
EP cell types. e, Gene Set Enrichment Analysis results indicating pathways related to pancreatic
development and neurogesis. f, Degree centrality analysis identifying key genes for each cell
type, including Sppl, Chgb, Neurog3, Insl, Ins2, Clu, and SOX9.............cccccvmeveeeennnn /1

Figure4-3. CLERA reveals central genes and dynamics in hematopoietic differentiation. a,
Differential equations discovered for bone marrow development data, showing connections
between latent variables. b, Temporal dynamics of latent variables, with distinct patterns across
cell types. c, Interaction graphs for different stages of bone marrow development, which capture
dynamic gene interactions for each cell type. d, Clustenatysis of ceregulated gene groups at
each developmental stage, with significant similarities between precursors, monocytes, DCs, and
among Eryl and Ery2, Monol and Mone2 subpopulations. e, Degree centrality analysis
identifies key genes driving celar differentiation, including Mpo, HOPX, Malatl, FOS, CD52,
FAM3BO0A, @NA CD7 4. ...ttt ereee e e e e et e e e e e e et e emnea e e e e eeeraanans 73
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Figure 5-1: Schematic of workflow with FateNet. Input data, in the form of a gene
expression matrix, is reduced in dimension using PCA, clusters are obtained and a pseudotime
series is constructed. The pseudotime series leading up to a cell fate transitioseds ipts
FateNet, which outputs a probability distribution over different bifurcations. FateNettisjpred
using many simulations from stochastic differential equations (SDEs) going through different
types of bifurcation. The output of FateNet cons$tsrobabilities for the occurrence of different
bifurcations. A spike in the probability for a bifurcation is an indication that the bifurcation is about
to occur. The cells associated with the timing of the spike can be examined to identify the key

genes responsible for initiating the bifurcation process...........cccceeiiiiiiiccciicccieee e, 92

Figure5-2: Simulations angredictions in the simple gene regulatory network model going
through a fold, pitchfork, and no bifurcation-daBifurcation diagrams showing the stable (solid)
and unstable (dashed) states of the model as a parameter is vafjeddo(l simulation (gay)
with the bifurcation parameter varying linearly with time (Methods), and smoothing (black) with
a Lowess filter with span 0.2. The model reaches the bifurcation at pseudotime $00. (g
Probabilities assigned by FateNet for each class of bifurcasigmagressively more of the data
becomes available. The arrow shows the time window where there is insufficient data for FateNet
to make a prediction. FateNet uses the data after smoothing (i.e. not the trend) when making its
predictions. The vertical dastl line indicates the time when the bifurcation is crossed. PF:
Pitchfork; TC: tranSCIItICAL...........ooiiiiiiei e e e e e e s emenraa s 94

Figure 5-3: Bifurcation predictions in a simulation of SERGIO. (a) Uniform Manifold
Approximation and Projection (UMAP) visualization of scRIS8q data generated by SERGIO,
with distinct clusters, colecoded based on cell type. (b) PAGA network graph represggtiten
interconnectivity and relationships between cell types. (c) Bifurcation and null trajectories of cells
organized in pseudotime (top) and the predictions of FateNet (bottom). The first principal
component of the gene expression data is used to meletpyns. The bifurcation trajectory

shows a celfate transition between cell type 5 and cell types 3 and 6. The vertical dashed line
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indicates the time when the bifurcation is crossed. Data is smoothed using a Lowess filter with
span 0.2 and the detrended data are passed to our model. The null trajectory is generated by taking
a random sampling from the first 20% of the detrended dat@aadding it to the original trend. DL
probabilities are the probabilities assigned by our model for each event among Null, Fold,
Transcritical (TC) and Pitchfork (PE)a......oooooiieiieeeeeeeeee e 96

Figure 5-4: Predictions in data of mouse hematopoietic stem cell differentiation from
undifferentiated cells (gray) to neutrophils (orange). (a) UMAP plot of mouse hematopoiesis data,
emphasizing the transition (arrows) from progenitor cells (gray) to neutrofdriénge),
elucidating the dynamic differentiation process. (b) Bifurcation and null trajectories with model
predictions. The bifurcation trajectory (left) is the first principal component against pseudotime
downsampled by a factor of 100. The dasheddhmawvs the transition. The data is detrended using
a Lowess filter with a span 0.2 and used as input to the model. The model outputs probabilities for
each event among Null, Fold, Transcritical (TC) and Pitchfork (PF). The yellow box highlights
the initial spike in bifurcation probabilities between pseudotime 0.28 and 0.32. The null trajectory
(right) is generated by random sampling from the first 20% of the detrended bifurcation trajectory
and adding them to the trend. (c) ROC curves for predictions obifumgation using variance
(var), lagl autocorrelation (AC), sample entropy (SE), Kolmogorov complexity (KC) and
FateNet (FN). Predictions are made at evenly spaced time points between 0.3 and 0.6 for 100
unique downsampled bifurcation trajectories anatesponding nulls, resulting in a total of 1400
predictions. The inset shows the probabilities assigned to each bifurcation between pseudotime 0.5

and 0.6. Boxes show the median and interquartile range, and whiskers show the full re8@e.

Figure 5-5: Bifurcation predictions in murine pancreatic development focusing on
differentiation of Fev+ to Alpha, Beta and Delta cells. (a) Uniform Manifold Approximation and
Projection (UMAP) visualization of Pancreas development data, with distinct clusters;aded
based on cell type. (b) Bifurcation and null trajectories with model predictions. The bifurcation

trajectory (left) is the first principal component against pseudotime. The dashed line shows the
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transition point. The data is detrended using a Lowess filter with a span of 0.2 and used as input to
the model. The model outputs probabilities for each event among Null, Fold, Transcritical (TC)
and Pitchfork (PF). The null trajectory (right) is genedldig random sampling from the first 20%

of the detrended bifurcation trajectory and adding them to the trend....................cccc.... 101

Figure 5-6: Exploring system response to various in silico perturbations. (a) UMAP
visualization shows in silico perturbations, with green lightning indicating overexpression and red
lightning denoting knockout perturbations. Each perturbation is individuallyemmgnted to
observe how the system experiences shifts in the bifurcation dynamics. Model predictions for stem
cell differentiation to neutrophils in mouse hematopoiesis after knocking out (b) and over
expressing (c) a few numbers of the most significanegeGenes are knocked out by setting their
expression to zero. Genes are overexpressed by multiplying their expression by a factor of two. In

each case, ten equakypaced predictions are made between pseudotime 0.45 and.0.6.103

Figure6-1: scVAEDer overview. scVAEDer integrates VAE and DDM. First, a VAE is
trained using the gene expression data. Then the VAE latent embedding is used to train the DDM
through the processes of latent space diffusion and denoising. Combining togethede¢hésmo
able to decode back the gene space with high accuracy. scVAEDer can be used for different
downstream analysis tasks such as generating novebhejity scRNAseq data, understanding
changes in gene expression during cellular differentiation,qineglithe effect of perturbations on
new cell typeswhen expression data is available for multiple conditiahestecting master
regulators by interpolating between different cellular states and ranking fast responder genes based
0N their VEIOCItY VAIUES..........ooii e eeer e 118

Figure6-2: scVAEDer accurately learns the latent representation and generates new high
guality scRNAseq data. aRed, forward diffusion process with 1000 stepshematopoiesis in
zebrafish as we add noise to the data; blue, reverse process as the model learns how to denoise. b,

UMAP visualization of the real data embedding. ¢, Samples generated from DDM prior. d, samples
XXV



generated from the VAE. e, Total Variation Distance (TVD) between latent embedding of data

and samples generated from the DDM as well as VAE prior distributions..................... 120

Figure 6-3: scVAEDer can be used to understand cellular dedifferentiation. a, Mapping
HSPC and monocyte cells intoe latent prior of DDM. b, Using DDM (1000 diffusion steps) and
performing latent linear interpolation with 2000 equidistant samples (red dots). The absence of
any sample generated in the empty region suggests that the model has learned an accurate
embeddhg. ¢, Heatmap showing the similarity between gene expression of generated states and
the real average expression of HSPCs and monocytes (using 100 DDM steps before interpolation).

d, Expression of selected marker genes along the interpolation. path..................ccceee.. 122

Figure6-4: scVAEDer is more accurate than the SOTA methods in predicting perturbation
responses. a, Data generation using latent prior of DDM with 1000 diffusion st€asnparison
of the correlation values of average gene expression between real and predicted cells of various
cell types obtained using scGen, scPreGAN, and scVAEDer. c, Violin plots for selected key genes
across control, real stimulated, and stimulatioedprted by scVAEDer and scGen endritic
(o] | LS (5 1) OO 124

Figure6-5: scVAEDer accurately detects master regulators during cellular reprogramming.
a, The reverse process of DDM allows the generation ofdugliity reprogramming samples from
random Gaussian noise (the quality of generated samples is critical for downathalgsis). b,
UMAP visualization of the data latent embedding, colored based on their state (red: failed, blue:
reprogrammed). ¢, Data generated by interpolating between reprogrammed and failed states,
represented by red dots. Remarkably, none of tieepatated samples are found outside the real
representation of data. d, Correlation values between the new interpolated samples and the average
gene expression of reprogrammed and failed cells, which demonstrates the shift in gene expression
between faile@nd reprogrammed states. e, Ranking of genes based on high expression differences

between t=0 and t=3000. f, lllustration showing the process of computing gene velocities along
XXVi



the interpolation path to detect master regulators. g, Gene set enrichment analysis using 400 genes
with the highest velocities (fast responders), which reveals pathways that are crucial during the
Cell reprogrammINg PrOCESS. ......cooiiiiiieiiteree e s s enneass bbb bbb e s ee e e e e e e e e e s eeensees 126

Figure 7-1: Predicting Gene Expression and Early Cell Fate Bias via Combined scRNA
seq and Lineage Tracing. A visual depiction of the Deep Lineage is presented. On the left, the
Waddington landscape illustrates the developmental trajectory, showing how ceits esitih
clone (represented by different colours) differentiate into distinct mature cell types originating
from stem cells. On the right, by combining scRE&q data and lineage tracing information the
gene expression profiles of cells within each cloreewed as input for the autoencoder. The
resulting latent embeddings of cells in a clone are subsequently used as inputs for the l-STM, Bi
LSTM, or the GRU model. This integrated architecture enables the accurate prediction of both
early cell fate bias andene expression profile of unseen days within a clone. Notably, Deep
Lineage offers the flexibility to adapt different preprocessing steps, diverse barcoding techniques,
various dimensionality reduction methods, and a range of various deep learning (fetidetsck

Figure7-2: Deep Lineage accurately predicts sincgdl gene expression of unseen cells in
hematopoiesis a, UMAP plot of the hematopoiesis data from Weinreb et al. Each point represents
an individual cell, colorcoded by cell type. b, Schematic representatioth@fgene expression
prediction process using two regression models: one for predicting day 4 gene expression (trained
on data from days 2 and 6), and the other for predicting day 6 gene expression (trained on data
from days 2 and 4) within a clone. c, @dation of gene expression between Deep Lineage
predictions and cells excluded during training, categorized by cell types and time points. d,e,
Comparison of average gene expression values of 2000 genes between Deep Lineage predicted
and real cells for Moocytes and Neutrophils. Gene expression at day 4 was averaged across
predicted cells per clone, and then correlation was computed with actual data for eacWi;gene (

indicates the squared Pearson correlation coefficient between the predicted and ground truth
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values). f,g, Violin plots show gene expression distributions between predicted and real cells for

randomly selected genes both Monocytes and Neutrophils.............cccoovviecc 143

Figure 7-3: Exploring progenitor bias prediction in hematopoiesis with Deep lineage and
comparison to statef-the-art methods. a, Schematic UMAP diagram illustrating the trajectory of
stem cell differentiation and the possible cellular outcomes with cell cwidisating distinct
clonal lineages. Grey points represent other mature cell types (not neutrophils and monocytes). b,
Performance evaluation of the classifier using accuracy andentsgy loss metrics to predict
early cell fate bias by employing geeepression of cells on just day 2, using cells on days 2 and
4, and including all three days within a clone. c, Receiver Operating Characteristic (ROC) curves
and Area Under the Curve (AUC) values for the model using cells from days 2 and 4 or all three
days with a clone, showing our model's performance in early cell fate bias prediction. Day 2
performance is very close to day 2&4 performance, thus not plotted. d, Comparative analysis with
stateof-the-art methods in predicting early cell fate bias. Deepehge outperforms existing
methods showing a higher classification aCCUIACY.............uueiiiiiiieeeiiiiiiiiiiieeeeeee e 144

Figure7-4: Deep Lineage accurately predicts singgdl gene expression of unseen cells in
reprogramming. a, UMAP visualization demonstrates fibroblast cell reprogramming into iEPs,
dots represent cells and are cetoded by time point. b, Correlation valuestvieen gene
expression of ground truth cells and Deep Lineage predictions for cells excluded during training
across different stages of the reprogramming process. ¢, Violin plots show gene expression
distributions between real cells and Deep Lineage predgfor randomly selected genes for both
Failed and Reprogrammed cells. d,e. Comparative analysis of the top 2000 differentially expressed
genes between predicted and real cells. High correlation values are observed for both successful
and failed reprograming cells, highlighting the accuracy of the model for different cell tyhbes (
indicates the squared Pearson correlation coefficient between the predicted and ground truth
Y22 1L 1) PSPPSR 147
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Figure7-5: Early cell fate prediction in reprogramming with Deep Lineage and comparison
to stateof-the-art method. a, UMAP visualization illustrates progenitor bias toward either
successful or failed reprogramming outcomes. b, The model's accuracy in detectiegsful or
failed outcomes of progenitors is examined using gene expression data of cells up to days 12, 15,
21, and all days within a clone. ¢, Benchmarking comparison between Deep Lineage and CellRank
in predicting fate outcome when using all timerpgeiup to a given time point (e.g. day 12) to infer
ti me point fAday 280. Using ROC curves and AUC

of both models in predicting fate bias. Deep Lineage consistently outperforms CellRahk3

Figure7-6: In silico perturbations of early cells in hematopoiesis and reprogramming data
successfully modify cell fate at later stages. a, UMAP representation showing the procedure for in
silico perturbation of cells on day 15 within failed reprogrammed claigsng to switch them
into successfully reprogrammed states. b, Correlation values between in silico perturbed data and
actual successfully and unsuccessfully reprogrammed cells on Day 28, showing the power of Deep
Lineage in performing in silico experimis. ¢, Gene set enrichment analysis reveals the biological
processes associated with the top 200 genes identified by the SHAP method (40 genes selected
from each time point) d, Identification of the top 10 gene candidates using SHAP analysis at each
time point during fibroblast cell reprogramming. e, UMAP visualization depicting the in silico
perturbation experiment targeting progenitor cells (Dark orange) in clones with a Neutrophil fate
(blue), resulting in a transformation to Monocytes (green). f, DpelD gene candidates for
hematopoiesis detected by SHAP analysis across all time points. g, Gene set enrichment analysis
of the top 200 genes identified by SHAP analysis. ..o 150

Figure9-1 Supplementary Fig. 1. Gene expression perturbations to change thgpeell
distribution. This figure demonstrates the transition of an initial cell type distribution to a desired
target distribution through getevel adjustments. The circles represdm@ system's state, with
the frequencies of cell types indicated DeIOW..........cccceeeiiiiiiieeeei e 191
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Figure9-2 Supplementary Fig. 2: Comparison of autoencoder architectures for analyzing
data for endocrine development in the mouse pancreas. a, comparison of theuipput
correlation for the AE, the variational autoencoder (VAE), and the conditional variational
autoencoder (CVAE). b, the mean square error of the three autoencoder architectures' input and

output. VAE performs better than other architectures for this.data....................cceeeennn.. 192

Figure 9-3 Supplementary Fig. 3: Gene prioritization score for the mouse hematopoiesis
data. a, b, ¢, Fatecode accurately determines gene prioritization scores for various genes, including

KIf1, Runxl andFlil, across different Cell typeS.........uuvuiiiiiiiiiiiceeeiciei e eeeeeeeen, 193

Figure9-4 Supplementary Fig. 4: Fatecode analysis of hematopoiesis data identifies master
regulators governing cell switching dynamics. a, visualization of the hematopoiesis dataset from
Weinreb et al. hematopoietic progenitors differentiate into different cedstgpch as mast cell
(Ma), basophil (Ba), eosinophil (Eos), megakaryocyte (Mk), lymphoid precursor (Ly), migratory
dendritic cell (mDC) and plasmacytoid dendritic cell (pDC), erythrocyte (Er), neutrophil (Neu),
monocyte (Mo). b, The effect of different pebation sizes of a node in the latent layer on the cell
distribution. ¢, gene set enrichment analysis results. Gene ontology (GO) biological processes
enrichment analysis shows significant process terms related to mouse hematopoiesis, stem cell

developmat, and mesenchymal cell differentiation...............ccccouurvimmmnnniniiiiieeeee 194

Figure9-5 Supplementary Fig. 5Gene Regulatory Network of Ybx1 and its downstream
target genes along with gene prioritization scores. The GRN was constructed using SCENIC, by
filtering the top 2000 interactions with the highest SCENIC Importance Measure (IM)sscor
Additionally, the top 400 predicted master regulators from Fatecode were mapped onto the GRN,
and the resulting network is presented here using a network bar chart in which each value of a bar

plot shows the Fatecode gene prioritization score of the fgr that cell type.................... 195
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Figure 9-6 Supplementary Figure 1: Training and validation loss curves for training
CLERA on the data generated using SERGIO. The low losses-(a)(eidicate a high accuracy
and strong generalization. Refer to the Methods section for the description of edemiod97

Figure 9-7 Supplementary Figure 2: Training and validation loss curves for training
CLERA on the pancreas data. The low losses wigpjndicate that CLERA successfully builds
the latent layer with the desired characteristics. Refer to the Methods sectiondes¢hption of

LT o A W (O FI SRR (] 1 1 PR 198

Figure 9-8 Supplementary Figure 3: Training and validation loss curves for the bone
marrow data in the transfer learning setting. Due to transfer learning, the model converges in fewer

epochs as compared to the training of the Pancreas.data................ccccceee e, 199

Figure9-9 Supplementary Figure 4: Training comparison on the bone marrow dataset using
transfer learning (SINDy threshold frequendd00) and vanilla training with two different
thresholds (SINDy threshold frequerdp0 and 500). (a) shows the combined loss pl@tminst
the number of epochs, illustrating the slower convergence and signs of overfitting in the vanilla
models, particularly with the lower threshold (red). (b) presents the data with normalized epochs,
highlighting the efficiency of transfer learninghich reaches stability in a fraction of the time
compared to vanilla training. While the vanilla models require most of the training period to
converge (especially with a lower threshold), the transfer learning model generalizes well much

earlier in thetraining process, as shown by the stabilized validation.loss..................... 200

Figure9-10 Supplementary Figure 5: Classification results of (a) SERGIO generated data
(b) Pancreas data and (c) Bone marrows data. After training CLERA on different datasets. the
prediction of the cell type for all the preprocessed input (validation and trainingheb

classification network is shown, The classifier achieves high accuracy with very few
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misclassifications. Even for cell types with fewer instances, the model can accurately predict the
cell type from the latent space. This strong classification performance suggests that the latent space
captures celtype-specific features. Accurate class#tion ensures that the predicted ODEs

reliably infer relationships and can predict cellular behavior across different condition201

Figure9-11 Supplementary Figure 6: Mean intersection percentage betwe&mgepes of
different latent variables present at various time distances for (a) SERGIO generated dataset (b)
Pancreas dataset (c) Bone marrows dataset. The mean intersection percentagetbettiogk
genes for various time distances in the SERG#Derated dataset with k=30 (left), the Pancreas
dataset with k=300 (middle), and Bone marrow data with k=300 (right) datasets. The intersection
percentage, plotted for each latent variable,gbi for closer time steps and gradually decreases
as the time distance grows. This shows the model's ability to capture temporal coherence in gene
expression patterns, where similar gene sets are shared between adjacent time points, reflecting
the graduathanges in biological processes. The consistency decreases with larger time distances,
indicating the differences in active gene Prograumis............ueeeeeeeeiieeesrrrrrnerereeeeeeeeeeeeseens 202

Figure 9-12 Supplementary Figure 7: The mean and standard deviation of SHAP values
between each cell type and latent variable for the pancreas Ta#aSHAP values calculated
using the classifier network are plotted which show that each cell type is primarilg yivene
or more latent variables for classification. This demonstrates that certain latent variables are key

drivers in predicting particular cell types, suggesting a cellkypel abstraction within the latent

Figure 9-13 Supplementary Figure 8: SHAP Value Analysis of Latent Variables in
hematopoietic differentiation. This figure illustrates the mean and standard deviation of SHAP
values for each cell type and latent variable. The values, derived from the classifiekknetwor
demonstrate that specific latent variables significantly influence cell type classification, indicating

a cell type abstraction in the [atent SPACE..........coiiiiiiiiiiicecii e 204
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Figure 9-14 Supplementary Figure 9: Latent Variable Time Series discovered using
CLERA for (a) pancreas dataset and (b) Bone marrows dataset. Colors have been assigned as the
cell type labels.The latent space demonstrates clear cell type differentiation, withatisell
types following unique trends and values over time. This pattern indicates that the learned latent
space successfully captures cell sgpecific dynamics, ensuring that the model reflects latent

gualities at a cell type level granularity..............oovveiiiiiieer s 205

Figure 9-15 Supplementary Figure 10: Results of centrality measures on (a) Pancreas
dataset and (b) Bone marrows dataset. The figure shows the distribution of three centrality
measured Closeness, Eigenvector, and PageRaftk the most central genes across different
cell types in (a) the pancreas dataset and (b) the bone marrow dataset. In both datasets, some genes
exhibit consistently high centrality values across multiple cell types, indicating their importance

in the gene regulatory NEIWOIKS............ooiiiiiiiiiieeee e e e e e e e e e e 206

Figure 9-16 Supplementary Figure: 1Simulations and predictions in the simple gene
regulatory network model using a smaller noise amplitude of 0.01. Refer to the caption of Figure
1 Or FURNEI TAIIS......cce ettt e e e e e e e e e e eer e e e e e e e e eeeeeeas 211

Figure 9-17 Supplementary Figure: 2Simulations and predictions in the simple gene
regulatory network model using a larger noise amplitude of 0.1. Refer to the caption of Figure 1
fOr FUPther detallS. ... ..o e e e e e e e e e e e e e e e e 212

Figure 9-18 Supplementary Figure 3: Gene Ontology (GO) term and Reactome pathway
enrichment analysis for the top 250 significant genes. a) GO: Biological Process (BP) showing the
enriched biological processes such as different metabolic processes, cellular respdfesert
stimulus, and cell apoptosis indicating relevant biological activities associated with these genes.
b) GO: Molecular Function (MF) highlights the enriched molecular functions including protein
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binding and enzyme binding. ¢) GO: Cellular Component (CC) displays the enriched cellular
components such as cytoplasm and intracellular organelles, suggesting the subcellular
localizations where these genes are active. d) The REAC panel representgtiesl grathways

from the Reactome database, including immune system processes and cellular responses to stress,

which are related to the process of neutrophil development..................vveeiiiiieeeeinnnnnd 213

Figure9-19 Supplementary Figure 4: Enrichment map analysis of biological pathways. The
figure shows the complex connections and interactions between different active biological
processes. Blue edges of varying thickness connect the nodes, indicating the strehgth of
connection between pathways by the number of mutual genes. To simplify the network, only edges
and nodes meeting the cutoff (Node Cutoffdue > 0.01, Edge Cutoff > 0.35) are shaw@14

Figure9-20 Supplementary Figure 5: Architecture for the neural networks in FateNet. Each
network consists of 2 convolutional and 2 lestgortterm memory (LSTM) layers.
Hyperparameters are shown for Network 1. The input to the network is a time series of length 500.
This is passed through a 1D convolution, with a kernel size of 12, 50 filters, and the RelLU
activation function. Padding is applied to the ends of the time series to maintain the input
dimension. This is then passed through a max pooling operation vatisige 2, reducing the
dimension by a factor of 2. This process repeats through another convolution and max pooling
layer. This is then passed to the first LSTM layer with 100 memory cells. For this layer, the cells
return the entire sequence. This thatees the second LSTM layer with 20 memory cells, which
returns only the end value of the sequence. Each memory cell is then connected with the 4 output
nodes via a dense layer. The output is passed through a softmax filter to obtain a probability

distribution over the 4 possible OUICOMES.............oii i 215

Figure 9-21 Supplementary Figure 6: training and validation accuracy vs. epoch for
Network 1 and Network 2 during the training phase. The accuracy on the validation set peaks at

epoch 71 and 154, respectively, at which point the models are selected...................... 216
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Figure 9-22 Supplementary Figure 7: Confusion matrices for Network 1 and Network 2
when evaluated on their test sets from the library of generated dynamical systems. We show
performance on the multlass classification problem, where the model must predict thefispeci
event, and the binary classification problem, where the model only needs to predict whether or not
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Chapter 1
Introduction

A D e amilbes at us all, but all a man can do is smile back." These words by Marcus Aurelius
reflect an acceptance of the inevitable. But must we simply smile back? Could we dare to challenge
death, or even evade it entirely? The questions of death, life, anattiatity have captivated the

minds of philosophers, scientists, and scholars for millennia. For some, death is an inescapable
fate, a natwural end to |ifeds cycle. Others s
individuals have refused taccept death as part of life's natural order, instead dedicating

themselves to the search for ways to extend lie even achieve immortality.

Humanity has long pursued the dream of extending life, whether by lengthening our natural
lifespan or achieving something as radical as immortality. However, should we ever succeed, we
would not be the first. Nature offers extraordinary examples of lotygé&he bowhead whale, for
instance, can live for over 200 years, while the Aldabra giant tortoise can survive for up to 250
yearg6) (Figl-1. a,b) Most remarkably, the Greenland shark can live up to 500 years, making it
one of the longedtving vertebrate§’) (Figl-1. c).Yet none of these creatures can claim to be truly
immortal except foifurritopsis dohrnij commonly known as the "Immortal JellyfigB) (Fig1-1.

d). When faced with injury or stress, it undergoes transdifferenti@tanare process that allows
it to transform its cells and revert to a juvenile state, effectively restarting its life cycle. While this
unigue process is remarkable, the mechanisms ofnegti@gevity or immortality found in other

species are typically highly specialized, making them difficult to apply to humans.


https://sciwheel.com/work/citation?ids=1006451&pre=&suf=&sa=0&dbf=0
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https://sciwheel.com/work/citation?ids=8054808&pre=&suf=&sa=0&dbf=0

Figurel-1: The natural world showcases remarkable examples of longevity and potential immortality. (a)
The bowhead whale, capable of living over 200 years, thrives in Arctic waters. (b) The Aldabra giant
tortoise, known for its lifespan of up to 250 years. (c) Greenland shark, one of the longkging
vertebrates, can live up to 500 years in the deep d&mto credit: Hemming1952]d) The Immortal
Jellyfish (Turritopsis dohrnii) uniquely reverts to its juvenile form through transdifferentiation, effectively
restarting its life cycle and achieving a form of biological immortdftyoto credit: Chen Yimirlg

Despite these challenges, the quest for immortality is a light in the darkness for those who dream
of transcending our natural lifespan. This fascination with eternal life has been a recurring theme
in mythology and folklore for as long as humans haverdeszbtheir thoughts. From the ancient
myths of the Fountain of YoutffFigl-2. e)to the worship of undying deities, the desire to escape
death has spanned time and cultures. One of the earliest recorded tales of the search for immortality
is found in theEpic of Gilgames{®) (Figl-2. a) In this ancient Sumerian story, the legendary king
Gilgamesh embarks on a quest to defeat death after the tragic loss of his companion, Enkidu.
Gilgamesh seeks immortality to avoid his friend's fate, but ultimately fails in his pursuit. Instead,
he comedo the realization that immortality lies not in eternal life, but in the enduring legacy of

one's actions and contributions to civilization. This profound narrative is one of the oldest in human
2
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history. In a later era, the First Emperor of China, Qin Shi Huang, also sought to escafEdeath
(Figl-2. b. Obsessed with finding the mythical elixir of lif€igl-2. d), he dispatched vast
expeditions to locate the fabled Mount Penglai, believed to hold the secret to immortality. Despite
his efforts, Qin Shi Huang's quest ended in failure, as he tragically died from mercury poisoning,
ironically caused by the very pillgrescribed to him in his pursuit of eternal life. Mythological
tales from around the world echo this same yearning. In Persian mythology, the legendary king
Jamshid is one of the ntosell-known figures associated with immorta(ityt) (Fig1-2. c).Jamshid

was granted divine favor, allowing him to rule for hundreds of years. His reign marked a golden
age, a time of prosperity and innovation for humanity. According to legend, Jamshid discovered
the secret to immortality and ruled for centuries, grgwitore powerful and wise as time passed.
However, his story also serves as a warning:
natural span of life. He began to see himself as divine, eventually losing the favor of the gods and
bringing about his denfall. In Greek mythology, several stories address the theme of immortality,
often with a cautionary twist. One notable example is the story of Tithonus, a mortal man who was
granted eternal life by the gods at the request of Eos, the goddess ¢l dawiyl-2. f). However,

Eos forgot to ask for eternal youth, and as a result, Tithonus aged endlessly, growing frail and
withered. His immortality became a curse, as he was doomed to an eternity of decrepitude.
Regardless of thelsasis in myth or reality, these stories underscore the significance of the quest
for immortality throughout human history. They reflect our dsegted fear of death and our
enduring desire to transcend our natural limitations. From ancient alchemistgygbelkelixir of

life to heroic figures embarking on legendary quests, this pursuit has spurred cultural narratives

and philosophical exploration, showing how the dream of eternal life has shaped human thought.
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Figurel-2: Throughout history, the quest for immortality has captivated human imagination, as depicted in
various myths and legends. (a) The Epic of Gilgamesh illustrates an early tale of seeking eternal life. (b)
Qin Shi Huang, the First Emperor of China, purstiedelixir of life. (c) Persian mythology tells of King
Jamshid's long reign and eventual downfall due to arrogance. (d) The mythical elixir of life symbolizes
humanity's enduring hope for immortality. (e) The Fountain of Youth represents a legendaeyafourc
rejuvenation. (f) In Greek mythology, Tithonus was granted eternal life without eternal youth, highlighting
the potential curse of immortality.

Today, while the root causes of aging still remain elusive, various computational and experimental
studies are beginning to illuminate these underlying mechanisms. This modern exploration bridges
the gap between ancient aspirations and current scientific tenudirey, can offer hope for
extending human lifespan and improving the quality of life. Central to this understanding is the
recognition of the hallmarks of agin@d3), which describe the key biological processes that
contribute to the aging phenotype:

1. Genomic Instability: This hallmark refers to the accumulation of DNA damage over time
due to environmental stressors (like UV radiation and chemicals) and inherent replication

errors. As cells divide, they may fail to accurately replicate their DNA, Igadimutations

4
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and chromosomal abnormalities. This instability contributes to cellular dysfunction and

increases the risk of agelated diseases, including cancer.

. Telomere Attrition: Telomeres arepetitive DNA sequences at the ends of chromosomes
that protect them from deterioration. With each cell division, telomeres shorten. When they
reach a critically short length, cells can no longer divide, leading to cellular senescence or
apoptosis (programed cell death). Telomere attrition is associated withreigeed

decline in tissue regeneration and function.

. Epigenetic Alterations: Epigenetics involves changes in gene expression that do not alter
the DNA sequence itself. Factors like aging, lifestyle, and environmental influences can
lead to modifications of the epigenome, such as DNA methylation and histone
modification. These changes can disrupt normal cellular processes, leading to altered cell

behavior and contributing to aging and disease.

. Loss of Proteostasis: Proteostasis refers to the cellular mechanisms that maintain the proper
folding, trafficking, and degradation of proteins. Aging disrupts these mechanisms,
resulting in the accumulation of misfolded or damaged proteins. This pratestiess can

impair cellular function and lead to agelated diseases, including neurodegenerative
disorders.

. Deregulated Nutrient Sensing: Cells have pathways that sense and respond to nutrient
availability (such as insulin signaling and mTOR pathways). Aging can impair these
signaling pathways, leading to metabolic dysfunction. This deregulation can confibute t

obesity, diabetes, and other metabolic disorders, affecting overall health and longevity.

. Mitochondrial Dysfunction: Mitochondria are vital for energy production through
oxidative phosphorylation. With age, mitochondrial function declines due to accumulated

damage and mutations in mitochondrial DNA. This dysfunction leads to decreased energy



production and increased generation of reactive oxygen species, contributing to oxidative

stress and cellular damage.

7. Cellular Senescence: Cellular senescence is a state in which cells stop dividing but remain
metabolically active. Senescent cells secretamftammatory factors and other molecules
that can disrupt tissue function and promote chronic inflammation. Thenadation of
senescent cells is linked to various -agkited diseases and contributes to the aging

process.

8. Stem Cell Exhaustion: Stem cells play a crucial role in tissue regeneration and repair. As
we age, the pool of functional stem cells diminishes, leading to reduced regenerative
capacity. This exhaustion can i ragedtissuest he b

contributing to ageelated decline in function.

9. Altered Intercellular Communication: Aging affects the way cells communicate with each
other through signaling pathways. This alteration can lead to chronic inflammation and
changes in tissue microenvironments. The resulting dysregulation can contriéowaade
of agerelated diseases, including neurodegenerative conditions and cardiovascular

diseases

10. Loss of Tissue Integrity: As we age, tissues can become less organized and functional due
to changes in cellular composition and structure. This loss of integrity can impair organ

function and increase susceptibility to injury and disease.

11.Increased Inflammation: Chronic, legrade inflammation often referred to as
"inflammaging,” is common in aging. This persistent inflammation can result from various
factors, including the accumulation of senescent cells and changes in immune function.
Chronic inflammation contributes to the development of manyratged diseases, such

as cardiovascular disease, diabetes, and neurodegenerative disorders.



12.Decline in Immune Function: Aging leads to a gradual decline in the immune system's
ability to respond effectively to pathogens, known as immunosenescence. This decline
results in increased susceptibility to infectiorsjuced vaccine efficacy, and a higher
incidence of autoimmune diseases. Maintaining a robust immune system is crucial for

healthy aging.

To combat aging, two main strategies can be brozatlygorizedregenerative medicing4) and

enhancing cellular resilien¢&5) (Figl-3).

1. Regenerative medicineThis strategy focuses on regenerating and replenishing damaged
or senescent cells to restore tissue function. Techniques such as cellular reprogramming
and stem cell therapy aim to generate new, healthy cells that can replace those lost to aging
or injury. Induced pluripotent stem cells and methods to rejuvenate aged cells are integral

to this approach, as they offer the potential for improved tissue repair and regeneration.

2. Enhancing Cellular Resistance This approach emphasizes increasing the resilience of
existing cells to combat agelated damage. By targeting mechanisms that promote
cellular health, we can enhance the ability of cells to withstand stremsdrexternal
perturbations For example,compounds that improve mitochondrial function can
significantly bolster cellular resistancAlso, metabolic interventions, such as caloric
restriction mimetics and nutriesensing enhancement, contribute to this effort by

optimizing cellular responses to various challenges.

To better explain these strategies, we can draw a parallel example to maintaining a car. Replacing
old cells is similar to swapping out worn or malfunctioning parts of a vehicle; just as old brake
pads or a failing engine can hinder a car's performanoey agdamaged cells can impair bodily
functions. Techniques in regenerative medicine like stem cell therapy, and partial reprogramming
are similar to installing a new engine or critical parts, revitalizing the vehicle's performance.
Enhancing cellular réstance, on the other hand, resembles protecting the car to withstand various
conditions, such as reinforcing the body for rough terrain, using better tires for improved traction,

or using better materials to make the car p&ysenhancing cellular resilience through methods
7
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like metabolic interventions and regular physical activity, cells can better cope with external

stresses, much like a watuipped cathathandles challenging road conditions.
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Figurel-3: Two complementary strategies to combat aging: regenerative medicine and enhancing cellular
resistanceRegenerative medicine involves replacing or repairing damaged and aged cells, akin to replacing
worn-out parts in a car. This process, such as regenerating tissues through stem cell therapy or partial
9



reprogramming, relies heavily on the concept of cellular decisiaking, where cells assess environmental
signals and gene programs to choose between repair or regeneration. Enhancing cellular resistance, on the
other hand, fortifies the resilience of sting cells, similar to reinforcing a car to endure tough conditions.

This strategy includes the use of metabolic interventions to optimize cellular health and performance. Both
approaches work together to address the hallmarks of aging, promoting eXtfaseeh and improved

healthspanHallmark figure from Ref(13) andother figs generated Wyall-E 3]

For my master's thesis, we focused on modeling and analyzing different pro(Es<del
especially pathways and regulators that can affect the extension of lifespan and healthspan in
various model organisms, such as mTORC1, AMPK, and (18[20) These pathways have been
shown to play a major role in understanding how biological processes can be manipulated to
promote longevity. We also delved into the complex connections between these master regulators
and the circadian clock, whidifectsthe rate of aging. By integrating the circadian rhythm's effect

on metabolic processes, we aimed to uncover how synchronizing these pathways could potentially
lead to enhanced health and longeyR$). To achieve this, we built these biological signaling
pathways in silico using mechanistic models specifically ordinary differential equations, which
allowed us to simulate and analyze their interactions. We also focused on modeling the effects of
different drugs, such as metformin, resveratrol, and NMN, on this system. These compounds have
gained attention for their potential to target key aging pathways and improve healthspan. By
incorporating these drugs into our models, we sought to explore their msokaof action, the

timing of the medicine for different age groups, and their effects on the dynamics of cellular aging.
Overall, for my master's thesis, we mainly aimed to understand ways to increase the resilience of
cells (second approacBnhancingCellular Resistance) by modeling the key pathways in aging
and identifying potential interventions to promote healthy longevity.

For my PhD, we concentrate on the first approach: using computational and primarily data
driven modelsn regenerative medicine. Our main questions revolve around how to restore cells
to their functional and healthy states. Specifically, we seek to answer: Which genes can be targeted
to achieve the desired cellular state and type? Whesoadl decisioamaking happen, and what
are the consequences of these decisions on the dynamics of the overall system? How accurately

can we predict the effects of varioperturbations, such as gene knocked out, diseases or drugs,

10
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on cellular gene expressig@nofiles? In biological processes like development or differentiation,
which gene programs are active? Also, can we predict how perturbing early cells within a clone
affects the cell type and gene expression profiles in subsequent cells of the clone?

As thesadeveloped methods have already undergone thorough rounds of peer review, they have
been largely preserved in their original form, with only minor modifications to enhance clarity,
integrate relevant background, and improve the overall flow of the thémsiemainder of this

manuscript is structured as follows:

Chapter 2 offers an overview of the core computational and mathematical approaches used
throughout the thesis, including unsupervised and-ssgiérvised learning, representation

learning, dynamic model decomposition, bifurcation theangsinglecell data modalities.

Chapter 3introduces Fatecode, the first algorithm developed during my PhD. Fatecode is
a computational method designed to predict cell fate regulators solely from single-seigdAta.
By learning a latent representation through a deep leab@sgd classificatin-supervised
autoencoder, it enables in silico perturbation experiments. These experiments identify genes that,
when perturbed, can shift cell type distributions, either increasing or decreasing the population of
specific cell types. The researtitied Fatecode Enables Cell Fate Regulator Prediction Using
ClassificationSupervised Autoencoder Perturbatimas conducted with Prof. Anita T. Layton,
Prof. Sidhartha Goyal, and Prof. Gary Bader and has been published in Cell Reports §18thods
We also experimentally validated Fatecode by reprogramming astrocytes into oligodendrocytes,
in collaboration with researchers at the University of Toronto, in the study Eittedt lineage
conversion of postnatal mouse cortical astrocytes to oligodendrocyte lineage vdaith is

currently under review ieLifejournal (22).

Chapter 4 presents CLERA, a novel computational framework for uncovering dynamic
models and identifying active gene programs from shegle RNA sequencing data. By
combining a supervised autoencoder with Sparse Identification of Nonlinear Dynamics, CLERA

uses prio knowledge to extract lomimensional representations and reveal the driving forces
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behind cellular processes. It pinpoints central genes, reconstructs gene expression dynamics, and
captures key regulatory genes and temporal patterns across various cell types using personalized
page rank. The research titlBuscovering Governing Equations of Biological Systems through
Representation Learning and Sparse Model Discoway conducted in collaboration with Vasu

Swaroop(coop student in our laland is currently under review hucleic Acids Researgburnal
(2).

Chapter 5introduces FateNet, a computational approach that integrates dynamical systems
theory with deep learning to explore the timing of cell decisi@king using scRNAeq data. By
leveraging information about normal forms and scaling behavior near bifurcasitaidet predicts
when cell decisions occur with greater accuracy than conventional methods, while offering a
gualitative understanding into the specific type of bifurcation the system is likely to experience.
The work titledFateNet: An Integrabn of Dynamical Systems and Deep Learning for Cell Fate

Predictionwas conducted with Dr. Thomas Bury and published in Bioinformatics in )24

Chapter 6 delves into scVAEDer's capabilities, the figenerativedeeplearning model
that integrates autoencoders and deep diffusion mddefaodel biological processes using
scRNAseq dataThis approach learns a latent representatioth@tlata, which captures both
global patterns and local variations. scVAEDer's accuracshownby showing its ability to
generate new high quality scRNs&q data, predict perturbation effects across cell types, track
gene expression changes during dedifferentiation, and identify key regulators in biological
processes. The work titléithe Power of Two: Integrating Deep Diffusion Models and Variational
Autoencoders for Singl€ell Transcriptomics Analysiwas conducted with Prof. Antia Layton

and is currentlynder review at the Genome Biology jour(él

Chapter 7 highlightsDeep Lineage, a novel detgarning method for analyzing time
series sScCRNAseq data with matched lineagacing data. Our method accurately predicts early
cell fate biases and gene expression profiles at different time points within a clone, surpassing
current stateof-the-art methods in fate prediction accuracy. Also, through in silico perturbations
in cellular reprogramming and hematopoiesis data, we show that Deep Lineage acaourddty

dynamic multicellular responses while idéyihg key genes and pathways associated with cell
12
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fate determination. This research was conducted in collaboration with Allen Zhang and Prof. Gary
Bader.The work titledDeep Lineage: Singl€ell Lineage Tracing and Fate Inference Using Deep
Learningand iscurrently under review &ell Systemg).

Chapter 8 summarizes the key findings of my thesis and offers conclusions and future
directions for research across various areas, including computational metbtmtg;, and social

science.
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Chapter 2
Computational methods

2.1 Machine Learning
Machine learning (ML) is a subfield of artificial intelligence (Al) focused on designing algorithms

that learn from and make predictions based on data. Unlike traditional algorithms, which follow
explicit instructions, machine learning models identify grai in data autonomously and adapt as
they are exposed to new information. At its core, machine learning involves finding an optimal
function"Qthat maps input datato an outputo(23). In supervised learning, this function can be

represented mathematically as:
(CIACN
Where is the set of input features andlis the output (target variable or label). ML
methods are broadgnd commonlgategorized into supervised, unsupervised, anesapkérvised
learning, each serving distinct roles in data ana(d¥ In the sections that follow, | will describe

the machine learning methodologies used in my PhD research, focusing on supervised and

unsupervised learning.

2.2 Supervised Learning

Supervised learning involves learning a function from labeled data, where each training sample
consistsofinpubut put pairs. The model 6s goal i's to g
based on what it learned from the labeled examples. This @pps@idely used in tasks such as

classification and regression.

2.2.1Classification

Classification is the task of predicting discrete labels from input data. In my work, | used
classification models to predict cell types from gene expressiorfldaty forecasting the fate of

cloneg5), and classifying patients according to their disease ¢2&usMathematically,
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classification involves learning a mappii@o© plti (Q where "Q represents the number of
classes. For example, in predicting monocyte versus neutrophil éatejould represent gene
expression dataand Q ¢ 8The classifier is trained by minimizing a loss function such as

crossentropy loss, which is given by:
0 op 1 T1G

wherewy, is the true labell ;; is the predicted probability for class k, and N is the number of

samples.

2.2.2Regression

In regression, the model predicts continuous outputs rather than discret@&bleisny research,

| used regression models to predict gene expression levels at future time points, such as Day 21
and Day 28, using data from days 6, 9, 12, and 15. The regression task can be described as learning
a function"@j> © "Yhwhere the output is a continuous variaBlee loss function typically used

for regression is the mean squared error (MSE), which is expressed as:

b
;

wherew is the true output, is the predicted output, and is the number of samples. In both
classification and regression, the primary challenge is to ensure that the model generalizes well to

unseen data, which is typically addressed using regularization techniques.

2.3Unsupervised Learning
Unsupervised learning techniques play a pivotal role in the analysis ofsleage datasets,

especially in biological and cellular studies. These methods aim to uncover hidden patterns,
relationships, and structures in the data without the use of labetpdts. The core techniques

revolve around modeling the data distribution, discovering its underlying structure, clustering
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similar data points, and dimensionality reduct{@6). Below, | outline these concepts in detail,

focusing on their mathematical foundations.

2.3.1Modeling the Data Distribution and Sampling
One of the primary goals in unsupervised learning is to model the probability distributéon

of the datab. This helps in understanding the likelihood of certain data points and allows for the
generation of synthetic samples that follow the same distribution as the original data. A common
approach to modeling data distribution is through Gaussian Mixture Blagbich assume that

the data is generated from a mixture of several Gaussian distributions. The probability density

function of a Gaussian Miure Models can be expressed as:
0@ A Ot h

wherev is the number of Gaussian componefits,is the weight of the &h Gaussian, and

@t A represents the Gaussian distribution with meamnd covariance matrik .
Maximizing the likelihood function for the Gaussian Mixture Models can be done using the
ExpectatioAMaximization algorithm, iteratively refining the estimates of the parameters
t B M for each Gaussian componéaB). Modeling the data distribution in this way enables
us to infer underlying structures and generate new samples for simulations or data augmentation.
This allows GMMs to capture complex data structures by modeling overlapping-spherical
clusters. Moreover, GMMs provide practical applications such as inferring latent structures,
creating synthetic datasets for augmentation, or identifying anonvalilzga by detecting points
that deviate significantly from the learned distribution. By leveraging this flexibility, GMMs

become an essential tool for probabilistic modeling in unsupervised learning.
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2.3.2Revealing the Underlying Structure of the Data

In biological data, the relationships between cells or genes often lie in@rmus manifold or
latent space. Revealing this latent structure requiresinear approaches that can map the high
dimensional data into lowatimensional manifolds whilerpserving the essential properties of the
original dataset. One such approach is Manifold Learning, which assumes that the data lies
lower-dimensional, notlinear subspaceOne such method is Isomap, a technique that extends
classical Multidimensiongbcaling by incorporating geodesic distances. Isomap seeks to preserve
the global geometry of the data by minimizing the following error:

i ET Q ohd o s

h

whereQ ®hY is the geodesic distance between paintandd in the highdimensional

space, angb  @sis the Euclidean distance between their-ilimensional representations. The
geodesic distand@ is computed by approximating the shortest paths along a neighborhood
graph, capturinghe structure of the data. This method is useful in biological contexts, such as
tracing differentiation pathways or revealing gene expression landscapes, providing insights into
complex cellular processdsis worth noting that UMAP and$NE are among the most

commonly used methods for visualizisgRNA-seq datatructuref27,28)

2.3.3Clustering
Clustering is a fundamental unsupervised technique used to group similar data points based on

their feature similarities. The goal is to assign data pdints clustersd hsuch that points within

the same cluster are more similar to each other than to those in other clusters. One of the most
widely used clustering algorithms is-Means. The algorithm iteratively assigns data points

tov clusters based on the Euclidean distance to the cluster centroids. Mathematidadign&

aims to minimize the following objective function:

0 W ts
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wheret is the centroid of th&th cluster, andd ¥ 6 denotes that the data poitbelongs to
cluster0 . The algorithm alternates between assigning points to the nearest cluster and updating
the centroids, leading to compact and veelparated clusters. Another notable technique is
DensityBased Spatial Clustering of Applications with Noise (DBSCAN), widelntifies clusters

based on the density of data points, making it particularly effective for datasets with irregular
shapes and noisy d&t29). DBSCAN assigns points to clusters if they are densely packed within

a neighborhood radiug and labels points as outliers if they do not meet this criterion.

2.3.4Dimensionality Reduction
High-dimensional data, such as scRi¥&q, can be challenging to interpret directly due to the

"curse of dimensionality." Dimensionality reduction techniques aim to project this data into a
lower-dimensional space while retaining the most relevant infoomatPrincipal Component
Analysis (PCA) is a commonly used method that projects data into a subspace spanned by the
directions of maximum variance. The objective is to find a set of orthogonal vectors (principal

components) that maximize the variance offifgected data:
ma x0 tv

wheret is the covariance matrix of the data, ané the vector corresponding to the principal
components. For nelmear data, methods such as Uniform Manifold Approximation and
Projection (UMAP) have proven effecta8). UMAP optimizes the crossntropy between the
high-dimensional and lowdimensional representations of the data, preserving both global and
local structures. The algorithm constructs a weighted graph where points are connected based on
a similarity metricsuch as cosine or Euclidean distance, and optimizes the embedding to reflect
this graph in the lowedimensional space.

IEINIIG *l'l‘pa
v GGPU ﬁ

where0d and0 are the probabilities of point&andQbeing connected in the higlimensional

and lowdimensional spaces, respectively. By reducing the dimensionality of the data, we can
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visualize complex relationships and trajectories that were otherwise obscured in the high

dimensional space, aiding in the interpretation of biological processes and cell differentiation.

2.4 Selft-Supervised Learning

Self-supervised learning has emerged as a pivotal paradigm within the field of machine learning,
bridging the gap between supervised and unsupervised le@2B8nynlike traditional supervised
learning, which relies on labeled data, and unsupervised learning, which seeks to identify inherent
structures without labels, sedtipervised learning leverages the data itself to generate supervisory
signalg30). This approach enables models to learn meaningful representations by solving pretext

tasks derived from the input data, thereby effectiusinglarge amounts of unlabeled data.

At the core of selsupervised learning is the concept of creating auxiliary tasks where the
labels are intrinsically derived from the data. These tasks train the model to understand and capture
the underlying structures and patterns within the data,itéditiy the learning of robust and
generalizable features. Mathematically,dedenote the input data. In salfipervised learning, a
defined task is defined to generate a psdatel Y from X (30). The model is then trained to
predict Y given X, thereby learning representations that are useful for downstream tasks. This can

be expressed as:
w Qn
i ED"Q &

where Qs the function defining the defined ta&R, represents the model with parameterand
0 is the loss function measuring the discrepancy between the model's predictions and the pseudo

labels.

One of the most recent techniques in -selpervised learning is Masked Language
Modeling (MLM), which was popularized by models like BERT in the realm of natural language
processing31). MLM involves masking certain parts of the input and training the model to predict

the masked elements. For a given input sequebce w8 o ha subset of tokens
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w ho M ho are masked, resulting 8The model is then trained to predict the original
tokens based on the masked input:

fl 1 70CH * o
Here,! is the set of masked positions, andw * & is the probability of the model predicting
the original toker given the masked inpd8
Generative Models also play a crucial role in-seipervised learning by aiming to model the
underlying data distribution through data generatidntoencoderscan be seen as self

supervised learningnethod leading to the modeling of underlying data distributions through their

encoding capabiliti€23). An autoencoder consists of an encd@and a decoder) hwhere the

encoder maps the inpditto a latent representatian and the decoder reconstru@isrom ¢
O Qo
® Q0
The objective is to minimize the reconstruction loss:
fl % as
The optimization process in safipervised learning typically involves minimizing a loss function
that captures the discrepancy between the model's predictions and thelpbelslgenerated

from the data. Optimization techniques such as stochastiegtatbscent (SGD) are employed

to iteratively update the model parametet® minimize the loss:

N J— —_ v —

where— is the learning rate, and 0 — denotes the gradient of the loss with respect to the
parameters. Through such optimization,-selpervised learning models progressively refine their

representations, capturing intricate patterns and dependencies within the data.
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2.4.1Representation Learning

In statistical physics and quantum field theory renormalization group theory provides a powerful
framework for understanding how systems behave across different §82)eg\t its core,
renormalization involves transforming a system by systematically zooming out to focus en large
scale behavior while discarding microscopic details that are irrelevant at those scales. This
transformation often is done manually, by definindes or mappings that preserve essential
features of the system while simplifying its description (model or data). For example, in the Ising
model of magnetism, a transformation reduces a detailed lattice of spins to a coarser representation,
allowing us b study phase transitions and critical phenomena without getting lost in irrelevant
details(32) (Fig 2-1).

In data sciencand image processingimilar manual transformations can be found in techniques
like JPEG image compressidB3) (Fig 2-1). The JPEG algorithm uses tiescrete Cosine
Transform to convert an image from the spatial domain where each pixel is a value into the
frequency domain where patterns of varying frequencies are representediredigincy
components, which often correspond to noise or less important deataildiscarded, while low
frequency components, which capture the essential structure of the image, are kept. This
transformation is manually defined, with explicit rules for how to process the data. While effective
for specific tasks like image compressiomanual transformations require human expertise and

may not generalize well to other domains.

a b
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Figure2-1: Renormalization in the Ising Model and JPEG Image Compression. (a) Renormalization in the
Ising model, where spins on a fine lattice are grouped into blocks to form a coarser representation of the
system's magnetization. (b) JPEG image compression aintmgej showinghe progressive reduction in

detail through increasing levels of compression. Both processes highlight the principle of discarding fine
scale details to emphasize largenlestructures

Representation learning automates this process of transformation, allowing models to discover
relevant transformations directly from the data without human interve(@i@n In contrast to

manual approaches where specific rules are set (feature engineering), representation learning
models can learn to extract features from raw data in a more flexible and adaptive manner. This is
particularly advantageous when dealing witmpbex, highdimensional data, such as gene
expression profiles or natural images, where the best transformation is often unknown or difficult
to handcraft(34). Representations learned by neural networks are now widely used in different
ML areas, such as speech recogni(i®®), natural language processing and video representation
(36), anddomain adaptatio(B7).

At the heart of representation learning is the idea that a model can learn to transform data
into a latentrepresentation that makes it easier to solve downstream tasks. In the supervised
learning setting, this process is tightly coupled with the task at hand. The model is trained on
labeled data, and as it learns to perform the task (e.g., classificationgressien), it
simultaneously learns to extract useful features from the input data. Ushiallig done endo-
end, where the model is not only mpizing the final task but also learning intermediate
representations through layers of abstraction. For example, in a deep convolutional neural network
used for image recognition, the lower layers may learn to detect edges or textures, while higher
layerscapture more complex patterns like shapes or objects. Mathematically, we can represent this
transformation as learning a functid®o© &, where® is the input data and is the learned
representation. The goal is to find a representafidhat simplifies the problem, allowing the
model to efficiently solve a taskeko© @, where® is the output. In supervised learning, the
objective is to minimize a loss functin"Q Q& Y , adjusting the model parameters such that

the learned representatid®dd  @is optimal for the specific task.
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The process of labeling data is both expensive and-donsuming, and most datasets
remain largely unlabeledso wsupervised methods offer a more practical approach to
representation learning. Instead of generating-s$psicific representations that require labels,
unsupervised learning focuses on uncovering more gepernabse representations that can
capture the are structure of the dd@B). The key challenge in this approach is finding
transformations that reveal the hidden patterns, correlations, and variations in the data, without the
benefit of labeled examples. The transformation encodes the underlying factors of variation in a
way thatcan be useful across different tasks, without being tied to any specific one. Representation
learning methods like autoencodetisn to learn latent variables that summarize the data in a
compact form while preserving its most important characteristics. These latent variables, or
representations, capture key patterns and dependencies that can be generalized across a range of
tasks.The power of these methods lies in their ability to represent data in adowensional
space while retaining the most relavanformatior{39). However, even though these techniques

are powerful, they face a significant challenge related to identifiability.

Identifiability is important in learning meaningful representations, as it refers to the ability
to uniquely recover the true latent structure from the observed data. In the linear case, methods
like independent component analysis (ICA) are often useeparate mixed observations into
independent latent sources, relying on statistical assumptions such-@aunssianiti40) (Fig 2-
2). While ICA is wellstudied and effective in linear scenarios, its ability to handle nonlinear
transformations is severely limited. Nonlinear transformations introduce too many degrees of
freedom, making theroblem of recovering the original latent componentpased40) (Fig 2-
2). The fundamental difficulty of nonlinear identifiability is captured in the following theorem
which showsthat in a nonlinear setting, it is possible to find a transformation that results in
independent components, even if those components do not correspond to the true sources of

variation in the da{@9):.

Theorem 1: Let x be a random vectdrany distribution(x should be continuousYhen, there

exists a transformatiof§p © tip such thath Q@ has a uniform distribution, with its
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components being independent. Moreottee, functionHcan be chosen so that the first variable

is simply transformed by a scalar function z = g (x ).

To overcome this limitation, one strategy is to introduce auxiliary variables or leverage temporal
dynamics to provide additional structure for learning identifiable represent{d@@sisor instance,

in time series data, temporal dependencies can act as a source of information that helps disentangle
the underlying factors of variation. The time evolution of data points can offer insights into the

relationships between latent componentaking it easier to identify the true structure.
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Figure 2-2: Identifiability of ICA and its application on blind source separation illustrated.
Demonstration of ICA Identifiability and Source Separation. The top row displays the original signals,
which are then combined either linearly or nonlinearly, shown in the middle and bottom rows, respectively.
Linear ICA and nonlinear ICA are applied t@fe mixtures, successfully recovering the original signals in
the rightmost column. In contrast, when PCA and its nonlinear variant, VAE (without further constraints),
areapplied to the same mixtures (middle column), separation is not achieved. Figure fr¢dDRef.
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Another approach is to incorporate taglecific knowledge or constraints that provide guidance

for learning more identifiable models. By integrating prior knowledge about the domain or
imposing constraints on the learned representations, we can reduaelifggiity inherent in
nonlinear transformations. This can be done through regularization techniques or auxiliary tasks
that help the model focus on meaningful variations in the [@&gaFor example, auxiliary tasks

like cell type classification or trajectory prediction can help guide the learning process by enforcing
consistency between the learned representations and known biological processes.

In projects like Fatecode, CLERA, and Deep Lineage, we adopted this approach by
combining the nonlinear transformations of autoencoders with auxiliary tasks and -cpeeific
regularization. For example, in Fatecode, we combined deep ledrasegl methds with
auxiliary tasks related (cell type classification), while in CLERA, we used auxiliary information
such as cell type classification and dynamic regularization through methods like Sparse
Identification of Nonlinear Dynamics (SINDy41). This combination of nofinear autoencoders
with auxiliary tasks enabled the learning of more identifiable and biologically meaningful
representations that captured the underlying structure of the data, which allows for more accurate

predictions and inghts into cellular dynamics.

2.5The Challenge of Interpretability in Deep Neural Networks

Although mentioned machine learning approaches have revolutionized many fields, they often
face limitations in scientific domains where interpretability and generalization are important. ML
models, especially deep learning, excel at fitting complex datbsetend to act as "black boxes"
providing little insight into the underlying physical processdss lack of interpretability can

hinder the ability to uncover the governing laws or equations that describe a system, as the
relationships between vari@sl remainobscure@2). Also, ML models often struggle to
generalize beyond the specific data they were trained on, which limits their ability to predict
unobserved phenomena or extend to different
approaches rooted in physics anglaggd mathematics aim to discover governing equations that

are interpretable, generalizable, and aligned with the constraints of the system. Efforts have been
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made to combine the traditional mechanistic modeling strategies (common in physics and
mathematics) with data driven approachBsis combination is particularly valuable when the
governing equations of a system are unknown, and we aim to infer them directly from
observational dafd3). Linear methods, such as Koopman theory, offer a foundation for
understanding dynamical systems through linear representations, while more advanced techniques

like the SINDy method extend this framework to nonlinear sys{édjs

2.5.1Koopman Theory

In the linear case, methods like Koopman theory offer a valuable framework for analyzing complex
systems by converting nonlinear dynamics into linear representations in a-diigleesional

spacé44). The key idea behind Koopman theory is that even though a system may behave
nonlinearly in its natural state, it is possible to describe this system using linear operators when
viewed through a set of observables. These observables represent diffa¥enttasp of t he sy
state, and by expanding the system into this higimaensional space, the dynamics become
linear(45). This transformation simplifies the analysis of complex behaviors, allowing scientists to
leverage traditional linear techniques such as eigenvalue decomposition to study nonlinear
phenomena. Mathematically, the Koopman operatarcts on a functiofiQw , wherewis the

systembs state, transforming fiYdbdgaccording to
L Qw QY

By working in this space of observablese sear chers can decompose th
Koopman modes, which represent different components of the dynamics. This method is
particularly useful for studying tmeer i es data and extracting gl
behavior over time. Hoever, while Koopman theory can reveal important aspects of a system, it

also has limitations. One of the main challenges is that accurately representing a nonlinear system

in a linear framework often requires expanding the space into a very high (ornéwée)i
dimensional setting. This not only complicates the model but can also hinder interpretability,

making it difficult to draw clear conclusions about the underlying mechanisms driving the system.
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2.5.2 Sparse ldentification of Nonlinear Dynamics

In contrast to linear methods like Koopman the@iNDy is specifically designed to identify

governing equations for systems that exhibit nonlinear beh@diprThe core idea behind SINDy

is that many physical systems, despite their complexity, can be described by a small number of
domi nant i nteractions or governing | aws. Thes
strength lies in its ability to uncovehese underlying equations directly from data, while
promoting sparsity to keep the model interpretable.

The starting point for SINDy is a set of tirseries data that describe the state of the system
at different points in time. From this data, the goal is to discover a system of equations that describe
the rate of change of malyecorsigesd sgstet svhosetdgnanecs ov e r
are governed by the following differential equation:

Q0

wherec o ho f8ho s a vector representing the state of the systemiGxds an unknown
function that describes how the state evolves over time. The objective of SINDy is to approximate
this function"Qw by a sparse combination of candidate functions that can explain the system's

dynamics.

To achieve this, SINDy constructsitarary of candidate function® w , which may include
polynomials, trigonometric functions, or any other basis functions that are relevant to the system

being studied. The library matri® w is structured as follows:

U x P W W W 0w Oow 3
Each row corresponds to a time step in the observed data, while each column represents a possible
nonlinear function of the state variables. The task is now to find a sparse,veatbr that:
Qw

0o °®
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Here,, is a vector of coefficients that selects the relevant terms from the library, promoting
sparsity through techniques such as Lasso regression or sequential threg6)dirtte sparsity
constraint ensures that only a few terms from

dynamics, resulting in a simplified and interpretable model.

2.6 Dynamical Systems and the Theory of Bifurcation

Dynamical systems ammathematical models used to describe the -tieygendent behavior of
complex systems in various fields, including biology, physics, and engineering. These systems can
be represented by ordinary differential equations (ODES) or partial differential equ&tidBEs)

that govern the evolution of the system's state over time. In the context of biology, for example,
dynamical systems can model processes like gene regulation, cellular growth, or population
dynamic$47).

One of the most critical aspects of studying dynamical systems is understanding how their
behavior changes as parameters within the system are varied. A bifurcation refers to a qualitative
change in the system's lotgym behavior as a parameter crossestical threshold47). At this
point, the system's equilibrium or periodic solution changes its stability, leading to phenomena

such as sudden transitions between different states or the emergence of new patterns.

2.6.1Bifurcation Theory

Bifurcation theory provides a mathematical framework for studying these qualitative changes. It
helps identify the points, called bifurcation points, where the system's behavior shifts and allows
us to classify the types of bifurcations based on the nattinese transition@a38). Mathematically,

bifurcations occur when the Jacobian matrix of a system evaluated at its fixed points has
eigenvalues crossing the imaginary axis of the complex plane, signaling a change in stability.

Consider a system described by the differential egjuat
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Qw QG
Qo
wherewrepresents the state of the system, ‘argla bifurcation parameter. A bifurcation occurs

when small changes incause significant changes in the nature of the solutions to this equation.

2.6.2Core Bifurcation Types in Dynamical Systems
2.6.2.1SaddleNode Bifurcation
A saddlenode bifurcationoccurs when two equilibrium points (one stable and one unstable)
collide and annihilate each other as the bifurcation parameter is(¥&)jéig 2-3). This type of
bifurcation is common in systems where the stability of a state can abruptly disappear, leading to
sudden transitions. Sadeede bifurcations are characterized by the following equation:
Qw
90 |
In this equation, as the parametepasses through zero, two fixed poidis I merge and
vanish. Fof T, there are two fixed points: one stable and one unstabl¢. Fom, no fixed

points exist, leading to a qualitative change in the system's behavior.

2.6.2.2Hopf Bifurcation
A Hopf bifurcationoccurs when a pair of compl@onjugate eigenvalues of the Jacobian cross the

imaginary axis as the bifurcation parameter is varied, leading to the emergence of periodic
solutions (limit cycleq¥9) (Fig 2-3). This transition marks a change from a stable equilibrium to
an oscillatory state, often seen in systems that exhibit pebetigvior, such as biological rhythms

or chemical reactions. The normal form of a Hopf bifurcation can be written as:

Ad & | noBonog
R et
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Here,dis a complex variable, is the bifurcation parameter, andis the natural frequency of
oscillation. When crosses zero, the system undergoes a bifurcation from a stable equilibrium to

a limit cycle with frequency .

2.6.2.3Pitchfork Bifurcation

A pitchfork bifurcationoccurs when a symmetric system exhibits a transition from a single stable
equilibrium to multiple equilibria as the bifurcation parameter is vé@d(Fig 2-3). This
bifurcation comes in two formsupercriticaland subcritical In the supercritical case, a stable
equilibrium splits into two stable equilibria and one unstable equilibrium, while in the subcritical
case, théifurcation produces two unstable equilibria. The standard form of a pitchfork bifurcation
is:

Qw |

Qo | ©

For| T, the system has a single stable equilibriurbat . As| 1, the system bifurcates

into two stable equilibria ab ] hwith &  1thecoming unstable.

2.6.2.4Transcritical Bifurcation

In atranscritical bifurcationtwo equilibrium points exchange their stability as the bifurcation

parameter changd€49) (Fig 2-3). This type of bifurcation is often seen in population dynamics,

where one equilibrium represents extinction, and another represents a stable population. The

normal form for a transcritical bifurcation is:
Qw
Qo | ©

As| crosses zero, the equilibria@t mandw | exchange stability, causing a shift in the

system's dynamics.
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1. Saddle-node bifurcation 2. Transcritical bifurcation
10

a
v v
5
2 A
o 8 ~ 0o 2
o (=]
w o w
-2
-5
v v v | _
4 i v v
> —10
-10 -5 0 5 10 -10 -5 0 5 10
a a
3. Supercritical pitchfork bifurcation 4. Subcritical pitchfork bifurcation
4 4
v A A A
A E .
v M = v 5
0o & } 0o 8
A A v = T o
w w
-2 )
A
—4 ¢ v v -4
-10 -5 0 5 10 -10 -5 0 5 10
a a
— stable fixed point ~ ® marginal fixed point .- unstable fixed point — convergence of system

Figure 2-3: Bifurcation diagrams for the saddlé node, transcritical, pitchfork coi dimension 1
bifurcation. The plot shows the stability properties of dynamical systems depending on the bifurcation
parameter U and the initial cBOhdition of the syst

2.7 Single-cell genomics

scRNAseq has revolutionized modern biology by enabling high-resolution analysis of
individual cells. Initially constrained to experiments with a few hundred cells, sefdgA
technologies have rapidly evolved to accommodate datasets with millions of cells spanning various
tissues and organ®1). This vast increase in scale has allowed for an unprecedented view of
cellular heterogeneity, showing the diversity withiseemingly uniform cell population that was
masked by traditional bulk assays. With this level of granularity, scR&Aprovides critical

informationinto the processes that underlie cellular decisi@king whether a cell commits to a
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specific lineage, responds to external stimuli, or deviates from normal functioning in pathological
states. Understanding how cells make decisions is a central challenge in biology because these
decisions ultimately dictate the functional organization isfues and orga(&2). Cellular
decisionmaking is a complex and dynamic process driven by intrinsic factors, such as gene
expression profiles and chromatin accessibility, as well as extrinsic signals from the
microenvironment. Moreover, the stochastic nature of moleculaagtiens introduces another

layer of complexity, making it essential to investigate decisiaking at the singleell level.
Investigating the mechanisms by which cells transition between states during normal development,
tumor progression, or tissue regeneration is crucial, as this knowledge can inform the development
of targeted therapies and interventions in cancer treatmeg@nerative medicine, and immune
system modulatiai®3).

From a computational perspective, scREéq data is often represented as a matwith
dimensiong &, wheret is the number of cells antl is the number of genes. This structure
facilitates a variety of downstream analytical tasks, including clustering cells into distinct
subpopulations, identifying differentially expressed genes, and reconstructing developmental
trajectorie$54). These tasks enable us to explore how gene expression changes across cell types,
how cells progress through different states over time, and how rare cell types can be identified
within a heterogeneous population. Furthermore, dimensionality reductiomgeel, such as
PCA or UMAR?28), are commonly used to visualize highmensional data in two or three

dimensions, providing interpretablesualizationof cellular diversity.

The continuous advancement of sing@dl technologies has also introduced new
modalities, expanding beyond RNA sequencing to include measurements of chromatin
accessibility (sScCATAGseq), protein expression (CIT&&q), and even mutmic approaches that
capture multiple layers of cellular information simultaneo(&}). These technologies offer a
more comprehensive view of cellular states by integrating data on transcriptional activity,
epigenetic regulation, and protein expression. Multimodal data can provide a richer context for
understanding the regulatory networkattdrive cellular decisiemaking. For instance, SCATAC

seq can reveal the regions of the genome that are accehksltie open chromatin conformatjon
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while CITE-seq allows for the quantification of surface proteins in conjunction with RNA
expression, giving a more complete view of cell identity and funcfs®). Furthermore,
advancements in singt=ll methodologies have paved the way for other techniques like Rerturb
seq and lineage tracing. These methods offer powerful tools to study not only the static gene
expression profiles of cells, but also the tempanal causal relationships between gene regulation,

cellular identity, and fate.

Lineage tracing is a method that allows researchers to track the developmental trajectories
of cells over time, which provides a direct view into how individual cells evolve into distinct
lineage$56). This method has been invaluable in studies of development, regeneration, and
disease, as it enables the mapping of how a single progenitor cell can give rise to diverse cell types.
Traditionally, lineage tracing involved genetic markers introduced &its to permanently label
their progeny. However, with the advent of hitjinoughput sequencing, more sophisticated
barcoding strategies such as CRISBRed lineage tracing have been developed. In these
approaches, cells are engineered to express unigdesBquences (barcodes) that can be read out
via sequencing, to reconstruct their lineage relationships. When combined with selgNA
lineage tracing provides detailedview of how cells transition through various states. This
integration allows us to npanot only where a cell came from but also how its gene expression
changes as it commits to a specific fate. Lineage tracing can reveal how a stem cell differentiates
into various cell types or how cells evolve during cancer progression. By integrasiagdidata
with transcriptional profiles, we can identify the molecular mechanisms and key regulators driving
these transitionsvithin a biological process whicare essential in developmental biology and

regenerative medicine, leading to new strategieidsue engineering and repair.

Perturbseq is anothetransformative technique that combines CRISR&liated gene
perturbation with scRNAeq, enabling the systematic study of gene function at high resolution
(57). This method allows us to simultaneously target multiple genes and assess the downstream
consequences on cellular behavior and leads to aréggiution view of gene regulatory networks
(GRNSs). The strength of Pertusieq lies in its ability to link peutbations with cellular phenotypes

in a highly multiplexed manner. By perturbing dozens or even hundreds of genes concurrently,

34


https://sciwheel.com/work/citation?ids=14610570&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8558984&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2867112&pre=&suf=&sa=0&dbf=0

researchers can measure how each perturbation affects the transcriptional landscape of individual
cells. This is particularly powerful for causal discovery in GRNs, as it overcomes the limitations
of relying solely on observational daa8). Perturbation data generated by Persgly can
provide the necessary interventions to enable causal inference and the identification of true causal
relationships between variables which facilitates a more accurate reconstruction oFeRINb.

seq has been successfully applied across various fields, including immunology and cancer
research. In immunology, it has uncovered key regulators of immune responses that could be
targeted for therapeutic interventi¢d9). In cancer research, it has revealed how different cell
types within tumor microenvironments respond to perturbations, highlighting the variability in
cancer progression and resistance mechani®@@y By perturbing transcription factors or
signaling pathways, we can learn how molecular circuits shape cellular denizkimg processes,

which reveas crucial mechanisms underlying cell identity, differentiation, and responses to
external stimuli. Integrating Pertudeq with computational models enables prediction of
perturbation effects across different cell types, advancing precision medicineiesrétag tailor
treatments based on cejpecific gene regulatory profiles.

Throughout my PhD researcHptused ordevelopingvariouscomputational methods that
leverage scRNAeq data to model and explore the complexities of cellular deeisadimg
processes. My work addressed various aspects of this complex process, inchuduging the
temporal dynamics of cell fate decisions within biological systems, aiming to uncover the timing
of these pivotal moments and their consequences on the sysédso developedmethods to
identify key genes and active gene programs drivimgse decisiomaking processes and
examined how different perturbations such as genetic manipulations, disease states, and drug
interventions affect gene expression and cell staféese methods revealed fundamental
mechanisms underlying cellular decisioraking and established a robust and precise framework
for predicting cellular responses to different perturbatibhepe my research advances our ability
to understandand manipulate cellular decisianaking processes both health and disease

contexs.
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Chapter 3
Fatecode

This chapteiintroduces Fatecode, the first algorithm developed during my PhD. Fatecode is a
computational method designed to predict cell fate regulators solely from ss&iNdata. By
learning a latent representation through a deep leabasgd classificatierupevised
autoencoder, it enables in silico perturbation experiments. These experiments identify genes that,
when perturbed, can shift cell type distributions, either increasing or decreasing the population of
specific cell types. The researcHetit Fatecode Enables Cell Fate Regulator Prediction Using
ClassificationSupervised Autoencoder Perturbatimas conducted with Prof. Anita T. Layton,

Prof. Sidhartha Goyal, and Prof. Gary Bader and has been published in Cell Reports §1gthods
The author list on the publication is below:

Mehrshad Sadrial, Anita Laytort>34 Sidharta Goy&) Gary D. Badéy’:8:9:10

! Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

3 Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.

4School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada.

® Department of Physics, University of Toronto, Toronto, Ontario, Canada.

¢ Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

"The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.

& Department of Comput&cience, University of Toronto, Toronto, Ontario, Canada.

®The LunenfeldTanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Y Pprincess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

We also experimentally validated Fatecode by reprogramming astrocytes into oligodendrocytes,
in collaboration with researchers at the University of Toronto, in the study [ittedt lineage
conversion of postnatal mouse cortical astrocytes to oligodendrocyte lineage vdaith is

currently under review ieLifejournal (22).
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3.1 Overview

Cell reprogramming, which guides the conversion between cell states, is a promising technology
for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or
injuries. To accomplish this, regulators must be identdiedi manipulated to control cell fate. The
ability to accurately identify cell fate regulators from singédl transcriptomics data would help
accomplish this goal. We propose Fatecode, a computational method that predicts cell fate
regulators based onlynascRNAseq data. Fatecode learns a latent representation of the scRNA
seq data using a deep learnivased classificaticaupervised autoencoder and then performs in
silico perturbation experiments on the latent representation to predict genes thaewhdreg

would alter the original cell type distribution to increase or decrease the population size of a cell
type of interest. We assessed Fatecodeds perf
regulatory network model and scRNs&q data mappinblood and brain development of different
organisms. Our results suggest that Fatecode can detect known cell fate regulators frezalkingle
transcriptomics datasets. We hope this method will accelerate the discovery of novel cell fate
regulators that ecabe used to engineer and grow cells for therapeutic use in regenerative medicine

applications.

3.2 Introduction

In tissue development, specific regulator genes control how cells change state and type to form a
complete tissu€61). These regulators are also important because they can be used to control cell
fate for multiple applications, including in regenerative medicine and c#62grHowever, it

remains a challenge to identify these regulators within complex and dynamic tissue $§3)ems

Cell fate regulators can be identified using experimental methods such dhriogghput
genetic perturbation screens (e.g. CRISRRed) with singkeell gene expression (SCRNgeQq)
readouty63,64) However, these methods are challenging to run on arbitrary biological systems.
Computational methods have been developed to predict gene expression programs that explain the
difference between perturbed and unperturbed s{4i65 67) or to predict the linear effect of
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perturbing a particular transcription fac{éB). Also,computational methods which determine the
ordering of cell states along a trajectory, based on their gene expression profiles using a pseudotime
or actual time approaq®9i 73), have been used to examine the cell decimaking process by
identifying genes that are differentially expressed between trajectory branches. However, these
latter methods often have trouble identifying accurate trajectories and branch (@dints
Furthermore, ane of the above methods are designed to identify cell fate regulators in normal
developmental processes.

We develop Fatecode, a computational method to predict important cell fate regulator genes
for cell types of interest-atecode predicts cell fate regulators based only on sef¥dgAdata
covering a given range of cell types to be analyzed. Fatecode learns a latent representation of the
scRNAseq data using a deep learnivased classificatieeupervised autoencodéf5,76)and
then performs in silico perturbation experiments on the latent representation to predict genes that
when perturbed would alter the original cell type distribution to increase or decrease the population
size of a cell type of interest. Fatecode cathbaght of as an in silico CRISPR perturbation screen
that identifies genes that influence cell fate, based on a cell type readout. These genes can be
traditional (e.g. transcription factors) or atvaditional regulators (any other genéAle assessed
Fatecodé s performance using simulated data- produ
defined gene regulatory network with known cell fate regulgi®ofsand tested it on SCRNA&eq
maps of blood and developing brain from zebrafish and m@@81).

3.3 Results
3.3.1Fatecode method overview

Fatecode uses a classificatisapervised autoencoder to detect key genes that can shift the cell
type frequencies in an input SCRMA&q data set towards a desired distribution of cell tylfadgsng
singlecell gene expression profiles as input, the autoencoder learns a latent space with reduced
dimensions capturing the input information (reduce gene dimension x cell matrix). A supervised

cell type classifier is included as part of the losscfiom to create a latent space composed of
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features that support optimal cell type classification in addition to input data reconstruction.
Known cell type annotations in the input data are used to train the classifier. This ensures that the
latent space is relevant for cell type classificatiorduséater stages. Each latent layer node of the
autoencoder, which represents a reduced dimension of the input, is systematically perturbed to
simulate altering key gene expression programs (sets of genes that are correlated with each other
that are repiented by individual learned latent layer dimension). Cell types are then reclassified
to characterize the effect of the perturbatio
unperturbed latent embeddings to generate a-bgiwell matrix of g@e prioritization scores. This

matrix is used to identify genes important for the perturbation effect (Method section, Fig. 1,
Supplementary Fig. 1). Resulting cell type distributions are generated for each possible
perturbation and then manually evaluaiedientify those that increase or decrease proportions of
desired cell types. In this way, regulator genes are identified to increase or decrease a given cell
type proportion relative to all other cell types and these are predicted to be cell fatoredota

the given cell type. An average of the cell fate regulator prioritization scores across cells in each
cell type is computed to produce a final regulator list for each cell type.

Our latent layer perturbation approach is inspired by latent vector operations used in natural
language processing and computer vision applications to generate novel text and8&i&s
In those applications, perturbation operations performed on the latent layer geneichByperior
results compared to operations performed directly in the input space. The classification component
of Fatecode is used to exclude possible latent space regions that do not conform to the overall
structure of the data. This helps in learrengodel which is more representative of the underlying

data distribution.
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Figure3-1: Fatecode workflow for in silico perturbation experiments and cell fate regulator detection. The
3D model (top) represents a Waddingtie landscape depicting cellular reprogramming processes. We
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seek to identify genes (question marks) that regulate paths on this landscape (wavy lines), by transitioning
them to another path (red arrows). A classificasapervised autoencoder learns a latent space
representing the original data, optimized for bofut reconstruction and cell type classification. The latent
layer is systematically perturbed and by investigating all resulting perturigimerated cell type
distributions, distributions with an increase or decrease in a cell type of interegrdifieid. Perturbation

output is simulated by subtracting the perturbed from unperturbed latent layers and feeding it to the decoder
to identify a cell by gene matrix of prioritization scores that can help us to prioritize genes predicted to be
important br achieving a desired cell population distribution. An average of the cell fate regulator
prioritization scores across cells in each cell type is computed. By sorting these genes based on their
prioritization scores for a cell type of interest, the mgaetlicts genes that are important for regulating the
levels of a given cell type.

3.3.20ptimizing model architecture and hyperparameters

Fatecode relies on the latent embedding of an autoencoder, but different types of autoencoders
may produce different results, depending on itiput data ¢ee Supplement(66,85 87). To
investigate this in our problem context, we evaluated the performance of three common
autoencoder architectures: und@emplete autoencoder (AE), variational autoencoder (VAE), and
conditional variational autoencoder (CVAEBB). The first step of Fatecode evaluates these three
autoencoder architectures, and other hyperparameters (Supplementary Note 1), to find the ones
that reconstruct the input data best, measured by mean squared error (MSE) for reconstruction and
crossentropyfor cell type classification. To illustrate the importance of this step, we compared
how the choice of autoencoder affects learning the underlying representation fndgesell

gene expression data sets in adult zebrafish 6®dand murine pancreatic developmg&9).

AE produced the lowest reconstruction error for the zebrafish data (averaged over cell types) (Figs.
2a,b). AE also produced a latent layer that successfully reduces the dimension and cleanly
separates the five known cell types in the data (Fig. 2c)itamnell type classifier yields a high
accuracy (Fig. 2d). However, for the mouse data, VAE achieved a higher accuracy compared to
the other autoencoderSypplementary Fig.)2
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Figure 3-2: Comparison of autoencoder architecturesaioalyzing data for hematopoiesis regulation in
zebrafish blood a, Comparison of correlation between input and output of AE, variational autoencoder
(VAE), and conditional variational autoencoder (CVAE). b, Mean square error between input and output
of thethree autoencoder architectures showing that AE produces the lowest error rate for this data set. c,
UMAP visualization of the latent layer of the unaemplete autoencoder (AE). d, Confusion matrix for

the chssifier connected to the latent layer of AE demonstrating excellent classification performance.

3.3.3Fatecode accurately detects known regulators frommimulated scRNAseq

data

To assess the accuracy by whieitecodddentifies cell fate regulators using gene expression
profiles, we applied the method to simulated sirggk RNA-seq data generated from known gene
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regulatory network (GRN) structures using SERGM?). SERGIO allows users to specify the
number of cell types and key regulators in the simulated GRN (Fig. 3a). While Fatecode is not
specific to gene regulatory networks (i.e. it can identify a list of genes of any type, not just
transcription factors), a QiRbased simulation is expected to provide a good benchmark for our
method. A matrix of 400 cells and 2700 genes, with 20 known regulators and 9 cell types was
generated and run throudfatecode Predicted cell fate regulator genes and their prioritization
scores were compared to the known SERGIO regulator list. The number of known regulator genes
identified increases as more genes are prioritikegl 3b) Almost all of the known regulator
genes (18 out of 20) were identified when 150 genes were pridriiize of 2700). To compare

with a naive baseline, we identified cell type markers (top 20 genes) using differential gene
expression (DGE) anal ysi s -parameéticé&Vilcexanmaikuthat a U S
test(90). Fatecodadentifies a greater proportion of known regulators than DGE analysis over up
to 150 prioritized gene$-{g. 3b) As SERGIO is a stochastic method, we analyzed five additional
simulated datasets of the same size, all of which yielded similar results (plotted as shading in Fig.
3b). We repeated this analysis on a larger dataset consisting of 2700 cells, 1,20WitjeI6&s,
predefined regulators, and 9 distinct cell types. We used Fatecode to identify1B8key genes

of this data, and DGE analysis to identify the top 25 differentially expressed genes from each cell
type. Also, for comparison, we included scFatasmethod specifically designed for trajectory
based differential gene expression analysis. Fatecode consistently outperformed both DGE
methods in detecting known regulators. We further evaluated performance by varying the top k
gene threshold of DGE, amtecode consistently outperformed DGE across all tested thresholds,
demonstrating its robustness while varying the number of genes considered (Fig. 3c,
Supplementary Fig 3). Thus, Fatecode performs well at identifying known regulators in simulated
singlecell RNA-seq data.

We also examined the sensitivity of our model by the size of the latent layer in the autoencoder,
by training Fatecode with different latent layer sizes (n=50, 75, and 100 dimensions) using the
2700 cell simulated data (Fig. 3d). Our results show genemnaistency across the different latent

layer sizes, indicating that Fatecode exhibits robustness across a range of latent layer sizes.
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Figure3-3 Fatecode detects known regulators using simulated data generated by S&ER®E-:chematic
structure of the gene regulatory network to generate seRARed nodes are known regulators and green
nodes are neregulators whose production rates are determined by their assaeigidators. Our goal is

to identify known regulators from the generated scRI4 data using Fatecode. b, Benchmark
comparisons of the detection rate of predefined regulators generated by SERGIO using Fatecode compared
with a naive differential gene expeisn (DGE) baseline. The red and green areas represent the performance

of Fatecode and DGE, respectively, on the simulated data with 400 cells. ¢, Benchmark comparisons of the
detection rate of known regulators using Fatecode, scFates, and DGE on sidatkteih 2700 cells. d,

Venn diagram showing the similarity between the number of known regulators uncovered by Fatecode
across various latent layer sizes.
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3.3.4Fatecode identifies known cell fate regulator genes in mouse
hematopoiesis

Hematopoiesis is a cell differentiation process by which the body produces mature blood cells
from hematopoietistem cells. We applieBatecoddo a published mouse hematopoiesis single

cell differentiation dataset which involves the differentiatiommyfeloid progenitorsnto 9 cell

types (Fig. 49480). We t hen examined Fatecodeds accur ac)
leadto the desired cell typaistributionby comparing the results with ground truth experimental
perturbation data and known regulator gef380,91,92)Fatecode learned a latent node that,
when perturbed, simultaneously increases the monocyte population and decreases erythrocytes and
granulocytegFig. 4b) Previous studies have demonstrated|iifi@tis important in promoting the
differentiation of the GM (Granulocyt&lonocyte) lineage, particularly monocytes, and functions

as a key regulator in determining the fate between granulocytes and monocytes. Fatecode
accurately predictekif8 as an important cell fate regulator in the monocyte differentiation process.

It correctly assigned a high positive score for monocytes and late_ GMP (Granitaoytgphage
Progenitor) and negative scores for granytes and MEP (Megakaryocyterythroid Progenitor)
lineages, consistent with previous studies (Fig. 4c). Next, we investigated the prediction results for
Cebpathe knockout of which leads to a decline in the population of differentiated myeloid cells,
while concurrently increasing the number of erythrocytes. Fatecode accurately assigned a high
positive score t@Cebpafor monocytes and granulocytes and a negative score to erythrocytes and
MEPs (Figs. 4d,e). In another exam{df1 is a key regulator in dring differentiation towards

the ME (Megakaryocyt&rythroid) lineage, specifically promoting the development of
erythrocytes, while simultaneously inhibiting the GMP lineage. Fatecode correctly assigned a set
of positive scores tKlIf1 for erythrocytes and MEP, indicating its ability to capture a key regulator

in ME lineage differentiation (Supplementary Fig. 3a). We also tested Fatecode's ability to detect
genes which are known to be important in maintaining stemness and inhibifergmiation.
Fatecale correctly predicteRunxlas a candidate that has negative scores for perturbations that
increase all mature cell types (all cell types expect MEP and GMP) (Supplementary Fig. 3b).

Lastly, we examined the prediction results felil, which exhibits diverse effects on
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differentiation. Fatecode accurately gives positive scores for the association bEtiteand
megakaryocytes, monocytes, and granulocytes and also assigns a notable negative score to
erythrocytes in agreement with the literat($8,93)(Supplementary Fig. 3c). These simulations

show Fatecode accurately identifies known cell fate regulators that have been reported in previous

perturbatiorbased experimental studies.

Furthermore, to evaluate the role of the top 200 genes detected by Fatecode for monocytes,
we performed pathway enrichment analysis. Pathways that are significantly enriched in these 200
genes include those related to the immune system, hemopoiesisewelbmnent, and cell
differentiation, which agrees with their Fatecqutedicted role in monocyte development (Fig.
4f).

We extended our analysis to a largpematopoiesis singleell differentiation data that
involves differentiation into twelve cell types (Supplementary Fig(8h) We applied-atecode
to detect genes that can increase the pool of undifferentiated cells in this &statementary
Fig. 4b) One candidate detected by Fatecode in this proc&sgpsl§ the deletion of which in
mice elevates the neutrophil and monocyte populd®dh Fatecode predictions are consistent
with this experimental result. Fatecode also predidNe@6 as a regulator of neutrophil and
monocyte differentiation. Cai et al. showed that the number of hematopoietic stem cells and
granulocytemonocyte progenitors is reduced in-igectedNIrp6” mice, while the survival of
mature neutrophils in bone marrow is increaf@%). We repeated gene set enrichment analysis
using the top 200 genes detected by Fatecdielogical processes related to mouse
hematopoiesis, stem cell development, and metabolic signaling were enriched, showing that

Fatecode can again capture relevant pathways for this biological process (Supplementary Fig. 4c).
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Figure 3-4: Fatecode accurately detects regulators and predicts the effect ofcatgerturbations. a,
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biological processes show significant processes related to cell development and hematopoiesis.
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3.3.5Fatecode detects important regulators ircell differentiation and lineage
commitment in zebrafish

We applied Fatecode to zebrafish hematopoiesigd8jas an additional demonstration and test.
From all possible perturbations on the latent layer performed by Fatecode, we selected ones that
resulted in the greatest predicted relative increadg¢ematopoietic Stem and Progenitor Cells
(HSPCs) (Fig. 5a). As shown in Fig. 5b, following the perturbation, some cells (mostly monocytes)
are predicted to switch to HSPCs (Fig. 5b). Fatecode gives a significant s8ayeabTransducer

And Activator Of Transcription 54stat5g as one of the most important genes for HSBGx5a

is a key regulator of normal hematopoiesis with pleiotropic roles in hematopoietic ste(@&ells
Also, knockout studies have shown that the deletistaibaled to an increase in HSPC cycling,
gradually reduced survival, and depleted the HSPC ()] Next Fatecode givesf8 a high
positive score for monocytes. Irf8 is a key regulator of monocyte development and it has been
known to be important for myelopoiesis in different model organ(®899) It functions at an

early step of the transcriptional program that governs differentiation from myeloid progenitors to
monocytes/macrophages and plays a key role in stem cell renewal and main{@8at@)
Fatecode alsadentified a strong negative connection betwe@axo3 and myeloid cell
differentiation, consistent witfioxo3 knockout studies, which show significant increase in
granulocyte/monocyte progenitors in the spleen, bone marrow, and blood and enharteershort
hematopoietic stem cell proliferatigh01i 103). Fatecode found an important role played by the
otud gene family, a subgroup of deubiquitination enzymes, by assigning a high positive score
between HSPCs and tbaudgene family. Consistent with our prediction, knockoubtoid genes

in Xenopus results in developmental impairmda@4) Also, elevated expression ofud genes

leads to the acquisition of stem cell proper{ie35). Fatecode also predicted the negative score
betweenthbsland HSPCs, wherthbslhas been previously shown to limit the expression of
essential selfenewal transcription factors, includingt3andoct4, sox2 klf4, andc-myg within
cells(106). Other key gene candidates identified by Fatecode for this perturbation are also known

to be involved in hematopoiesis (Table 1)
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Gene Roles References

cdkl Plays an important role in the maintenance| (107)
pluripotency and genomic stability in hum

pluripotent stem cells.

top2a Controls the survival of human pluripotent st{ (108)
cells.

hmgb2 Regulates hematopoietic stem cell maintenance| (109)

ube2c Highly expressed in hESCs and isi@marker off (110,111)

cancer stemness.
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foxoll Depletion leads to the hematopoietic population \ (112)
stem cellcharacteristics

hmgn2 Facilitates the maintenance of active chromj (113)
states required for stem cell identity in a pluripot

stem cell model.

aspm Regulates symmetric stem cell division by tun| (114)

Cyclin E ubiquitination.

myb Regulates hematopoietic stem cell and mye| (115)
progenitor cell development.

kpna2 Exhibits strong interactions with oct4 in embryo| (116)

stem cells.

Table 3-1: List of zebrafish hematopoiesis regulator genes predicted by Fatecode with

literature evidence for involvement in this process.

3.3.6Fatecode identifies cell fate regulators in mouse hippocampus

development

To demonstratd-atecode on a largdyiological dataset, we applied it to developing mouse
hippocampus cell scRN&eq datg79), composed of 18,213 cells and 3,001 genes. The data is
clustered in 14 annotated cell types (Fig. 6a). We first sought to identify regulators in the
differentiation process that preferentially increase mature granule cells (Figatgoderedicts
the ZFP gene familyZfp94, Zfp189, Zfp7Q&s positively important in granule cell differentiation.
The Zfp familyis a definitive marker for the cerebellar granule neuron lineage and plays a critical
role in granule cell specification within the developing cerebe{lLih7) For example, thiack of
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Zfp521results in a significant reduction in the number of granule ¢&ill8) Id2 andId3 are
important in maintaining the size and cellular structure of the brains of adult mice. It also has been
shown that the absenceO€leads to a decrease in the number of granule ne(t@8s120) In

line with this earlier research, Fatecode assigns a high positive score betwde bothd3 for

mature granule cells. These two transcriptional regulators have also been found to determine the
fate of differentiating CD8+ T celld21)

Next, we applied Fatecode to determine regulators that mediate the differentiation process
which preferentially increases oligodendrocyte progenitor cells (OPC), and decreases granulocytes
(both mature and immature) and oligodendrocytes. Fatecode prdditield as having an impact
on OPC to oligodendrocyte differentiation, which is consistent with published experimental
studies(122,123) Furthermore, we considerdethl, which provides neuroprotection and is
enriched in oligodendrocytes. Mice lackifighl have more microglia cells compared to the
control and a significant reduction in neurons and oligodendro¢¥®2h Fatecode accurately
assigned a high positive score linkiRthl to oligodendrocytes and mature granule cells and a
negative score fdfthl and microglia cells showing knocking outkthl leads to an increase in
microglia cells consistent with the experimental studies. Thymosin befandbd) is a key
candidate in the context of neurogenesis during brain develogt®5)t Its expression is linked
to neurogenic processes and exerts regulatory control over the expansion of the stem cell pool
within the early neuroepithelium. THansb4xgene knockout elicits a pronounced effect on the
differentiation process in vitro. Specifically, it significantly promotes the differentiation of stem
cells, further emphasizing its role in orchestrating cellular fate determinda@é&) Our method
correctly assigns a negative scoreforsb4xand all cells except Neuroblasts and Radial-Gitia
cells. To further validate the performance of Fatecoddeitecting key genes, we performed
pathway enrichment analysis on the top 200 Fatepoeldicted regulators. This analysis showed
that pathways related to brain development, synaptic signaling, and protein synthesis were
significantly enriched in these gen@-ig. 6¢).

To illustrate further downstream analysis that is possible based on Fatecode results, we

applied SCENIC on the mouse hippocampus development dataset to construct a GRN consisting
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of the top 2000 interactions based on their SCENIC Importance Measure (IM) scores which shows

the significance of the input gene (referred to as the "TF") in determining the prediction outcome

for the targe(127) We then mapped the top 400 Fateepdsicted regulators to the SCENIC

inferred GRN. The resulting networks can be used as a guide for identifying specific GRN
mechanisms to target in folleup experimentsY(bxlexample, Supplementary Fig. 5) to test the
regulatory relationships and potential roles of regulators in cellular reprogramming. While
SCENIC predicts useful additional information to support experiment planning, it only considers
transcription factorragl at or s. Ot her types of genes in Fat

fate regulators and should also be examined.
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Figure3-6 :Fatecode identifies key genes in mouse neurogeresi8IAP embedding dburteen
major cell types. b, latent layer node perturbation leads to an increase in mature granule cells while
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a decrease in immature granule cells. ¢ pathway enrichment analysis shows the relevant biological
process using the top 200 genes selected based on their prioritization scores for mature granule
cells.

3.4 Discussion

Cell reprogramming is a promising technology for tissue repair and regeneration, with the ultimate
goal of accelerating recovery from diseases or injuries, as well as the development of novel
therapieg128). An important component in successful cell reprogramming is to correctly identify
the regulators and trajectories from singél transcriptomics data. However, the number of genes

in these datasets is large and the number of underlying regulatoryctimiesais much larger.
Recent studies have demonstrateat the expression of a single regulator is insufficient to produce
an endpoint phenotypg129). Instead, a group of control networks acts together across a variety
of biological processes and pathways to induce a complete lineage con{E3Sipho efficiently

and accurately map these control networks, we have developed a deep learning method, Fatecode,
which we have successfully applied to analyze diverse datasetsobirshethod discovers an
efficient architecture and latent layer for an input sirgllt dataset. Then by performing
operations on the latent layer, it is able to predict perturbations for cell fate reprogramming.
Fatecode was validated using simulated N8Fseq data with predefined regulators and by
predicting regulators in a variety of scRM&qg data and manually comparing the results to the

literature.

The fundamental idea in Fatecode is similar to the minirsiamiltonian in physics and
the potential energy landscape conddf@l) The authors have shown that the most common
autoencoders are naturally associated with an energy function, independent of the training
procedure. This reasoning suggests that regulators can be seen as genes that allow the system to
achieve a target cetype distribution via the most efficient path through the energy landscape.
Fatecode uses the latent layer as a guide to determine what node in the latent layer must be
perturbed to achieve the desired reprogramming effect. Then the decoder maps the modified latent

layer to gene space for gene identification. It's also usefulderatand if regulators are cell type
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specific or nat For examplethe mammalian target of rapamycin complexTORC1) is widely
important in cell fate decisiemaking, and also important in the regulation otéll fate
(19,20,132,133) Running Fatecode for different cell conversions can help identifytyqed

specific and nosspecific regulators.

Fatecode can tbought of as an in silico CRISPR perturbation screen that identifies genes
that may influence cell fate. Unfortunately, we were not able to find a published gendene
CRISPR perturbation screen of an appropriate cell line and with a cell fate readsugjdviome
wide CRISPRscreens use standard cell lines that are not naturally-poiént and thus are not
expected to generate multiple cell fates. CRISPR has been used to evaluate cell fate regulators, but
only examining one or a few candidate genea gingle paper. We used these latter ssadle
results to verify that Fatecode results agree with these experiments (cited publications in text).
Because we c o0 u-widenCRISPR screeds withearcall fate readout, we used GRN
simulations and sail-scale CRISPR experiments to validate our findings. In the future, we hope

genomescale CRISPR screens for cell fate regulators will be published for us to compare to.

Despite offering a useful input data representation, how the autoencoder latent layer
represents the input data may be difficult to understand. Future work will need to better understand
how the input data is represented and learned in the latent lagardijyerse input data. However,
our results showed that Fatecode predictions are relatively stable when changing the size of the
latent layer, indicating that latent information is likely captured consistently.

In conclusion, we developed an effective computational framework for predicting key
players in cell fate control and the consequences of perturbations on cell type frequencies.
Fatecode's modular design enables users to select an autoencoder archiegcprogltices an
accurate model for their data. By leveraging the power of classifiestipervised autoencoders
and the associated energy manifold learning process, Fatecode generates useful hypotheses about

genes that could be manipulated to achieveae@sell transitions.
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3.5 Method

3.5.1Deep representation learning

Autoencoders are a class of neural networks with a latent layer capable of learning nonlinear
representations of the input data in an unsupervised manner. An autoencoder consists of an encoder
that maps the input to the latent space and a decoder wheletiathe latent space back to the
original space. It can be used for denoising, reducing dimensionality, or learning the representation
(or manifold) of the data. We implemented three autoencoder architectures:canyxete
AutoEncoder (AE), VariationaAutoEncoder (VAE), and Conditional VAriational Encoder
(CVAE) (88) (Fig. 1). AE has a single latent layer. VAE constrains the latent layer by modeling
the latent space as a multivariate Gaussian distribution with a mean and a standard deviation.
CVAE conditions the latent space on class labels and thus can generate data dageelociass

label. The biological task for our autoencoder is to learn a reduced dimension representation of a
cell by gene matrix capturing measurements of a sicgjldranscriptomics experiment mapping
cellular trajectories. Only the gene dimensi®meduced, so the latent space describes a reduced
representation of each input cell transcriptome. To make the latent layer more specific for our
biological task, we added a cell type classification task to the standard regression tasks. The
classificaton task, described in more detail below, predicts the type of each latent cell and
compares it to a known input cell type. The training process works to optimize both classification
and regression performance simultaneously. This reduces the spacet tdyatecandidates since

not all possible latent layers are useful for the classification task.

3.5.2VAE

VAE is a type of autoencoder that estimates a latent set of probability density functions that model
the input data. Unlike AE, which learns an unconstrained representation of the data, VAE assumes
a Gaussian distribution for the prior. An input gene b/ roatrix X is run through an encoder,

which generates parameters for the set of distribut@gn$ X). Then, fromQ, a latent kvectorz
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is sampled, and the decoder transforim$o an output, with the condition that the output is similar
to the input, where k equals the number of components (or distributions) in the VAE. The VAE

total loss consists of the reconstruction loss (first term) and theivdrgence loss (second term)

Ellog P(X | 2)] = Dio[Q(= | X)[[P(2)]

ba ° p ag ,,

O 00 a

where’ and, are the kkh components of output vectdrs (X) and,, (X), respectively.

3.5.3CVAE

CVAE is distinguished from VAE by its embedding of conditional information in the objective
function. CVAE relies on two inputs: the features and the class labeistead of using only the
features, as is done with a VAE and AE. The CVAE architecture allows the encoder and the
decoder to be conditioned loy Hence, the variational lower bound objective is changed to the

following form:

Ellog P(X | ,¢)] = Di.[Q(= | X.0)l|P(= | o))

3.5.40verall network architecture of Fatecode

The Fatecode autoencoder architecture was chosen for each of the datasets analyzed in this study
using a hyperparameter search (More details in Supplementary Note 1). Encoder and decoder
architectures are constrained to have the same number of outemandayer nodes. For the
analysis of hematopoiesis regulation in zebrafish, Fatecode consists of a fully connected encoder
and decoder. The encoder and decoder are bothatweo networks of 92 (outer layer) and 48

(inner layer) nodes with the LeakyRelL Wiaation function and the latent layer has 18 nodes. For

the analysis of hematopoiesis in mouse data by Weinrel(81 althe encoder/decoder has a506

node outer layer and a 25®de inner layer, and the latent layer has 125 nodes. For the mouse
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hematopoiesis data by Paul et(80) the encoder/decoder has a 4@ftle outer layer and a 40

node and the latent layer has 20 nodes. For the developing mouse hippocampus data, we used a
two-layer encoder/decoder of 50 (outer), 26 (inner), and a latent layer of 15 nodes. Our model was
built using software packages and libraries, including TensorFlow V2.10.0,-eakit V1.1.3,

scanpy V1.9.1, numpy V1.23.4, and pandas V1.5.1. Differential gene expression analysis was
performed using the Wilcoxon rasgum test. To account for multiple testinge applied the
Benjamini Hochberg correction to the calculated&ues obtained from the DEG analysis. Genes

with a corrected {value below 0.05 were considered statistically significant. For the identification

of enriched gene ontology terms in our stusle used the GSEApy package V1.0.4 with its default

parameter settings.

3.5.5Classification

The classifier determines cell types using the latent layer as input to a single hidden layer and then
an output layer (with one node per cell type), all fully connected. ReLu and softmax activation
functions are used for the hidden and output layersectisply. The number of nodes in the
hidden layer is varied during the hyperparameter optimization. For adult zebrafish blo(tBjjata

we use 15 and 5 nodes for the hidden and output layers, respectively. We use 25 and 12 nodes for
classifying hematopoiesis in mouse data by Weinreb (83120 and 9 nodes for data from Paul

et al (80), and 22 and 14 for the developing mouse hippocampus(d@taAll cell labels are

assigned by using the predefined cell type labels of the original studies.

3.5.6ldentifying key regulators in cell differentiation

Consider adjustments (e.g. one or more gene koatk or overexpressions) that will transition
a baseline cell type distribution (AAO0) to a
the target cell distribution, our objective is to inceeti'e number of cell type N while decreasing
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the number of cell type P (Supplementary Figure 1). To detect genes that are important in a given

transition, Fatecode analyzes the effects of perturbations on cell fate by systematically perturbing

individual autoencoder latent nodes learned from a sitgleranscriptomics data set capturing

cellular trajectories. Each latent variable perturbation results in a-sieljkeanscriptome through

the decoding process and a corresponding cell type distribution, proceeding as follows after

training Fatecode:

1.

The gene expression data, denoted as E, corresponding to a mixture of cells with cell type
distribution A, undergoes encoding to produce a matrix of latent variables represented as
O (@ Q& G&é ONIEach column ofth is associated with a cell in E; each row

corresponds to a latent variable).

In a series of simulations, finite perturbations of different sikege.g., from a 50%
reduction to a 1dold increase) are applied to each row j (number of latent variablés) in

sequentially. For each perturbed latent layer @w,

z ~

We then run the cell type classifier trained within Fatecode on the perturbed latent layer to

predict the cell type distribution for each across all perturbation conditions.
0@ Qo Gi | ®QQQI
Then, we can identify a perturbed latent layer réw, and its associated perturbation size,

k, that is closest to the desired target distribution B.

To identify genes important for the transition from cell type distributions A to B, we
compute the difference between the selectednd thed latent layers. For instance, if
increasing latent node #9f8ld can best approximate the desired distribution B, then the
difference between the select@dandd latent layers is a latent node by cell matrix with

all zero entries, except for th& gow, which is 5 timeso .
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6. With this selected perturbation matri @ , the decoder produces a gdnecell
matrix. Then the average gene expression profile of all cells in each cell type is computed,
resulting in a gene by cell_type mathk The {,j)-th entry ofM is the prioritization score
for thei-th gene in cell_type

7. To identify the regulatorgredicted to be important for transitioning initial cell type
distribution A to target B, we rank the genes based on their prioritization scores for a cell

type of interest.
YQQO & 0d &i1ilo

We note thaM does not directly specify how much each gene should be perturbed to yield target
B. Nonethelesdyl contains information about genes that are important in transitioning cell type
distribution from initial state A to the desired state B. This idea is similar to the minimum

Hamiltonian and potential energy in physics or the optimal path with the leiast @&1)

We also examined the model's performance in detecting regulators when operating on the output
of the decoder compared to the latent layer. To achieve this, we fed the perturbed vector to the
decoder and subtracted the result from the unperturbed contlifethen investigated the genes

that showed significant changes. Our results indicate that working on the latent layer led to better
outcomes in detecting regulators than operating on the output of the decoder. This observation is
in line with previous resarch in computer vision and natural language processing, where using
the latent space consistently yielded superior results compared to the original daf(@%p3de¢

We assume this is true in general when using an autoencoder witHiagaractivation function

with reasonably complex data, as we have in biology (in contrast to the linear activation function
case wher©® Q¢ '@Qi 0QWE DQI0QDE DQI ).
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3.5.7Data visualization

Python package AUMAPO was used to visualize t'l

Network visualizations used Cytoscad85).

3.5.8Differential expression analysis

Differential gene expression analysis was performed using the Wilcoxosuamkest. To account

for multiple testing, we applied the BenjaniiHiochberg correction to the calculated/&ues
obtained from the DEG analysis. Genes with a correctealye béow 0.05 were considered
statistically significant. For scFates we used the default parameters. For the identification of
enriched gene ontology terms in our study, we used the GSEApy package V1.0.4 with its default
parameter settings.

3.5.9Data preprocessing

The scRNASeq gene expression data is log normalized, scaled, and centered. In the training
process, 80% of the data is allocated for training the classification autoencoder, while the
remaining 20% is utilized faesting purposes.

3.5.10Data availability

The datasets used in the present study are openly accessible in public repositories. The zebrafish
hematopoiesis data can be found under the accession nuAbEAE-5530 on ArrayExpress.

We downl oaded a preprocessed viesros idoan ao f( utnhdee rin L
number GSE95753) from https://scvelo.readthedocs.io/en/stable/. The hematopoiesis Paul et al.
data can be downloaded from the GEO under accession code GSE72859 and the preprocessed
version was downloaded from https://celloraclg/of o generate simulated data we used the same
parameters for the differential equations as in https://github.com/PayamDiba/SERGIDhe
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hematopoiesis Weinreb et al. data can be downloaded from GEO under accession number
GSE140802 and the preprocessed version was downloaded from

https://cospar.readthedocs.io/en/latest/

3.5.11Code availability
Code supporting this study is available btips://github.com/MehrshadSD/Fatecode
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Chapter 4
Discovering Governing Equations of Biological Systems
through Representation Learning and Sparse Model
Discovery

This chaptepresents CLERA, a novel computational framework for uncovering dynamic models
and identifying active gene programs from sirggdl RNA sequencing data. By combining a
supervised autoencoder with Sparse Identification of Nonlinear Dynamics, CLERA uges prio
knowledge to extract lowlimensional representations and reveal the driving forces behind cellular
processes. It pinpoints central genes, reconstructs gene expression dynamics, and captures key
regulatory genes and temporal patterns acraseuws cell types using personalized page rank. The
research titlediscovering Governing Equations of Biological Systems through Representation
Learning and Sparse Model Discovemas conducted in collaboration with Vasu Swarocap (
undergrad student in our lab at the time of the study), and is currently under renNewwlémc

Acids Researcfournal (2). The author list on the publication is below:

Mehrshad Sadrial, Vasu Swaroop

! Department of Applied Mathematics, University \faterloo, Waterloo, Ontario N2L 3G1,
Canada.

2 Department of Computer Science Information Systems, Bil&hi, Pilani Campus, Pilani,
333031, India

4.1 Overview

Understanding the governing rules of complex biological systems remains a significant challenge
due to the nonlinear, higtimensional nature of biological data. In this study, we present CLERA,

a novel endo-end computational framework designed to uncgagsimonious dynamical models

and identify active gene programs from singédl RNA sequencing data. By integrating a

supervised autoencoder architecture with Sparse Identification of Nonlinear Dynamics, CLERA
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leverages prior knowledge to simultaneously extract relateeliovensional representation and

uncovers the underlying dynamical systems that drive the processes. Through the analysis of both
synthetic and biological data, CLERA demonstrates robust peafarenin reconstructing gene
expression dynamics, identifying key regulatory genes, and capturing temporal patterns across

di stinct cel | types. CLERAG6s ability to gener
network rewiring using Personalized PageR to highlight central genes and active gene
programs, offers new insights into the complex regulatory mechanisms underlying cellular

processes.

4.2 Introduction

Across many scientific disciplines, discovering governing equations has traditionally served as the
cornerstone of understanding systgd®). Derived from mathematical and physical laws, these
equations provide interpretable and generalizable frameworks for explaining and predicting
various phenomena. In areas such as biol®f}), epidemiology(18), and finance(136)
mathematical models are used to model signalling pathways, population dyramdicisease
spread, and market fluctuations, respectively. However, for complex systems with high
dimensionality and nonlinearity, including biological processes, traditional approaches often fall
short(137). Discovering the main equations governing these systems can be challenging, and even

when partial knowledge exists, relying solely on first principles becomes imprd¢8&3l

The modern era, with its abundance of data and computational power, has facilitated the
emergence of datdriven model discovery as a powerful paradigm in scientific exploréibn
This approach directly leverages data to uncover the hidden principles that govern complex
systems. In the context of cellular biology, singél RNA sequencing (scRNAeq) provides an
unprecedented window into individual cells, which offers insightis gene expression variation
across diverse cellular populatiofi89) By analyzing this data, researchers can investigate the
molecular machinery underlying development, disease, and response to external perturbation

(4,24) The noisy, nonlinear, and higlimensional characteristics of scRM&qg data and the
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biological processes it captures pose significant challenges for analysis and interpfed&jon
These complexities make it difficult to uncover the underlying principles of biological processes
and pinpoint their key driverd41) While previous methods have achieved success in specific
tasks, limitations remain. For instance, the correlative nature of most methods prevents them from
capturing causal features and true representations, thus limiting their generaliadifiyy
Furthermore, these models struggle to discover governing relationships among underlying
variables in a parsimonious manner, similar to classical physics settings, which further hinders true
interpretability. Therefore, a crucial step in understandindanggical process lies in developing
models that not only can accurately predict but also reveal the underlying connections between
features in an interpretable and parsimonious mgA2¢rThis ensures the models can be applied
across diverse environments and provides clearer insights into the mechanisms governing the

procesg46).

In the realm of highdimensional biological data like scRN#eq, the ability to capture
causal representations of the data becomes particularly valuable. This approach goes beyond
identifying correlations and allows us to understand the true relatiorsdtipsen variabled 43).

In this context, identifiability, the ability to uniquely recover the underlying causal structure from
observed data, becomes a crucial aspect of representation learning. Traditional methods like
Independent Component Analysis (ICA) have achieved successany areas of linear
representation learnin@0). In fact, if all latent components are A@aussian and independent,

ICA can be identifiable. However, ICA struggles with the inherent nonlinearities and complex
interactions present in biological d4#0). While perfect identifiability, especially in ndmear
settings, remains a challenge, incorporating temporal structure, employing additional tasks, or
using auxiliary information can facilitate the way to attain identifiabi{t44,145) Notably,
autoencoders can offer a promising avenue for achieving identifiability ifimear settings

(146). By carefully designing their architecture and loss function, autoencoders can help extract

meaningful representations from complex biological data(1,5,66,147)
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In this work, we present CLERA (Cellular Latent Equation and Representation Analysis), a novel
endto-end computational framework that combines the power otdtatan model discovery,
specifically Sparse Identification of Nonlinear Dynamics (SINDy), esgtesentation learning.
Leveraging a supervised autoencoder architecture, CLERA simultaneously extracts a compact and
relevant representation from higlimensional data and uses it to discover the underlying low
dimensional, no#inear dynamical model gevning the system. This learned embedding further
allows us to not only identify active gene programs and key genes but also track their transitions
over time across cell types, providing insights into the complex dynamic regulatory mechanisms
of biologicd systems. We validate CLERA's performance on both simulated data (with known

active gene programs) with different sizes and-vweald biological datasets.

4.3 Result

4.3.1Discovery of Dynamical Systems and Gene Programs from Simulated
Data

We first investigate the performance of the SINDy part of CLERA in discovering the underlying
governing equations of a simple simulated biological system with two driver genes (Fig. 1a). The
dynamics of this system are described by a-estidblished sef differential equations commonly

used in various biological contexts such as the lac operon, metabolic signalling pathways, and the
cell cycle(148) Synthetic data is generated using this system of equations with varying noise
levels. We then apply SINDy, to recover the equations. Notably, the governing equations are
discovered with high accuracy. Figure 1a shows this successful reconstructichewébovered
parameters closely mirroring the original values (Method section). Also, the results from solving
the discovered differential equation closely match the generated data, further validating the

accuracy of the equations discovered (Fig. 1b).

Then to evaluate the performance of CLERA in a more realistic scenario with a larger
dataset, we apply it to simulated data generated by SERGIO, which incorporates various types of

noise for realistic data generati¢riv). We train CLERA on a simulated dataset, with 6300 cells
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across 100 genes and nine distinct cell types. We hypothesize that an optimal representation
learned by the model should not only achieve high accuracy in data reconstruction (autoencoder
loss) but also should perform well in tasks such as cell type fedasisin and sparse dynamical

model discovery.

To address stochasticity and ensure robustness in finding the optimal latent embedding, we
run CLERA multiple times (50 for this data) using various initial conditions. We select the model
with the lowest combined loss (method section) while also primgtzarsimonyn the discovered
model. In our analysis, we observe that CLERA successfully identified a latent embedding with
high accuracy in both reconstruction and classification (Supplementary Figure 1, Supplementary

Figure 5a).

We then leverage the representation learne@ldyRA to identify active gene programs
and their dynamics over time. To uncover the connection between latent nodes and genes we
compute SHAR149)values between each node in theoencodeés latent layer and genes and
rank the identified genes based on their SHAP values (choosing the top 30 genes for each node).
Using the results from the SHAP method and the discovered differential equations, we construct a
network of interactions betweeatént nodes and genes. We then apply Personalized PageRank
(PPR) to this network, starting from each gene, to identify the most relevant genes for the selected
gene(150) This approach enables us to refine the network by selecting only the top connected
genes with the highest PPR scores while filtering out the latent nodes. A clustering algorithm is
applied to this graph to detect the gene programs. GivelCtHaRA can uniquely incorporate a
time component, this process can be done for different stages of the trajectory and cell types. To
asses€LERA's performance in capturing active gene programs, we perform the same clustering
analysis on the SERGIO ground truth network and compare the resulting clusters obtained (Fig.
1c for celltype7). We also observed a high degree of similarity between therggnams of the
SERGIO predefined network and the identified gene interaction networks for each cell type, as
measured by the Jaccard similarity. This suggests that the latent embedding leaGldeR#y
can effectively capture active gene programs (Fig. 1d).
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Figure 4-1. CLERA discovers dynamical systems and gene programs from simulated data,
Schematic of atwgene regul atory network (G and G ) wi t
parameters shown. b, Comparison of generated gene expression data (top) and solutions from equations
discovered by SINDy (bottom) for the tvgmne system ovdime. Gene 1 and Gene 2 expression levels

are plotted against time. ¢, Gene interaction networks for cell type 7 derived from SERGIO ground truth
(top) and CLERA (bottom). Nodes represent genes, coloured by gene programs identified through
clustering. dHeatmaps showing Jaccard similarity between SERGIO and Cld&Riked gene program

clusters across nine cell types (CellType0 to CellType8). Colour intensity indicates the degree of similarity,

with lighter colours representing higher similarity and dadaours lower similarity.

4.3.2CLERA Uncovers Dynamics and Gene Programs in Pancreatic
Development

We further evaluate CLERA on biological scRMA&q data from mouse pancreas during
embryonic development. This dataset comprises 3696 cells, with 27998 genes clustered into eight
distinct cell typeq89). Following hyperparameter optimization and preprocessing, we trained
CLERA several times with varying initializations (Methods), using the gene expression and
computed pseudotime (cell ordering) information. CLERA successfully identifies a set of sparse
and interpretable differential equations with all individual loss terms in our total loss function
decreasing (Fig 2a, Supplementary Figure 2). Also, we observe the temporal dynamic of different
latent variables captures distinct patterns for each cell(fjge 2b, Supplementary Figure 9a).
CLERA also achieves a high classification accuracy using the latent variables where certain latent
variables emerge as dominant predictors for individual cell types (Supplementary Figure 5b,

Supplementary Figure 7).

To explore the connection between latent nodes and genes, we calculate the SHAP values
(151)for each gendatent node pair and identify the top "K" genes (K=300 for this data) connected
to each latent node, ranked by their absolute values. Using the discovered equations (latent node
latent node interaction) and SHAP values (glettent node intection), we generate a series of
interaction graphs for various stages of pancreas development (Fig. 2c). Unlike traditional network
inference methods, which only produce a static graph for the whole process, our approach captures

dynamic graphs over timéNext, we apply a clustering algorithm to the interaction graphs to
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identify groups of interconnected and potentiallyregulated genes. These graphs, representing
different stages of pancreatic development, allowed us to observe changes in gene interactions
over time. To understand the similarity of active gene prognsss different cell types, we
analyze the clustering results for a specific cell type and transfer the identified gene colours to the
analysis of other cell types (Fig. 2d). We observe a high degree of similarity in shared genes for
cluster 1 among DudtaNgn3 low EP, and Ngn3 high EP cell types. Analyzing these shared genes
reveals several previously known key genes, such as Sox9, Neurog3, Hesl, Foxa3, and Nfib, as
well as important signalling pathways like Wnt, Notch, and F3E52). Furthermore, Gene Set
Enrichment Analysis reveals several pathways related to pancreatic development, demonstrating
the biological relevance of the gene programs discovered by CLERA (Fig. 2e). Interestingly,
CLERA also captures pathways involved in n@emesis and neural development, which aligns

with previous studies and highlights the molecular and cellular similarities between pancreatic and
neural cell differentiatior(89,153)

To identify key and central genes for each cell type, we restructure the interaction network
using the PPR technique to remove latent nodes. This network rewiring allows us to focus directly
on gene interactions. We then apply centrality measures tosthactered network to identify the
most influential genes for each cell type (Fig. 2f, Supplementary Figure 10a). As a result of the
centrality analysis, several key genes are identified, including §dpl), a regulator of the
epitheliatmesenchymal transitory axis and duct cell-diféerentiation; Chgb (155) a
neuroendocrine cell marker; and Neur¢#36,157) crucial for endocrine cell differentiation. The
analysis also confirms the central roles of Ins1 and Ins2 in beta cell function, along witb&)lu
and Sox9159), both critical for progenitor cell maintenance and differentiation. CLERA correctly
captures these key genes, aligning with prior studies that emphasize their importance in pancreatic

development.
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Figure 4-2: CLERA uncovers dynamics and gene programs in pancreatic developmeiat, Discovered
differential equations governing mouse pancreas development data from -selRNghowing sparse and
interpretable models and connections between latent variables. b, Temporal dynamics of latent variables,
which illustrate distinct patternsiss cell types. c, Interaction graphs for various stages of pancreatic
development, show dynamic gene interactions over time for different cell types. d, Clustering results
showing gene program similarities across cell types, with shared genes in tlasteng Ductal, Ngn3

low EP (endocrine progenitdr and Ngn3 high EP cell types. e, Gene Set Enrichment Analysis results
indicating pathways related to pancreatic development and neurogenesis. f, Degree centrality analysis
identifying key genes foeach cell type, including Sppl1, Chgb, Neurog3, Ins1, Ins2, Clu, and Sox9.

4.3.3CLERA Reveals Central Genes and Dynamics in Hematopoietic
Differentiation

Next, we investigate bone marrow development, examining the differentiation of hematopoietic
stem cells (HSPCs) into erythroids, monocytes, and dendritic cells (DCs). This dataset comprises
5780 cells and 14319 genes clustered into 10 distinct cell (yBes

To enhance CLERA's performance on this data, we apply transfer learning from our
previous pancreas study (method section). By initializing CLERA witkirareed weights, we
leverage the knowledge and relationships obtained from the previous part, ghithirea faster
optimization and more accurate representation of the data. Also, we observe a decrease across all
components of the loss function, showing that all loss terms were effectively optimized and also
parsimonious discovered equations (Fig.Sa#plementary Figure 3). Furthermore, investigating
the latent space shows that the temporal dynamics of different latent variables capture distinct
patterns for each cell type, which shows that the embedding learnt by CLERA can identify and
characterizeinique behavioural signatures for each cell type (Fig. 3b, Supplementary Figure 9b).
We observe that the latent embedding discovered by CLERA achieves high classification accuracy
and also shows distinctive cell tyfmvel differentiation, where specifiatient variables drive the

classification of particular cell types (Supplementary Figure 5¢, Supplementary Figure 8).

Then, by identifying top genes using the SHAP method and leveraging the discovered
equations, we generate a series of graphs representing different stages of bone marrow

development (Fig. 3c). Through clustering analysis on these graphs, we identify gfagps
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regulated genes at each developmental stage (Fig. 3d). Moreover, using label transfer techniques,
we identify a significant similarity in coegulated genes between precursors (cluster 1), monocytes
(cluster 3 in Mono_1 and cluster 2 in Mono_2) and DCaster 0). Some of the key genes
discovered have been shown to be crucial for monocyte development, including ID2, TYROBP,
FLT3, PDE4B, and GLIPR160 162) We also observe a strong similarity between the two
erythroid subpopulations Ery_1 and Ery_2, particularly between clusters 1 and 3, and between
clusters 2 and 1. Similarly, the monocyte subpopulations Mono_1 and Mono_2 show considerable
overlap, with aister 3 in Mono_1 closely aligning with cluster 1 in Mono_2, cluster 2 in Mono_1
resembling cluster 0 in Mono_2, and cluster 0 in Mono_1 closely matching cluster 2 in Mono_2.
This suggests that these subpopulations have many common genes, which shewsesimmil

their developmental pathways and active gene programs.

To identify the critical genes within these networks, we apply PPR for network rewiring,
which allows us to remove latent nodes and focus on direct gene interactions. Centrality measures
then pinpoint key genes driving cellular differentiation during hepuwiesis (Fig. 3e,
Supplementary Figure 10b). MP@63), crucial for neutrophil differentiation, is identified as a
key myeloid marker, while HOPX163) emerges as a regulator of primitive hematopoiesis,
guiding early progenitor cell fate. Malatll64) known for regulating gene expression in
hematopoietic stem cells, and F($5,166) linked to cell proliferation and differentiation under
cytokine signalling, are also highlighted. Also, CD8%7), a marker of mature lymphocytes,
FAmM30A, which has shown links to immune response regulation and other hematopoietic lineages,
and CD74(168) essential for antigen presentation in immune cells, are captured. CLERA

effectively identified these genes, which align with their known roles in hematopoiesis.
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