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Abstract 

Cellular decision-making is a complex process that governs how cells respond to their 

environment, differentiate, or commit to specific fates. Understanding the mechanisms that drive 

these decisions is critical for advancing fields such as regenerative medicine, cancer research, and 

developmental biology. The ability to investigate cellular decision-making at the single-cell level, 

particularly through high-resolution technologies like single-cell RNA sequencing (scRNA-seq), 

opens new doors for dissecting the intricate regulatory networks that guide cell fate. With this 

information, we can better predict how cells transition between states, respond to external stimuli, 

or contribute to disease progression. 

In this thesis, the objective is to develop different deep learning methods for analyzing 

cellular decision-making processes using scRNA-seq data. These computational approaches aim 

to reveal the molecular programs governing cell fate and to predict how gene perturbations can 

alter cellular outcomes. Central to this effort is the finding of the accurate latent representation of 

high-dimensional data. By learning meaningful and compressed representations, we can improve 

the interpretability and accuracy of downstream analyses, including clustering, trajectory 

inference, gene regulatory network reconstruction, and the identification of key gene regulators. 

Also, these representations can be used further to generate high quality gene expression data. 

We developed several methods to capture the dynamics of cellular decision making. 

Fatecode, a classification-supervised autoencoder, predicts cell fate regulators by learning latent 

representations from scRNA-seq data. It enables in silico perturbation experiments to identify 

genes that can shift cell type distributions, offering insights into key regulators of differentiation. 

CLERA  combines a supervised autoencoder with Sparse Identification of Nonlinear Dynamics 

(SINDy) to uncover dynamic models and active gene programs. By leveraging prior knowledge, 

CLERA extracts low-dimensional representations, reconstructs gene expression dynamics, and 

identifies central regulatory genes in various cell types. FateNet integrates dynamical systems 

theory with deep learning to predict the timing of cell decisions. By analyzing scaling behavior 

near bifurcations, FateNet provides insights into key decision points in cellular processes, 
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improving our understanding of these transitions. scVAEDer is a generative deep-learning model 

that integrates autoencoders with deep diffusion models. It captures both global patterns and local 

variations in scRNA-seq data, enabling high-quality synthetic data generation, prediction of 

perturbation effects, and tracking of gene expression changes over time. Finally, Deep Lineage 

analyzes time-series scRNA-seq data alongside lineage-tracing information, predicting early cell 

fate biases and gene expression profiles with high accuracy. Through in silico perturbations, Deep 

Lineage reveals dynamic multicellular responses over time and identifies key genes and pathways 

involved in cell fate decision making. 

I hope the methods presented in this thesis can advance the integration of deep learning into 

the study of cellular dynamics, helping to identify important gene programs and regulators 

involved in decision-making processes. These computational tools provide valuable resources for 

advancing research in regenerative medicine, developmental biology, and disease modeling. By 

improving our ability to model and predict cellular behavior, these methods can contribute to more 

effective therapies and a deeper understanding of the molecular processes driving development 

and disease. 
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Discovered differential equations governing mouse pancreas development data from scRNA-seq, 

showing sparse and interpretable models and connections between latent variables. b, Temporal 

dynamics of latent variables, which illustrate distinct patterns across cell types. c, Interaction 

graphs for various stages of pancreatic development, show dynamic gene interactions over time 

for different cell types. d, Clustering results showing gene program similarities across cell types, 

with shared genes in cluster 1 among Ductal, Ngn3 low EP (endocrine progenitor), and Ngn3 high 

EP cell types. e, Gene Set Enrichment Analysis results indicating pathways related to pancreatic 

development and neurogenesis. f, Degree centrality analysis identifying key genes for each cell 

type, including Spp1, Chgb, Neurog3, Ins1, Ins2, Clu, and Sox9. ............................................... 71 

 

Figure 4-3. CLERA reveals central genes and dynamics in hematopoietic differentiation. a, 

Differential equations discovered for bone marrow development data, showing connections 

between latent variables. b, Temporal dynamics of latent variables, with distinct patterns across 

cell types. c, Interaction graphs for different stages of bone marrow development, which capture 

dynamic gene interactions for each cell type. d, Clustering analysis of co-regulated gene groups at 

each developmental stage, with significant similarities between precursors, monocytes, DCs, and 

among Ery-1 and Ery-2, Mono-1 and Mono-2 subpopulations. e, Degree centrality analysis 

identifies key genes driving cellular differentiation, including Mpo, HOPX, Malat1, FOS, CD52, 

FAM30A, and CD74. .................................................................................................................... 73 
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Figure 5-1: Schematic of workflow with FateNet. Input data, in the form of a gene 

expression matrix, is reduced in dimension using PCA, clusters are obtained and a pseudotime 

series is constructed. The pseudotime series leading up to a cell fate transition is passed into 

FateNet, which outputs a probability distribution over different bifurcations. FateNet is pre-trained 

using many simulations from stochastic differential equations (SDEs) going through different 

types of bifurcation. The output of FateNet consists of probabilities for the occurrence of different 

bifurcations. A spike in the probability for a bifurcation is an indication that the bifurcation is about 

to occur. The cells associated with the timing of the spike can be examined to identify the key 

genes responsible for initiating the bifurcation process. ............................................................... 92 

 

Figure 5-2: Simulations and predictions in the simple gene regulatory network model going 

through a fold, pitchfork, and no bifurcation. (a-c) Bifurcation diagrams showing the stable (solid) 

and unstable (dashed) states of the model as a parameter is varied. (d-f) Model simulation (gray) 

with the bifurcation parameter varying linearly with time (Methods), and smoothing (black) with 

a Lowess filter with span 0.2. The model reaches the bifurcation at pseudotime 500. (g-i) 

Probabilities assigned by FateNet for each class of bifurcation as progressively more of the data 

becomes available. The arrow shows the time window where there is insufficient data for FateNet 

to make a prediction. FateNet uses the data after smoothing (i.e. not the trend) when making its 

predictions. The vertical dashed line indicates the time when the bifurcation is crossed. PF: 

pitchfork; TC: transcritical. ........................................................................................................... 94 

 

Figure 5-3: Bifurcation predictions in a simulation of SERGIO. (a) Uniform Manifold 

Approximation and Projection (UMAP) visualization of scRNA-seq data generated by SERGIO, 

with distinct clusters, color-coded based on cell type. (b) PAGA network graph representing the 

interconnectivity and relationships between cell types. (c) Bifurcation and null trajectories of cells 

organized in pseudotime (top) and the predictions of FateNet (bottom). The first principal 

component of the gene expression data is used to make predictions. The bifurcation trajectory 

shows a cell-fate transition between cell type 5 and cell types 3 and 6. The vertical dashed line 
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indicates the time when the bifurcation is crossed. Data is smoothed using a Lowess filter with 

span 0.2 and the detrended data are passed to our model. The null trajectory is generated by taking 

a random sampling from the first 20% of the detrended data and adding it to the original trend. DL 

probabilities are the probabilities assigned by our model for each event among Null, Fold, 

Transcritical (TC) and Pitchfork (PF). .......................................................................................... 96 

 

Figure 5-4: Predictions in data of mouse hematopoietic stem cell differentiation from 

undifferentiated cells (gray) to neutrophils (orange). (a) UMAP plot of mouse hematopoiesis data, 

emphasizing the transition (arrows) from progenitor cells (gray) to neutrophils (orange), 

elucidating the dynamic differentiation process. (b) Bifurcation and null trajectories with model 

predictions. The bifurcation trajectory (left) is the first principal component against pseudotime 

downsampled by a factor of 100. The dashed line shows the transition. The data is detrended using 

a Lowess filter with a span 0.2 and used as input to the model. The model outputs probabilities for 

each event among Null, Fold, Transcritical (TC) and Pitchfork (PF). The yellow box highlights 

the initial spike in bifurcation probabilities between pseudotime 0.28 and 0.32. The null trajectory 

(right) is generated by random sampling from the first 20% of the detrended bifurcation trajectory 

and adding them to the trend. (c) ROC curves for predictions of any bifurcation using variance 

(Var), lag-1 autocorrelation (AC), sample entropy (SE), Kolmogorov complexity (KC) and 

FateNet (FN). Predictions are made at evenly spaced time points between 0.3 and 0.6 for 100 

unique downsampled bifurcation trajectories and corresponding nulls, resulting in a total of 1400 

predictions. The inset shows the probabilities assigned to each bifurcation between pseudotime 0.5 

and 0.6. Boxes show the median and interquartile range, and whiskers show the full range. ...... 99 

 

Figure 5-5: Bifurcation predictions in murine pancreatic development focusing on 

differentiation of Fev+ to Alpha, Beta and Delta cells. (a) Uniform Manifold Approximation and 

Projection (UMAP) visualization of Pancreas development data, with distinct clusters, color-coded 

based on cell type. (b) Bifurcation and null trajectories with model predictions. The bifurcation 

trajectory (left) is the first principal component against pseudotime. The dashed line shows the 
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transition point. The data is detrended using a Lowess filter with a span of 0.2 and used as input to 

the model. The model outputs probabilities for each event among Null, Fold, Transcritical (TC) 

and Pitchfork (PF). The null trajectory (right) is generated by random sampling from the first 20% 

of the detrended bifurcation trajectory and adding them to the trend. ........................................ 101 

 

Figure 5-6: Exploring system response to various in silico perturbations. (a) UMAP 

visualization shows in silico perturbations, with green lightning indicating overexpression and red 

lightning denoting knockout perturbations. Each perturbation is individually implemented to 

observe how the system experiences shifts in the bifurcation dynamics. Model predictions for stem 

cell differentiation to neutrophils in mouse hematopoiesis after knocking out (b) and over-

expressing (c) a few numbers of the most significant genes. Genes are knocked out by setting their 

expression to zero. Genes are overexpressed by multiplying their expression by a factor of two. In 

each case, ten equally-spaced predictions are made between pseudotime 0.45 and 0.6. ............ 103 

 

Figure 6-1: scVAEDer overview. scVAEDer integrates VAE and DDM. First, a VAE is 

trained using the gene expression data. Then the VAE latent embedding is used to train the DDM 

through the processes of latent space diffusion and denoising. Combining together the model is 

able to decode back the gene space with high accuracy. scVAEDer can be used for different 

downstream analysis tasks such as generating novel high-quality scRNA-seq data, understanding 

changes in gene expression during cellular differentiation, predicting the effect of perturbations on 

new cell types when expression data is available for multiple conditions, detecting master 

regulators by interpolating between different cellular states and ranking fast responder genes based 

on their velocity values. .............................................................................................................. 118 

 

Figure 6-2: scVAEDer accurately learns the latent representation and generates new high-

quality scRNA-seq data. a, Red, forward diffusion process with 1000 steps on hematopoiesis in 

zebrafish as we add noise to the data; blue, reverse process as the model learns how to denoise. b, 

UMAP visualization of the real data embedding. c, Samples generated from DDM prior. d, samples 
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generated from the VAE. e, Total Variation Distance (TVD) between latent embedding of data 

and samples generated from the DDM as well as VAE prior distributions. ............................... 120 

 

Figure 6-3: scVAEDer can be used to understand cellular dedifferentiation. a, Mapping 

HSPC and monocyte cells into the latent prior of DDM. b, Using DDM (1000 diffusion steps) and 

performing latent linear interpolation with 2000 equidistant samples (red dots). The absence of 

any sample generated in the empty region suggests that the model has learned an accurate 

embedding. c, Heatmap showing the similarity between gene expression of generated states and 

the real average expression of HSPCs and monocytes (using 100 DDM steps before interpolation). 

d, Expression of selected marker genes along the interpolation path. ........................................ 122 

 

Figure 6-4: scVAEDer is more accurate than the SOTA methods in predicting perturbation 

responses. a, Data generation using latent prior of DDM with 1000 diffusion steps. b, Comparison 

of the correlation values of average gene expression between real and predicted cells of various 

cell types obtained using scGen, scPreGAN, and scVAEDer. c, Violin plots for selected key genes 

across control, real stimulated, and stimulation predicted by scVAEDer and scGen in Dendritic 

cells (DC). ................................................................................................................................... 124 

 

Figure 6-5: scVAEDer accurately detects master regulators during cellular reprogramming. 

a, The reverse process of DDM allows the generation of high-quality reprogramming samples from 

random Gaussian noise (the quality of generated samples is critical for downstream analysis). b, 

UMAP visualization of the data latent embedding, colored based on their state (red: failed, blue: 

reprogrammed). c, Data generated by interpolating between reprogrammed and failed states, 

represented by red dots. Remarkably, none of the interpolated samples are found outside the real 

representation of data. d, Correlation values between the new interpolated samples and the average 

gene expression of reprogrammed and failed cells, which demonstrates the shift in gene expression 

between failed and reprogrammed states. e, Ranking of genes based on high expression differences 

between t=0 and t=3000. f, Illustration showing the process of computing gene velocities along 
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the interpolation path to detect master regulators. g, Gene set enrichment analysis using 400 genes 

with the highest velocities (fast responders), which reveals pathways that are crucial during the 

cell reprogramming process. ....................................................................................................... 126 

 

Figure 7-1: Predicting Gene Expression and Early Cell Fate Bias via Combined scRNA-

seq and Lineage Tracing. A visual depiction of the Deep Lineage is presented. On the left, the 

Waddington landscape illustrates the developmental trajectory, showing how cells within each 

clone (represented by different colours) differentiate into distinct mature cell types originating 

from stem cells. On the right, by combining scRNA-seq data and lineage tracing information the 

gene expression profiles of cells within each clone are used as input for the autoencoder. The 

resulting latent embeddings of cells in a clone are subsequently used as inputs for the LSTM, Bi-

LSTM, or the GRU model. This integrated architecture enables the accurate prediction of both 

early cell fate bias and gene expression profile of unseen days within a clone. Notably, Deep 

Lineage offers the flexibility to adapt different preprocessing steps, diverse barcoding techniques, 

various dimensionality reduction methods, and a range of various deep learning models (left black 

box). ............................................................................................................................................ 139 

 

Figure 7-2: Deep Lineage accurately predicts single-cell gene expression of unseen cells in 

hematopoiesis a, UMAP plot of the hematopoiesis data from Weinreb et al. Each point represents 

an individual cell, color-coded by cell type. b, Schematic representation of the gene expression 

prediction process using two regression models: one for predicting day 4 gene expression (trained 

on data from days 2 and 6), and the other for predicting day 6 gene expression (trained on data 

from days 2 and 4) within a clone. c, Correlation of gene expression between Deep Lineage 

predictions and cells excluded during training, categorized by cell types and time points. d,e, 

Comparison of average gene expression values of 2000 genes between Deep Lineage predicted 

and real cells for Monocytes and Neutrophils. Gene expression at day 4 was averaged across 

predicted cells per clone, and then correlation was computed with actual data for each gene (Ὑς 

indicates the squared Pearson correlation coefficient between the predicted and ground truth 
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values). f,g, Violin plots show gene expression distributions between predicted and real cells for 

randomly selected genes both Monocytes and Neutrophils. ....................................................... 143 

 

Figure 7-3: Exploring progenitor bias prediction in hematopoiesis with Deep lineage and 

comparison to state-of-the-art methods. a, Schematic UMAP diagram illustrating the trajectory of 

stem cell differentiation and the possible cellular outcomes with cell colors indicating distinct 

clonal lineages. Grey points represent other mature cell types (not neutrophils and monocytes). b, 

Performance evaluation of the classifier using accuracy and cross-entropy loss metrics to predict 

early cell fate bias by employing gene expression of cells on just day 2, using cells on days 2 and 

4, and including all three days within a clone. c, Receiver Operating Characteristic (ROC) curves 

and Area Under the Curve (AUC) values for the model using cells from days 2 and 4 or all three 

days with a clone, showing our model's performance in early cell fate bias prediction. Day 2 

performance is very close to day 2&4 performance, thus not plotted. d, Comparative analysis with 

state-of-the-art methods in predicting early cell fate bias. Deep Lineage outperforms existing 

methods showing a higher classification accuracy. .................................................................... 144 

 

Figure 7-4: Deep Lineage accurately predicts single-cell gene expression of unseen cells in 

reprogramming. a, UMAP visualization demonstrates fibroblast cell reprogramming into iEPs, 

dots represent cells and are color-coded by time point. b, Correlation values between gene 

expression of ground truth cells and Deep Lineage predictions for cells excluded during training 

across different stages of the reprogramming process. c, Violin plots show gene expression 

distributions between real cells and Deep Lineage predictions for randomly selected genes for both 

Failed and Reprogrammed cells. d,e. Comparative analysis of the top 2000 differentially expressed 

genes between predicted and real cells. High correlation values are observed for both successful 

and failed reprogramming cells, highlighting the accuracy of the model for different cell types (╡  

indicates the squared Pearson correlation coefficient between the predicted and ground truth 

values). ........................................................................................................................................ 147 
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Figure 7-5: Early cell fate prediction in reprogramming with Deep Lineage and comparison 

to state-of-the-art method. a, UMAP visualization illustrates progenitor bias toward either 

successful or failed reprogramming outcomes. b, The model's accuracy in detecting successful or 

failed outcomes of progenitors is examined using gene expression data of cells up to days 12, 15, 

21, and all days within a clone. c, Benchmarking comparison between Deep Lineage and CellRank 

in predicting fate outcome when using all time points up to a given time point (e.g. day 12) to infer 

time point ñday 28ò. Using ROC curves and AUC values, the graph shows the predictive power 

of both models in predicting fate bias. Deep Lineage consistently outperforms CellRank. ....... 148 

 

Figure 7-6: In silico perturbations of early cells in hematopoiesis and reprogramming data 

successfully modify cell fate at later stages. a, UMAP representation showing the procedure for in 

silico perturbation of cells on day 15 within failed reprogrammed clones, aiming to switch them 

into successfully reprogrammed states. b, Correlation values between in silico perturbed data and 

actual successfully and unsuccessfully reprogrammed cells on Day 28, showing the power of Deep 

Lineage in performing in silico experiments. c, Gene set enrichment analysis reveals the biological 

processes associated with the top 200 genes identified by the SHAP method (40 genes selected 

from each time point) d, Identification of the top 10 gene candidates using SHAP analysis at each 

time point during fibroblast cell reprogramming. e, UMAP visualization depicting the in silico 

perturbation experiment targeting progenitor cells (Dark orange) in clones with a Neutrophil fate 

(blue), resulting in a transformation to Monocytes (green). f, The top 10 gene candidates for 

hematopoiesis detected by SHAP analysis across all time points. g, Gene set enrichment analysis 

of the top 200 genes identified by SHAP analysis. ..................................................................... 150 

 

Figure 9-1 Supplementary Fig. 1: Gene expression perturbations to change the cell-type 

distribution. This figure demonstrates the transition of an initial cell type distribution to a desired 

target distribution through gene-level adjustments. The circles represent the system's state, with 

the frequencies of cell types indicated below. ............................................................................ 191 
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Figure 9-2 Supplementary Fig. 2: Comparison of autoencoder architectures for analyzing 

data for endocrine development in the mouse pancreas. a, comparison of the input-output 

correlation for the AE, the variational autoencoder (VAE), and the conditional variational 

autoencoder (CVAE). b, the mean square error of the three autoencoder architectures' input and 

output. VAE performs better than other architectures for this data. ........................................... 192 

 

Figure 9-3 Supplementary Fig. 3: Gene prioritization score for the mouse hematopoiesis 

data. a, b, c, Fatecode accurately determines gene prioritization scores for various genes, including 

Klf1, Runx1, and Fli1, across different cell types. ...................................................................... 193 

 

Figure 9-4 Supplementary Fig. 4: Fatecode analysis of hematopoiesis data identifies master 

regulators governing cell switching dynamics. a, visualization of the hematopoiesis dataset from 

Weinreb et al. hematopoietic progenitors differentiate into different cell types such as mast cell 

(Ma), basophil (Ba), eosinophil (Eos), megakaryocyte (Mk), lymphoid precursor (Ly), migratory 

dendritic cell (mDC) and plasmacytoid dendritic cell (pDC), erythrocyte (Er), neutrophil (Neu), 

monocyte (Mo). b, The effect of different perturbation sizes of a node in the latent layer on the cell 

distribution. c, gene set enrichment analysis results. Gene ontology (GO) biological processes 

enrichment analysis shows significant process terms related to mouse hematopoiesis, stem cell 

development, and mesenchymal cell differentiation. ................................................................. 194 

 

Figure 9-5 Supplementary Fig. 5:  Gene Regulatory Network of Ybx1 and its downstream 

target genes along with gene prioritization scores. The GRN was constructed using SCENIC, by 

filtering the top 2000 interactions with the highest SCENIC Importance Measure (IM) scores. 

Additionally, the top 400 predicted master regulators from Fatecode were mapped onto the GRN, 

and the resulting network is presented here using a network bar chart in which each value of a bar 

plot shows the Fatecode gene prioritization score of the gene for that cell type. ....................... 195 
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Figure 9-6 Supplementary Figure 1: Training and validation loss curves for training 

CLERA on the data generated using SERGIO. The low losses in (a)-(e) indicate a high accuracy 

and strong generalization. Refer to the Methods section for the description of each loss term. 197 

 

Figure 9-7 Supplementary Figure 2: Training and validation loss curves for training 

CLERA on the pancreas data. The low losses in (a)-(e) indicate that CLERA successfully builds 

the latent layer with the desired characteristics. Refer to the Methods section for the description of 

each loss term. ............................................................................................................................. 198 

 

Figure 9-8 Supplementary Figure 3: Training and validation loss curves for the bone 

marrow data in the transfer learning setting. Due to transfer learning, the model converges in fewer 

epochs as compared to the training of the Pancreas data. ........................................................... 199 

 

Figure 9-9 Supplementary Figure 4: Training comparison on the bone marrow dataset using 

transfer learning (SINDy threshold frequency- 500) and vanilla training with two different 

thresholds (SINDy threshold frequency- 150 and 500). (a) shows the combined loss plotted against 

the number of epochs, illustrating the slower convergence and signs of overfitting in the vanilla 

models, particularly with the lower threshold (red). (b) presents the data with normalized epochs, 

highlighting the efficiency of transfer learning, which reaches stability in a fraction of the time 

compared to vanilla training. While the vanilla models require most of the training period to 

converge (especially with a lower threshold), the transfer learning model generalizes well much 

earlier in the training process, as shown by the stabilized validation loss. ................................. 200 

 

Figure 9-10 Supplementary Figure 5: Classification results of (a) SERGIO generated data 

(b) Pancreas data and (c) Bone marrows data. After training CLERA on different datasets. the 

prediction of the cell type for all the preprocessed input (validation and training) by the 

classification network is shown, The classifier achieves high accuracy with very few 
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misclassifications. Even for cell types with fewer instances, the model can accurately predict the 

cell type from the latent space. This strong classification performance suggests that the latent space 

captures cell-type-specific features. Accurate classification ensures that the predicted ODEs 

reliably infer relationships and can predict cellular behavior across different conditions. ........ 201 

 

Figure 9-11 Supplementary Figure 6: Mean intersection percentage between top-k genes of 

different latent variables present at various time distances for (a) SERGIO generated dataset (b) 

Pancreas dataset (c) Bone marrows dataset. The mean intersection percentage between the top-k 

genes for various time distances in the SERGIO-generated dataset with k=30 (left), the Pancreas 

dataset with k=300 (middle), and Bone marrow data with k=300 (right) datasets. The intersection 

percentage, plotted for each latent variable, is higher for closer time steps and gradually decreases 

as the time distance grows. This shows the model's ability to capture temporal coherence in gene 

expression patterns, where similar gene sets are shared between adjacent time points, reflecting 

the gradual changes in biological processes. The consistency decreases with larger time distances, 

indicating the differences in active gene programs. .................................................................... 202 

 

Figure 9-12 Supplementary Figure 7: The mean and standard deviation of SHAP values 

between each cell type and latent variable for the pancreas data.  The SHAP values calculated 

using the classifier network are plotted which show that each cell type is primarily driven by one 

or more latent variables for classification. This demonstrates that certain latent variables are key 

drivers in predicting particular cell types, suggesting a cell type-level abstraction within the latent 
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Figure 9-13 Supplementary Figure 8: SHAP Value Analysis of Latent Variables in 

hematopoietic differentiation. This figure illustrates the mean and standard deviation of SHAP 

values for each cell type and latent variable. The values, derived from the classifier network, 

demonstrate that specific latent variables significantly influence cell type classification, indicating 

a cell type abstraction in the latent space. ................................................................................... 204 
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Figure 9-14 Supplementary Figure 9: Latent Variable Time Series discovered using 

CLERA for (a) pancreas dataset and (b) Bone marrows dataset. Colors have been assigned as the 

cell type labels.  The latent space demonstrates clear cell type differentiation, with distinct cell 

types following unique trends and values over time. This pattern indicates that the learned latent 

space successfully captures cell type-specific dynamics, ensuring that the model reflects latent 

qualities at a cell type level granularity. ..................................................................................... 205 

 

Figure 9-15 Supplementary Figure 10: Results of centrality measures on (a) Pancreas 

dataset and (b) Bone marrows dataset. The figure shows the distribution of three centrality 

measuresðCloseness, Eigenvector, and PageRankðfor the most central genes across different 

cell types in (a) the pancreas dataset and (b) the bone marrow dataset. In both datasets, some genes 

exhibit consistently high centrality values across multiple cell types, indicating their importance 

in the gene regulatory networks. ................................................................................................. 206 

 

Figure 9-16 Supplementary Figure 1: Simulations and predictions in the simple gene 

regulatory network model using a smaller noise amplitude of 0.01. Refer to the caption of Figure 

1 for further details...................................................................................................................... 211 

 

Figure 9-17 Supplementary Figure 2: Simulations and predictions in the simple gene 

regulatory network model using a larger noise amplitude of 0.1. Refer to the caption of Figure 1 
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Figure 9-18 Supplementary Figure 3: Gene Ontology (GO) term and Reactome pathway 

enrichment analysis for the top 250 significant genes. a) GO: Biological Process (BP) showing the 

enriched biological processes such as different metabolic processes, cellular response to different 

stimulus, and cell apoptosis indicating relevant biological activities associated with these genes. 

b) GO: Molecular Function (MF) highlights the enriched molecular functions including protein 
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binding and enzyme binding. c) GO: Cellular Component (CC) displays the enriched cellular 

components such as cytoplasm and intracellular organelles, suggesting the subcellular 

localizations where these genes are active. d) The REAC panel represents the enriched pathways 

from the Reactome database, including immune system processes and cellular responses to stress, 

which are related to the process of neutrophil development....................................................... 213 

 

Figure 9-19 Supplementary Figure 4: Enrichment map analysis of biological pathways. The 

figure shows the complex connections and interactions between different active biological 

processes. Blue edges of varying thickness connect the nodes, indicating the strength of the 

connection between pathways by the number of mutual genes. To simplify the network, only edges 

and nodes meeting the cutoff (Node Cutoff P-value > 0.01, Edge Cutoff > 0.35) are shown. ... 214 

 

Figure 9-20 Supplementary Figure 5: Architecture for the neural networks in FateNet. Each 

network consists of 2 convolutional and 2 long-short-term memory (LSTM) layers. 

Hyperparameters are shown for Network 1. The input to the network is a time series of length 500. 

This is passed through a 1D convolution, with a kernel size of 12, 50 filters, and the ReLU 

activation function. Padding is applied to the ends of the time series to maintain the input 

dimension. This is then passed through a max pooling operation with pool size 2, reducing the 

dimension by a factor of 2. This process repeats through another convolution and max pooling 

layer. This is then passed to the first LSTM layer with 100 memory cells. For this layer, the cells 

return the entire sequence. This then enters the second LSTM layer with 20 memory cells, which 

returns only the end value of the sequence. Each memory cell is then connected with the 4 output 

nodes via a dense layer. The output is passed through a softmax filter to obtain a probability 

distribution over the 4 possible outcomes. .................................................................................. 215 

 

Figure 9-21 Supplementary Figure 6: training and validation accuracy vs. epoch for 

Network 1 and Network 2 during the training phase. The accuracy on the validation set peaks at 

epoch 71 and 154, respectively, at which point the models are selected. ................................... 216 
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Figure 9-22 Supplementary Figure 7: Confusion matrices for Network 1 and Network 2 

when evaluated on their test sets from the library of generated dynamical systems. We show 

performance on the multi-class classification problem, where the model must predict the specific 

event, and the binary classification problem, where the model only needs to predict whether or not 

a bifurcation is approaching. Cell values show (row-)normalized classification rates for each class. 

(A) Network 1 on the multi-class classification problem obtains an F1 score of 0.64. (B) Network 

2 on the multi-class classification problem obtains an F1 score of 0.95. (C) Network 1 on the binary 

classification problem obtains an F1 score of 0.80. (D) Network 2 on the binary classification 

problem obtains an F1 score of 0.98. TC: transcritical. PF: pitchfork. ....................................... 217 

 

Figure 9-23 Supplementary Figure 1: Gene expression changes as a result of interpolation. 

The expression of selected maker genes is upregulated or downregulated as we interpolate between 
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Figure 9-24 Supplementary Figure 2: The number of diffusion steps changes the level of 

detail in generated data Samples with different levels of granularity are generated by adjusting the 

number of diffusion steps before interpolation. If a large number of diffusion steps are used, more 

structure in the initial data will be destroyed, causing a gradual loss of information, resulting in 
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successive steps. .......................................................................................................................... 221 

 

Figure 9-25 Supplementary Figure 3: scVAEDer can correctly predict the distribution of 

genes in the stimulated condition. a, Violin plots showing the distribution of specific key response 

genes across control, real stimulated condition, and prediction of stimulation using scVAEDer and 

scGen in Dendritic cells (DC). scVAEDer more accurately predicts the effect of the perturbation 

on genes. b, Comparison of the correlation values of various cell types obtained using scGen, 

scPreGAN and scVAEDer for intestinal epithelial cells after Salmonella infections data. ........ 222 
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Figure 9-26 Supplementary Figure 4: DDM training and variance scheduling. A 

comparison between the effect of different variance scheduling methods on and values. The user 
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Figure 9-31 Supplementary Figure 5: Ablation studies were performed on the 

hematopoiesis and reprogramming data. Heatmaps display the accuracy of Deep Lineage in 

predicting early cell fate in control and ablation conditions for both hematopoiesis (a) and 
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Chapter 1 

Introduction  

ñDeath smiles at us all, but all a man can do is smile back." These words by Marcus Aurelius 

reflect an acceptance of the inevitable. But must we simply smile back? Could we dare to challenge 

death, or even evade it entirely? The questions of death, life, and immortality have captivated the 

minds of philosophers, scientists, and scholars for millennia. For some, death is an inescapable 

fate, a natural end to lifeôs cycle. Others see it as a threshold to something beyond. Yet, a few bold 

individuals have refused to accept death as part of life's natural order, instead dedicating 

themselves to the search for ways to extend lifeðor even achieve immortality. 

Humanity has long pursued the dream of extending life, whether by lengthening our natural 

lifespan or achieving something as radical as immortality. However, should we ever succeed, we 

would not be the first. Nature offers extraordinary examples of longevity. The bowhead whale, for 

instance, can live for over 200 years, while the Aldabra giant tortoise can survive for up to 250 

years(6) (Fig1-1. a,b). Most remarkably, the Greenland shark can live up to 500 years, making it 

one of the longest-living vertebrates(7) (Fig1-1. c). Yet none of these creatures can claim to be truly 

immortal except for Turritopsis dohrnii, commonly known as the "Immortal Jellyfish"(8) (Fig1-1. 

d). When faced with injury or stress, it undergoes transdifferentiationða rare process that allows 

it to transform its cells and revert to a juvenile state, effectively restarting its life cycle. While this 

unique process is remarkable, the mechanisms of extreme longevity or immortality found in other 

species are typically highly specialized, making them difficult to apply to humans. 

 

https://sciwheel.com/work/citation?ids=1006451&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2828847&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8054808&pre=&suf=&sa=0&dbf=0
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Figure 1-1: The natural world showcases remarkable examples of longevity and potential immortality. (a) 

The bowhead whale, capable of living over 200 years, thrives in Arctic waters. (b) The Aldabra giant 

tortoise, known for its lifespan of up to 250 years. (c) The Greenland shark, one of the longest-living 

vertebrates, can live up to 500 years in the deep ocean [Photo credit: Hemming1952]. (d) The Immortal 

Jellyfish (Turritopsis dohrnii) uniquely reverts to its juvenile form through transdifferentiation, effectively 

restarting its life cycle and achieving a form of biological immortality [Photo credit: Chen Yiming].  

 

Despite these challenges, the quest for immortality is a light in the darkness for those who dream 

of transcending our natural lifespan. This fascination with eternal life has been a recurring theme 

in mythology and folklore for as long as humans have recorded their thoughts. From the ancient 

myths of the Fountain of Youth (Fig1-2. e) to the worship of undying deities, the desire to escape 

death has spanned time and cultures. One of the earliest recorded tales of the search for immortality 

is found in the Epic of Gilgamesh(9) (Fig1-2. a). In this ancient Sumerian story, the legendary king 

Gilgamesh embarks on a quest to defeat death after the tragic loss of his companion, Enkidu. 

Gilgamesh seeks immortality to avoid his friend's fate, but ultimately fails in his pursuit. Instead, 

he comes to the realization that immortality lies not in eternal life, but in the enduring legacy of 

one's actions and contributions to civilization. This profound narrative is one of the oldest in human 

https://sciwheel.com/work/citation?ids=17023508&pre=&suf=&sa=0&dbf=0
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history. In a later era, the First Emperor of China, Qin Shi Huang, also sought to escape death (10) 

(Fig1-2. b). Obsessed with finding the mythical elixir of life (Fig1-2. d), he dispatched vast 

expeditions to locate the fabled Mount Penglai, believed to hold the secret to immortality. Despite 

his efforts, Qin Shi Huang's quest ended in failure, as he tragically died from mercury poisoning, 

ironically caused by the very pills prescribed to him in his pursuit of eternal life. Mythological 

tales from around the world echo this same yearning. In Persian mythology, the legendary king 

Jamshid is one of the most well-known figures associated with immortality(11) (Fig1-2. c). Jamshid 

was granted divine favor, allowing him to rule for hundreds of years. His reign marked a golden 

age, a time of prosperity and innovation for humanity. According to legend, Jamshid discovered 

the secret to immortality and ruled for centuries, growing more powerful and wise as time passed. 

However, his story also serves as a warning: Jamshidôs arrogance grew as he lived beyond the 

natural span of life. He began to see himself as divine, eventually losing the favor of the gods and 

bringing about his downfall. In Greek mythology, several stories address the theme of immortality, 

often with a cautionary twist. One notable example is the story of Tithonus, a mortal man who was 

granted eternal life by the gods at the request of Eos, the goddess of dawn (12) (Fig1-2. f). However, 

Eos forgot to ask for eternal youth, and as a result, Tithonus aged endlessly, growing frail and 

withered. His immortality became a curse, as he was doomed to an eternity of decrepitude. 

Regardless of their basis in myth or reality, these stories underscore the significance of the quest 

for immortality throughout human history. They reflect our deep-seated fear of death and our 

enduring desire to transcend our natural limitations. From ancient alchemists seeking the elixir of 

life to heroic figures embarking on legendary quests, this pursuit has spurred cultural narratives 

and philosophical exploration, showing how the dream of eternal life has shaped human thought. 

https://sciwheel.com/work/citation?ids=17023643&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17023722&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=254840&pre=&suf=&sa=0&dbf=0
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Figure 1-2: Throughout history, the quest for immortality has captivated human imagination, as depicted in 

various myths and legends. (a) The Epic of Gilgamesh illustrates an early tale of seeking eternal life. (b) 

Qin Shi Huang, the First Emperor of China, pursued the elixir of life. (c) Persian mythology tells of King 

Jamshid's long reign and eventual downfall due to arrogance. (d) The mythical elixir of life symbolizes 

humanity's enduring hope for immortality. (e) The Fountain of Youth represents a legendary source of 

rejuvenation. (f) In Greek mythology, Tithonus was granted eternal life without eternal youth, highlighting 

the potential curse of immortality. 

 

Today, while the root causes of aging still remain elusive, various computational and experimental 

studies are beginning to illuminate these underlying mechanisms. This modern exploration bridges 

the gap between ancient aspirations and current scientific understanding, can offer hope for 

extending human lifespan and improving the quality of life. Central to this understanding is the 

recognition of the hallmarks of aging (13), which describe the key biological processes that 

contribute to the aging phenotype: 

1. Genomic Instability: This hallmark refers to the accumulation of DNA damage over time 

due to environmental stressors (like UV radiation and chemicals) and inherent replication 

errors. As cells divide, they may fail to accurately replicate their DNA, leading to mutations 

https://sciwheel.com/work/citation?ids=14150935&pre=&suf=&sa=0&dbf=0
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and chromosomal abnormalities. This instability contributes to cellular dysfunction and 

increases the risk of age-related diseases, including cancer. 

 

2. Telomere Attrition: Telomeres are repetitive DNA sequences at the ends of chromosomes 

that protect them from deterioration. With each cell division, telomeres shorten. When they 

reach a critically short length, cells can no longer divide, leading to cellular senescence or 

apoptosis (programmed cell death). Telomere attrition is associated with age-related 

decline in tissue regeneration and function. 

 

3. Epigenetic Alterations: Epigenetics involves changes in gene expression that do not alter 

the DNA sequence itself. Factors like aging, lifestyle, and environmental influences can 

lead to modifications of the epigenome, such as DNA methylation and histone 

modification. These changes can disrupt normal cellular processes, leading to altered cell 

behavior and contributing to aging and disease. 

 

4. Loss of Proteostasis: Proteostasis refers to the cellular mechanisms that maintain the proper 

folding, trafficking, and degradation of proteins. Aging disrupts these mechanisms, 

resulting in the accumulation of misfolded or damaged proteins. This proteotoxic stress can 

impair cellular function and lead to age-related diseases, including neurodegenerative 

disorders. 

 

5. Deregulated Nutrient Sensing: Cells have pathways that sense and respond to nutrient 

availability (such as insulin signaling and mTOR pathways). Aging can impair these 

signaling pathways, leading to metabolic dysfunction. This deregulation can contribute to 

obesity, diabetes, and other metabolic disorders, affecting overall health and longevity. 

 

6. Mitochondrial Dysfunction: Mitochondria are vital for energy production through 

oxidative phosphorylation. With age, mitochondrial function declines due to accumulated 

damage and mutations in mitochondrial DNA. This dysfunction leads to decreased energy 
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production and increased generation of reactive oxygen species, contributing to oxidative 

stress and cellular damage. 

 

7. Cellular Senescence: Cellular senescence is a state in which cells stop dividing but remain 

metabolically active. Senescent cells secrete pro-inflammatory factors and other molecules 

that can disrupt tissue function and promote chronic inflammation. The accumulation of 

senescent cells is linked to various age-related diseases and contributes to the aging 

process. 

 

8. Stem Cell Exhaustion: Stem cells play a crucial role in tissue regeneration and repair. As 

we age, the pool of functional stem cells diminishes, leading to reduced regenerative 

capacity. This exhaustion can impair the bodyôs ability to heal and replace damaged tissues, 

contributing to age-related decline in function. 

 

9. Altered Intercellular Communication: Aging affects the way cells communicate with each 

other through signaling pathways. This alteration can lead to chronic inflammation and 

changes in tissue microenvironments. The resulting dysregulation can contribute to a range 

of age-related diseases, including neurodegenerative conditions and cardiovascular 

diseases. 

 

10. Loss of Tissue Integrity: As we age, tissues can become less organized and functional due 

to changes in cellular composition and structure. This loss of integrity can impair organ 

function and increase susceptibility to injury and disease. 

 

11. Increased Inflammation: Chronic, low-grade inflammation often referred to as 

"inflammaging," is common in aging. This persistent inflammation can result from various 

factors, including the accumulation of senescent cells and changes in immune function. 

Chronic inflammation contributes to the development of many age-related diseases, such 

as cardiovascular disease, diabetes, and neurodegenerative disorders.  
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12. Decline in Immune Function: Aging leads to a gradual decline in the immune system's 

ability to respond effectively to pathogens, known as immunosenescence. This decline 

results in increased susceptibility to infections, reduced vaccine efficacy, and a higher 

incidence of autoimmune diseases. Maintaining a robust immune system is crucial for 

healthy aging. 

 

To combat aging, two main strategies can be broadly categorized: regenerative medicine (14) and 

enhancing cellular resilience (15) (Fig1-3). 

1. Regenerative medicine: This strategy focuses on regenerating and replenishing damaged 

or senescent cells to restore tissue function. Techniques such as cellular reprogramming 

and stem cell therapy aim to generate new, healthy cells that can replace those lost to aging 

or injury. Induced pluripotent stem cells and methods to rejuvenate aged cells are integral 

to this approach, as they offer the potential for improved tissue repair and regeneration. 

2. Enhancing Cellular Resistance: This approach emphasizes increasing the resilience of 

existing cells to combat age-related damage. By targeting mechanisms that promote 

cellular health, we can enhance the ability of cells to withstand stressors and external 

perturbations. For example, compounds that improve mitochondrial function can 

significantly bolster cellular resistance. Also, metabolic interventions, such as caloric 

restriction mimetics and nutrient-sensing enhancement, contribute to this effort by 

optimizing cellular responses to various challenges. 

To better explain these strategies, we can draw a parallel example to maintaining a car. Replacing 

old cells is similar to swapping out worn or malfunctioning parts of a vehicle; just as old brake 

pads or a failing engine can hinder a car's performance, aging or damaged cells can impair bodily 

functions. Techniques in regenerative medicine like stem cell therapy, and partial reprogramming 

are similar to installing a new engine or critical parts, revitalizing the vehicle's performance. 

Enhancing cellular resistance, on the other hand, resembles protecting the car to withstand various 

conditions, such as reinforcing the body for rough terrain, using better tires for improved traction, 

or using better materials to make the car parts. By enhancing cellular resilience through methods 

https://sciwheel.com/work/citation?ids=4723569&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1854684&pre=&suf=&sa=0&dbf=0
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like metabolic interventions and regular physical activity, cells can better cope with external 

stresses, much like a well-equipped car that handles challenging road conditions. 
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Figure 1-3: Two complementary strategies to combat aging: regenerative medicine and enhancing cellular 

resistance. Regenerative medicine involves replacing or repairing damaged and aged cells, akin to replacing 

worn-out parts in a car. This process, such as regenerating tissues through stem cell therapy or partial 
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reprogramming, relies heavily on the concept of cellular decision-making, where cells assess environmental 

signals and gene programs to choose between repair or regeneration. Enhancing cellular resistance, on the 

other hand, fortifies the resilience of existing cells, similar to reinforcing a car to endure tough conditions. 

This strategy includes the use of metabolic interventions to optimize cellular health and performance. Both 

approaches work together to address the hallmarks of aging, promoting extended lifespan and improved 

healthspan. [Hallmark figure from Ref. (13) and other figs generated by Dall-E 3] 

 

For my master's thesis, we focused on modeling and analyzing different processes (16ï18) 

especially pathways and regulators that can affect the extension of lifespan and healthspan in 

various model organisms, such as mTORC1, AMPK, and NAD(19,20). These pathways have been 

shown to play a major role in understanding how biological processes can be manipulated to 

promote longevity. We also delved into the complex connections between these master regulators 

and the circadian clock, which affects the rate of aging. By integrating the circadian rhythm's effect 

on metabolic processes, we aimed to uncover how synchronizing these pathways could potentially 

lead to enhanced health and longevity (21). To achieve this, we built these biological signaling 

pathways in silico using mechanistic models specifically ordinary differential equations, which 

allowed us to simulate and analyze their interactions. We also focused on modeling the effects of 

different drugs, such as metformin, resveratrol, and NMN, on this system. These compounds have 

gained attention for their potential to target key aging pathways and improve healthspan. By 

incorporating these drugs into our models, we sought to explore their mechanisms of action, the 

timing of the medicine for different age groups, and their effects on the dynamics of cellular aging. 

Overall, for my master's thesis, we mainly aimed to understand ways to increase the resilience of 

cells (second approach: Enhancing Cellular Resistance) by modeling the key pathways in aging 

and identifying potential interventions to promote healthy longevity. 

For my PhD, we concentrate on the first approach: using computational and primarily data-

driven models in regenerative medicine. Our main questions revolve around how to restore cells 

to their functional and healthy states. Specifically, we seek to answer: Which genes can be targeted 

to achieve the desired cellular state and type? When does cell decision-making happen, and what 

are the consequences of these decisions on the dynamics of the overall system? How accurately 

can we predict the effects of various perturbations, such as gene knocked out, diseases or drugs, 

https://sciwheel.com/work/citation?ids=14150935&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12204780,11191319,15111139&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11196196,12582297&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11100674&pre=&suf=&sa=0&dbf=0
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on cellular gene expression profiles? In biological processes like development or differentiation, 

which gene programs are active? Also, can we predict how perturbing early cells within a clone 

affects the cell type and gene expression profiles in subsequent cells of the clone? 

 

As these developed methods have already undergone thorough rounds of peer review, they have 

been largely preserved in their original form, with only minor modifications to enhance clarity, 

integrate relevant background, and improve the overall flow of the thesis. The remainder of this 

manuscript is structured as follows: 

Chapter 2 offers an overview of the core computational and mathematical approaches used 

throughout the thesis, including unsupervised and self-supervised learning, representation 

learning, dynamic model decomposition, bifurcation theory, and single-cell data modalities. 

Chapter 3 introduces Fatecode, the first algorithm developed during my PhD. Fatecode is 

a computational method designed to predict cell fate regulators solely from single scRNA-seq data. 

By learning a latent representation through a deep learning-based classification-supervised 

autoencoder, it enables in silico perturbation experiments. These experiments identify genes that, 

when perturbed, can shift cell type distributions, either increasing or decreasing the population of 

specific cell types. The research titled Fatecode Enables Cell Fate Regulator Prediction Using 

Classification-Supervised Autoencoder Perturbation was conducted with Prof. Anita T. Layton, 

Prof. Sidhartha Goyal, and Prof. Gary Bader and has been published in Cell Reports Methods (1). 

We also experimentally validated Fatecode by reprogramming astrocytes into oligodendrocytes, 

in collaboration with researchers at the University of Toronto, in the study titled Direct lineage 

conversion of postnatal mouse cortical astrocytes to oligodendrocyte lineage cells, which is 

currently under review in eLife journal (22). 

Chapter 4 presents CLERA, a novel computational framework for uncovering dynamic 

models and identifying active gene programs from single-cell RNA sequencing data. By 

combining a supervised autoencoder with Sparse Identification of Nonlinear Dynamics, CLERA 

uses prior knowledge to extract low-dimensional representations and reveal the driving forces 

https://sciwheel.com/work/citation?ids=16657868&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17045031&pre=&suf=&sa=0&dbf=0
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behind cellular processes. It pinpoints central genes, reconstructs gene expression dynamics, and 

captures key regulatory genes and temporal patterns across various cell types using personalized 

page rank. The research titled Discovering Governing Equations of Biological Systems through 

Representation Learning and Sparse Model Discovery was conducted in collaboration with Vasu 

Swaroop (coop student in our lab) and is currently under review in Nucleic Acids Research journal 

(2). 

Chapter 5 introduces FateNet, a computational approach that integrates dynamical systems 

theory with deep learning to explore the timing of cell decision-making using scRNA-seq data. By 

leveraging information about normal forms and scaling behavior near bifurcations FateNet predicts 

when cell decisions occur with greater accuracy than conventional methods, while offering a 

qualitative understanding into the specific type of bifurcation the system is likely to experience. 

The work titled FateNet: An Integration of Dynamical Systems and Deep Learning for Cell Fate 

Prediction was conducted with Dr. Thomas Bury and published in Bioinformatics in 2024 (3). 

Chapter 6 delves into scVAEDer's capabilities, the first generative deep-learning model 

that integrates autoencoders and deep diffusion models to model biological processes using 

scRNA-seq data. This approach learns a latent representation of the data, which captures both 

global patterns and local variations. scVAEDer's accuracy is shown by showing its ability to 

generate new high quality scRNA-seq data, predict perturbation effects across cell types, track 

gene expression changes during dedifferentiation, and identify key regulators in biological 

processes. The work titled The Power of Two: Integrating Deep Diffusion Models and Variational 

Autoencoders for Single-Cell Transcriptomics Analysis was conducted with Prof. Antia Layton 

and is currently under review at the Genome Biology journal (4). 

Chapter 7 highlights Deep Lineage, a novel deep-learning method for analyzing time-

series scRNA-seq data with matched lineage-tracing data. Our method accurately predicts early 

cell fate biases and gene expression profiles at different time points within a clone, surpassing 

current state-of-the-art methods in fate prediction accuracy. Also, through in silico perturbations 

in cellular reprogramming and hematopoiesis data, we show that Deep Lineage accurately models 

dynamic multicellular responses while identifying key genes and pathways associated with cell 

https://sciwheel.com/work/citation?ids=17003553&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17003533&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14694107&pre=&suf=&sa=0&dbf=0
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fate determination. This research was conducted in collaboration with Allen Zhang and Prof. Gary 

Bader. The work titled Deep Lineage: Single-Cell Lineage Tracing and Fate Inference Using Deep 

Learning and is currently under review at Cell Systems (5).  

Chapter 8 summarizes the key findings of my thesis and offers conclusions and future 

directions for research across various areas, including computational methods, biology, and social 

science. 
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Chapter 2 

Computational methods 

2.1 Machine Learning 
Machine learning (ML) is a subfield of artificial intelligence (AI) focused on designing algorithms 

that learn from and make predictions based on data. Unlike traditional algorithms, which follow 

explicit instructions, machine learning models identify patterns in data autonomously and adapt as 

they are exposed to new information. At its core, machine learning involves finding an optimal 

function Ὢ that maps input data ὢ to an output ὣ (23). In supervised learning, this function can be 

represented mathematically as:  

Ὢȡ ὢ O ὣ 

Where ὢ is the set of input features and ὣ is the output (target variable or label). ML 

methods are broadly and commonly categorized into supervised, unsupervised, and self-supervised 

learning, each serving distinct roles in data analysis (23). In the sections that follow, I will describe 

the machine learning methodologies used in my PhD research, focusing on supervised and 

unsupervised learning. 

 

2.2 Supervised Learning 

Supervised learning involves learning a function from labeled data, where each training sample 

consists of input-output pairs. The modelôs goal is to predict the correct output for unseen data 

based on what it learned from the labeled examples. This approach is widely used in tasks such as 

classification and regression. 

2.2.1 Classification 

Classification is the task of predicting discrete labels from input data. In my work, I used 

classification models to predict cell types from gene expression data (1,24), forecasting the fate of 

clones(5), and classifying patients according to their disease status(25). Mathematically, 

https://sciwheel.com/work/citation?ids=17025055&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17025055&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16866593,16657868&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16869167&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15678906&pre=&suf=&sa=0&dbf=0
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classification involves learning a mapping Ὢȡ ὢᴼ ρȟςȟȣȟὯ where Ὧ represents the number of 

classes. For example, in predicting monocyte versus neutrophil fate, ὢ would represent gene 

expression data,  and Ὧ  ςȢ The classifier is trained by minimizing a loss function such as 

cross-entropy loss, which is given by: 

ὒ   ώȟÌÏÇļȟ  

where ώȟ is the true label, ļȟ  is the predicted probability for class k, and N is the number of 

samples. 

2.2.2 Regression 

In regression, the model predicts continuous outputs rather than discrete labels(23). In my research, 

I used regression models to predict gene expression levels at future time points, such as Day 21 

and Day 28, using data from days 6, 9, 12, and 15. The regression task can be described as learning 

a function Ὢȡ ὢ O Ὑȟ where the output is a continuous variable. The loss function typically used 

for regression is the mean squared error (MSE), which is expressed as: 

ὒ  
ρ

ὔ
ώ  ļ  

where ώ is the true output, ļ is the predicted output, and ὔ is the number of samples. In both 

classification and regression, the primary challenge is to ensure that the model generalizes well to 

unseen data, which is typically addressed using regularization techniques. 

 

2.3 Unsupervised Learning 
Unsupervised learning techniques play a pivotal role in the analysis of large-scale datasets, 

especially in biological and cellular studies. These methods aim to uncover hidden patterns, 

relationships, and structures in the data without the use of labeled outputs. The core techniques 

revolve around modeling the data distribution, discovering its underlying structure, clustering 

https://sciwheel.com/work/citation?ids=17025055&pre=&suf=&sa=0&dbf=0
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similar data points, and dimensionality reduction (26). Below, I outline these concepts in detail, 

focusing on their mathematical foundations. 

 

2.3.1 Modeling the Data Distribution and Sampling 

One of the primary goals in unsupervised learning is to model the probability distribution  ὖὢ  

of the data ὢ. This helps in understanding the likelihood of certain data points and allows for the 

generation of synthetic samples that follow the same distribution as the original data. A common 

approach to modeling data distribution is through Gaussian Mixture Models, which assume that 

the data is generated from a mixture of several Gaussian distributions. The probability density 

function of a Gaussian Mixture Models can be expressed as: 

ὖὢ ʌﬞ ὢ᷄᷄ʈȟɫ  

where ὑ  is the number of Gaussian components, “ is the weight of the k-th Gaussian, and 

ﬞ ὢ᷄᷄ʈȟɫ  represents the Gaussian distribution with mean ‘ and covariance matrix ɫ. 

Maximizing the likelihood function for the Gaussian Mixture Models can be done using the 

Expectation-Maximization algorithm, iteratively refining the estimates of the parameters 

ʈȟɫȟʌ  for each Gaussian component (23). Modeling the data distribution in this way enables 

us to infer underlying structures and generate new samples for simulations or data augmentation. 

This allows GMMs to capture complex data structures by modeling overlapping or non-spherical 

clusters. Moreover, GMMs provide practical applications such as inferring latent structures, 

creating synthetic datasets for augmentation, or identifying anomalies in data by detecting points 

that deviate significantly from the learned distribution. By leveraging this flexibility, GMMs 

become an essential tool for probabilistic modeling in unsupervised learning. 

 

https://sciwheel.com/work/citation?ids=17025541&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17025055&pre=&suf=&sa=0&dbf=0
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2.3.2 Revealing the Underlying Structure of the Data 

In biological data, the relationships between cells or genes often lie in a non-obvious manifold or 

latent space. Revealing this latent structure requires non-linear approaches that can map the high-

dimensional data into lower-dimensional manifolds while preserving the essential properties of the 

original dataset. One such approach is Manifold Learning, which assumes that the data lies in a 

lower-dimensional, non-linear subspace. One such method is Isomap, a technique that extends 

classical Multidimensional Scaling by incorporating geodesic distances. Isomap seeks to preserve 

the global geometry of the data by minimizing the following error: 

ÍÉÎ Ὠ ὢȟὢ ȿὣ ὣȿ

ȟ

 

where Ὠ ὢȟὢ  is the geodesic distance between points ὢ and ὢ in the high-dimensional 

space, and ȿὣ ὣȿ is the Euclidean distance between their low-dimensional representations. The 

geodesic distance Ὠ  is computed by approximating the shortest paths along a neighborhood 

graph, capturing the structure of the data. This method is useful in biological contexts, such as 

tracing differentiation pathways or revealing gene expression landscapes, providing insights into 

complex cellular processes. It is worth noting that UMAP and t-SNE are among the most 

commonly used methods for visualizing scRNA-seq data structures(27,28). 

2.3.3 Clustering 

Clustering is a fundamental unsupervised technique used to group similar data points based on 

their feature similarities. The goal is to assign data points ὢ to clusters ὅȟ such that points within 

the same cluster are more similar to each other than to those in other clusters. One of the most 

widely used clustering algorithms is K-Means. The algorithm iteratively assigns data points 

to ὑ clusters based on the Euclidean distance to the cluster centroids. Mathematically, K-Means 

aims to minimize the following objective function: 

ὐ ȿὢ ʈȿ

ᶰ

 

https://sciwheel.com/work/citation?ids=17407232,12611897&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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where ʈ is the centroid of the Ὧ-th cluster, and ὢᶰὅ denotes that the data point ὢ belongs to 

cluster ὅ. The algorithm alternates between assigning points to the nearest cluster and updating 

the centroids, leading to compact and well-separated clusters. Another notable technique is 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), which identifies clusters 

based on the density of data points, making it particularly effective for datasets with irregular 

shapes and noisy data (29). DBSCAN assigns points to clusters if they are densely packed within 

a neighborhood radius צ, and labels points as outliers if they do not meet this criterion. 

2.3.4 Dimensionality Reduction 

High-dimensional data, such as scRNA-seq, can be challenging to interpret directly due to the 

"curse of dimensionality." Dimensionality reduction techniques aim to project this data into a 

lower-dimensional space while retaining the most relevant information. Principal Component 

Analysis (PCA) is a commonly used method that projects data into a subspace spanned by the 

directions of maximum variance. The objective is to find a set of orthogonal vectors (principal 

components) that maximize the variance of the projected data: 

max ὺɫὺ 

where ɫ is the covariance matrix of the data, and ὺ is the vector corresponding to the principal 

components. For non-linear data, methods such as Uniform Manifold Approximation and 

Projection (UMAP) have proven effective(28). UMAP optimizes the cross-entropy between the 

high-dimensional and low-dimensional representations of the data, preserving both global and 

local structures. The algorithm constructs a weighted graph where points are connected based on 

a similarity metric, such as cosine or Euclidean distance, and optimizes the embedding to reflect 

this graph in the lower-dimensional space. 

ÍÉÎ ὖ

ȟ

ÌÏÇ
ὖ

ὗ
ρ ὖ ÌÏÇ

ρ ὖ

ρ ὗ
 

where ὖ  and ὗ  are the probabilities of points Ὥ and Ὦ  being connected in the high-dimensional 

and low-dimensional spaces, respectively. By reducing the dimensionality of the data, we can 

https://sciwheel.com/work/citation?ids=1795967&pre=&suf=&sa=0&dbf=0
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visualize complex relationships and trajectories that were otherwise obscured in the high-

dimensional space, aiding in the interpretation of biological processes and cell differentiation. 

 

2.4 Self-Supervised Learning 

Self-supervised learning has emerged as a pivotal paradigm within the field of machine learning, 

bridging the gap between supervised and unsupervised learning (23). Unlike traditional supervised 

learning, which relies on labeled data, and unsupervised learning, which seeks to identify inherent 

structures without labels, self-supervised learning leverages the data itself to generate supervisory 

signals(30). This approach enables models to learn meaningful representations by solving pretext 

tasks derived from the input data, thereby effectively using large amounts of unlabeled data. 

At the core of self-supervised learning is the concept of creating auxiliary tasks where the 

labels are intrinsically derived from the data. These tasks train the model to understand and capture 

the underlying structures and patterns within the data, facilitating the learning of robust and 

generalizable features. Mathematically, let ὢ denote the input data. In self-supervised learning, a 

defined task is defined to generate a pseudo-label Y from X (30). The model is then trained to 

predict Y given X, thereby learning representations that are useful for downstream tasks. This can 

be expressed as: 

ὣ Ὢὢ  

ÍÉÎὒὫ ὢȟὣ 

where Ὢ is the function defining the defined task, Ὣ  represents the model with parameters —, and 

ὒ is the loss function measuring the discrepancy between the model's predictions and the pseudo-

labels. 

One of the most recent techniques in self-supervised learning is Masked Language 

Modeling (MLM), which was popularized by models like BERT in the realm of natural language 

processing (31). MLM involves masking certain parts of the input and training the model to predict 

the masked elements. For a given input sequence ὢ ὼȟὼȟȣȟὼ ȟ a subset of tokens 

https://sciwheel.com/work/citation?ids=17025055&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17025621&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17025621&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14224892&pre=&suf=&sa=0&dbf=0
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ὼ ȟὼ ȟȣȟὼ   are masked, resulting in ὢȢ The model is then trained to predict the original 

tokens based on the masked input: 

fl ÌÏÇὖ ὼ ᷄᷄ὢ

ɴִי

 

Here, ִי  is the set of masked positions, and ὖὼ ᷄᷄ὢ  is the probability of the model predicting 

the original token ὼ given the masked input ὢȢ 

Generative Models also play a crucial role in self-supervised learning by aiming to model the 

underlying data distribution through data generation. Autoencoders can be seen as a self-

supervised learning method, leading to the modeling of underlying data distributions through their 

encoding capabilities(23). An autoencoder consists of an encoder Ὢ and a decoder Ὣȟ where the 

encoder maps the input ὢ to a latent representation ὤ, and the decoder reconstructs ὢ from ὤ: 

ὤ Ὢ ὢ 

ὢ Ὣ ὤ 

The objective is to minimize the reconstruction loss: 

fl ȿὢ ὢȿ 

The optimization process in self-supervised learning typically involves minimizing a loss function 

that captures the discrepancy between the model's predictions and the pseudo-labels generated 

from the data. Optimization techniques such as stochastic gradient descent (SGD) are employed 

to iteratively update the model parameters — to minimize the loss: 

—  —  –​ὒ—  

where – is the learning rate, and ​ὒ—  denotes the gradient of the loss with respect to the 

parameters. Through such optimization, self-supervised learning models progressively refine their 

representations, capturing intricate patterns and dependencies within the data. 

https://sciwheel.com/work/citation?ids=17025055&pre=&suf=&sa=0&dbf=0
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2.4.1 Representation Learning 

In statistical physics and quantum field theory renormalization group theory provides a powerful 

framework for understanding how systems behave across different scales (32). At its core, 

renormalization involves transforming a system by systematically zooming out to focus on large-

scale behavior while discarding microscopic details that are irrelevant at those scales. This 

transformation often is done manually, by defining rules or mappings that preserve essential 

features of the system while simplifying its description (model or data). For example, in the Ising 

model of magnetism, a transformation reduces a detailed lattice of spins to a coarser representation, 

allowing us to study phase transitions and critical phenomena without getting lost in irrelevant 

details (32) (Fig 2-1). 

In data science and image processing, similar manual transformations can be found in techniques 

like JPEG image compression (33) (Fig 2-1). The JPEG algorithm uses the Discrete Cosine 

Transform to convert an image from the spatial domain where each pixel is a value into the 

frequency domain where patterns of varying frequencies are represented. High-frequency 

components, which often correspond to noise or less important details, are discarded, while low-

frequency components, which capture the essential structure of the image, are kept. This 

transformation is manually defined, with explicit rules for how to process the data. While effective 

for specific tasks like image compression, manual transformations require human expertise and 

may not generalize well to other domains. 

 

https://sciwheel.com/work/citation?ids=17025690&pre=&suf=&sa=0&dbf=0
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Figure 2-1: Renormalization in the Ising Model and JPEG Image Compression. (a) Renormalization in the 

Ising model, where spins on a fine lattice are grouped into blocks to form a coarser representation of the 

system's magnetization. (b) JPEG image compression of the image, showing the progressive reduction in 

detail through increasing levels of compression. Both processes highlight the principle of discarding fine-

scale details to emphasize larger-scale structures.  

 

Representation learning automates this process of transformation, allowing models to discover 

relevant transformations directly from the data without human intervention (26). In contrast to 

manual approaches where specific rules are set (feature engineering), representation learning 

models can learn to extract features from raw data in a more flexible and adaptive manner. This is 

particularly advantageous when dealing with complex, high-dimensional data, such as gene 

expression profiles or natural images, where the best transformation is often unknown or difficult 

to handcraft (34). Representations learned by neural networks are now widely used in different 

ML areas, such as speech recognition (35), natural language processing and video representation 

(36),  and domain adaptation (37).  

At the heart of representation learning is the idea that a model can learn to transform data 

into a latent representation that makes it easier to solve downstream tasks. In the supervised 

learning setting, this process is tightly coupled with the task at hand. The model is trained on 

labeled data, and as it learns to perform the task (e.g., classification or regression), it 

simultaneously learns to extract useful features from the input data. Usually, this is done end-to-

end, where the model is not only optimizing the final task but also learning intermediate 

representations through layers of abstraction. For example, in a deep convolutional neural network 

used for image recognition, the lower layers may learn to detect edges or textures, while higher 

layers capture more complex patterns like shapes or objects. Mathematically, we can represent this 

transformation as learning a function Ὢȡὢᴼὤ, where ὢ is the input data and ὤ is the learned 

representation. The goal is to find a representation ὤ that simplifies the problem, allowing the 

model to efficiently solve a task Ὣȡὤᴼὣ, where ὣ is the output. In supervised learning, the 

objective is to minimize a loss function ὒὫὪὢ ȟὣ, adjusting the model parameters such that 

the learned representation Ὢὢ ὤ is optimal for the specific task. 

https://sciwheel.com/work/citation?ids=17025541&pre=&suf=&sa=0&dbf=0
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 23 

The process of labeling data is both expensive and time-consuming, and most datasets 

remain largely unlabeled, so unsupervised methods offer a more practical approach to 

representation learning. Instead of generating task-specific representations that require labels, 

unsupervised learning focuses on uncovering more general-purpose representations that can 

capture the core structure of the data(38). The key challenge in this approach is finding 

transformations that reveal the hidden patterns, correlations, and variations in the data, without the 

benefit of labeled examples. The transformation encodes the underlying factors of variation in a 

way that can be useful across different tasks, without being tied to any specific one. Representation 

learning methods like autoencoders aim to learn latent variables that summarize the data in a 

compact form while preserving its most important characteristics. These latent variables, or 

representations, capture key patterns and dependencies that can be generalized across a range of 

tasks. The power of these methods lies in their ability to represent data in a lower-dimensional 

space while retaining the most relevant information(39). However, even though these techniques 

are powerful, they face a significant challenge related to identifiability. 

Identifiability is important in learning meaningful representations, as it refers to the ability 

to uniquely recover the true latent structure from the observed data. In the linear case, methods 

like independent component analysis (ICA) are often used to separate mixed observations into 

independent latent sources, relying on statistical assumptions such as non-Gaussianity(40) (Fig 2-

2). While ICA is well-studied and effective in linear scenarios, its ability to handle nonlinear 

transformations is severely limited. Nonlinear transformations introduce too many degrees of 

freedom, making the problem of recovering the original latent components ill-posed(40) (Fig 2-

2). The fundamental difficulty of nonlinear identifiability is captured in the following theorem 

which shows that in a nonlinear setting, it is possible to find a transformation that results in 

independent components, even if those components do not correspond to the true sources of 

variation in the data(39): 

 

Theorem 1: Let x be a random vector of any distribution (x should be continuous). Then, there 

exists a transformation Ὣȡᴙ ᴼ πȟρ  such that ᾀ  Ὣὼ has a uniform distribution, with its 

https://sciwheel.com/work/citation?ids=4952251&pre=&suf=&sa=0&dbf=0
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components being independent. Moreover, the function Ἧ can be chosen so that the first variable 

is simply transformed by a scalar function: z  = g (x ). 

 

To overcome this limitation, one strategy is to introduce auxiliary variables or leverage temporal 

dynamics to provide additional structure for learning identifiable representations(40). For instance, 

in time series data, temporal dependencies can act as a source of information that helps disentangle 

the underlying factors of variation. The time evolution of data points can offer insights into the 

relationships between latent components, making it easier to identify the true structure. 

https://sciwheel.com/work/citation?ids=15711140&pre=&suf=&sa=0&dbf=0
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Figure 2-2: Identifiability of ICA and its application on blind source separation illustrated. 

Demonstration of ICA Identifiability and Source Separation. The top row displays the original signals, 

which are then combined either linearly or nonlinearly, shown in the middle and bottom rows, respectively. 

Linear ICA and nonlinear ICA are applied to these mixtures, successfully recovering the original signals in 

the rightmost column. In contrast, when PCA and its nonlinear variant, VAE (without further constraints), 

are applied to the same mixtures (middle column), separation is not achieved. Figure from Ref. (40). 
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Another approach is to incorporate task-specific knowledge or constraints that provide guidance 

for learning more identifiable models. By integrating prior knowledge about the domain or 

imposing constraints on the learned representations, we can reduce the ambiguity inherent in 

nonlinear transformations. This can be done through regularization techniques or auxiliary tasks 

that help the model focus on meaningful variations in the data (40). For example, auxiliary tasks 

like cell type classification or trajectory prediction can help guide the learning process by enforcing 

consistency between the learned representations and known biological processes. 

In projects like Fatecode, CLERA, and Deep Lineage, we adopted this approach by 

combining the nonlinear transformations of autoencoders with auxiliary tasks and domain-specific 

regularization. For example, in Fatecode, we combined deep learning-based methods with 

auxiliary tasks related (cell type classification), while in CLERA, we used auxiliary information 

such as cell type classification and dynamic regularization through methods like Sparse 

Identification of Nonlinear Dynamics (SINDy) (41). This combination of non-linear autoencoders 

with auxiliary tasks enabled the learning of more identifiable and biologically meaningful 

representations that captured the underlying structure of the data, which allows for more accurate 

predictions and insights into cellular dynamics. 

2.5 The Challenge of Interpretability in Deep Neural Networks 

Although mentioned machine learning approaches have revolutionized many fields, they often 

face limitations in scientific domains where interpretability and generalization are important. ML 

models, especially deep learning, excel at fitting complex datasets but tend to act as "black boxes" 

providing little insight into the underlying physical processes. This lack of interpretability can 

hinder the ability to uncover the governing laws or equations that describe a system, as the 

relationships between variables remain obscured(42). Also, ML models often struggle to 

generalize beyond the specific data they were trained on, which limits their ability to predict 

unobserved phenomena or extend to different regimes of a systemôs behavior. In contrast, 

approaches rooted in physics and applied mathematics aim to discover governing equations that 

are interpretable, generalizable, and aligned with the constraints of the system. Efforts have been 
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made to combine the traditional mechanistic modeling strategies (common in physics and 

mathematics) with data driven approaches. This combination is particularly valuable when the 

governing equations of a system are unknown, and we aim to infer them directly from 

observational data(43). Linear methods, such as Koopman theory, offer a foundation for 

understanding dynamical systems through linear representations, while more advanced techniques 

like the SINDy method extend this framework to nonlinear systems (44). 

2.5.1 Koopman Theory 

In the linear case, methods like Koopman theory offer a valuable framework for analyzing complex 

systems by converting nonlinear dynamics into linear representations in a higher-dimensional 

space(44). The key idea behind Koopman theory is that even though a system may behave 

nonlinearly in its natural state, it is possible to describe this system using linear operators when 

viewed through a set of observables. These observables represent different aspects of the systemôs 

state, and by expanding the system into this higher-dimensional space, the dynamics become 

linear(45). This transformation simplifies the analysis of complex behaviors, allowing scientists to 

leverage traditional linear techniques such as eigenvalue decomposition to study nonlinear 

phenomena. Mathematically, the Koopman operator ὑ acts on a function Ὢὼ, where ὼ is the 

systemôs state, transforming it according to the systemôs time evolution Ὕὼȡ 

ὑ Ὢὼ  ὪὝὼ  

By working in this space of observables, researchers can decompose the systemôs evolution into 

Koopman modes, which represent different components of the dynamics. This method is 

particularly useful for studying time-series data and extracting global features of a systemôs 

behavior over time. However, while Koopman theory can reveal important aspects of a system, it 

also has limitations. One of the main challenges is that accurately representing a nonlinear system 

in a linear framework often requires expanding the space into a very high (or even infinite) 

dimensional setting. This not only complicates the model but can also hinder interpretability, 

making it difficult to draw clear conclusions about the underlying mechanisms driving the system. 
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2.5.2  Sparse Identification of Nonlinear Dynamics  

In contrast to linear methods like Koopman theory, SINDy is specifically designed to identify 

governing equations for systems that exhibit nonlinear behavior (41). The core idea behind SINDy 

is that many physical systems, despite their complexity, can be described by a small number of 

dominant interactions or governing laws. These interactions are often nonlinear, and SINDyôs 

strength lies in its ability to uncover these underlying equations directly from data, while 

promoting sparsity to keep the model interpretable. 

The starting point for SINDy is a set of time-series data that describe the state of the system 

at different points in time. From this data, the goal is to discover a system of equations that describe 

the rate of change of the systemôs state over time. Formally, consider a system whose dynamics 

are governed by the following differential equation: 

Ὠὼ

Ὠὸ
Ὢὼ 

where ὼ ὼȟὼȟȢȢȢȟὼ  is a vector representing the state of the system, and Ὢὼ is an unknown 

function that describes how the state evolves over time. The objective of SINDy is to approximate 

this function Ὢὼ by a sparse combination of candidate functions that can explain the system's 

dynamics. 

To achieve this, SINDy constructs a library of candidate functions Ὸὼ, which may include 

polynomials, trigonometric functions, or any other basis functions that are relevant to the system 

being studied. The library matrix Ὸὼ is structured as follows: 

Ūx ρ   ὼ   ὼ   ὼ   ὼ   ὼὼ  ȣ  

Each row corresponds to a time step in the observed data, while each column represents a possible 

nonlinear function of the state variables. The task is now to find a sparse vector ‚ such that: 

Ὠὼ

Ὠὸ
Ὸὼ‚ 
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Here, ‚ is a vector of coefficients that selects the relevant terms from the library, promoting 

sparsity through techniques such as Lasso regression or sequential thresholding (46). The sparsity 

constraint ensures that only a few terms from the candidate library are used to model the systemôs 

dynamics, resulting in a simplified and interpretable model. 

 

2.6 Dynamical Systems and the Theory of Bifurcation 

Dynamical systems are mathematical models used to describe the time-dependent behavior of 

complex systems in various fields, including biology, physics, and engineering. These systems can 

be represented by ordinary differential equations (ODEs) or partial differential equations (PDEs) 

that govern the evolution of the system's state over time. In the context of biology, for example, 

dynamical systems can model processes like gene regulation, cellular growth, or population 

dynamics(47). 

One of the most critical aspects of studying dynamical systems is understanding how their 

behavior changes as parameters within the system are varied. A bifurcation refers to a qualitative 

change in the system's long-term behavior as a parameter crosses a critical threshold (47). At this 

point, the system's equilibrium or periodic solution changes its stability, leading to phenomena 

such as sudden transitions between different states or the emergence of new patterns. 

 

2.6.1 Bifurcation Theory  

Bifurcation theory provides a mathematical framework for studying these qualitative changes. It 

helps identify the points, called bifurcation points, where the system's behavior shifts and allows 

us to classify the types of bifurcations based on the nature of these transitions (48). Mathematically, 

bifurcations occur when the Jacobian matrix of a system evaluated at its fixed points has 

eigenvalues crossing the imaginary axis of the complex plane, signaling a change in stability. 

Consider a system described by the differential equation: 
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Ὠὼ

Ὠὸ
Ὢὼȟ‌ 

where ὼ represents the state of the system, and ‘ is a bifurcation parameter. A bifurcation occurs 

when small changes in ‘ cause significant changes in the nature of the solutions to this equation. 

 

2.6.2 Core Bifurcation Types in Dynamical Systems 

2.6.2.1 Saddle-Node Bifurcation 

A saddle-node bifurcation occurs when two equilibrium points (one stable and one unstable) 

collide and annihilate each other as the bifurcation parameter is varied(49) (Fig 2-3). This type of 

bifurcation is common in systems where the stability of a state can abruptly disappear, leading to 

sudden transitions. Saddle-node bifurcations are characterized by the following equation: 

Ὠὼ

Ὠὸ
‌ ὼ 

In this equation, as the parameter ‘ passes through zero, two fixed points ὼ  Ѝ‌ merge andװ

vanish. For ‌ π, there are two fixed points: one stable and one unstable. For ‌ π, no fixed 

points exist, leading to a qualitative change in the system's behavior. 

 

2.6.2.2 Hopf Bifurcation  

A Hopf bifurcation occurs when a pair of complex-conjugate eigenvalues of the Jacobian cross the 

imaginary axis as the bifurcation parameter is varied, leading to the emergence of periodic 

solutions (limit cycles)(49) (Fig 2-3). This transition marks a change from a stable equilibrium to 

an oscillatory state, often seen in systems that exhibit periodic behavior, such as biological rhythms 

or chemical reactions. The normal form of a Hopf bifurcation can be written as: 

ÄÚ

ÄÔ
װ ᾀװ װ‌ װÉʖװ ȿÚȿװ  
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Here, ᾀ is a complex variable, ‌ is the bifurcation parameter, and is the natural frequency of ‫ 

oscillation. When ‌ crosses zero, the system undergoes a bifurcation from a stable equilibrium to 

a limit cycle with frequency .‫ 

 

2.6.2.3 Pitchfork Bifurcation  

A pitchfork bifurcation occurs when a symmetric system exhibits a transition from a single stable 

equilibrium to multiple equilibria as the bifurcation parameter is varied(49) (Fig 2-3). This 

bifurcation comes in two forms: supercritical and subcritical. In the supercritical case, a stable 

equilibrium splits into two stable equilibria and one unstable equilibrium, while in the subcritical 

case, the bifurcation produces two unstable equilibria. The standard form of a pitchfork bifurcation 

is: 

Ὠὼ

Ὠὸ
‌ὼ ὼ 

For ‌ π, the system has a single stable equilibrium at ὼ π. As ‌ π, the system bifurcates 

into two stable equilibria at ὼ Ѝ‌ȟ with ὼ  π becoming unstable. 

 

2.6.2.4 Transcritical Bifurcation  

In a transcritical bifurcation, two equilibrium points exchange their stability as the bifurcation 

parameter changes (49) (Fig 2-3). This type of bifurcation is often seen in population dynamics, 

where one equilibrium represents extinction, and another represents a stable population. The 

normal form for a transcritical bifurcation is: 

Ὠὼ

Ὠὸ
‌ὼ ὼ 

As ‌ crosses zero, the equilibria at ὼ π and ὼ ‌ exchange stability, causing a shift in the 

system's dynamics.  
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Figure 2-3: Bifurcation diagrams for the saddleïnode, transcritical, pitchfork coïdimension 1 

bifurcation. The plot shows the stability properties of dynamical systems depending on the bifurcation 

parameter Ŭ and the initial condition of the system IC. Figure from Ref (50). 

 

2.7 Single-cell genomics 

scRNA-seq has revolutionized modern biology by enabling the high-resolution analysis of 

individual cells. Initially constrained to experiments with a few hundred cells, scRNA-seq 

technologies have rapidly evolved to accommodate datasets with millions of cells spanning various 

tissues and organs (51). This vast increase in scale has allowed for an unprecedented view of 

cellular heterogeneity, showing the diversity within a seemingly uniform cell population that was 

masked by traditional bulk assays. With this level of granularity, scRNA-seq provides critical 

information into the processes that underlie cellular decision-making whether a cell commits to a 
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specific lineage, responds to external stimuli, or deviates from normal functioning in pathological 

states. Understanding how cells make decisions is a central challenge in biology because these 

decisions ultimately dictate the functional organization of tissues and organs(52). Cellular 

decision-making is a complex and dynamic process driven by intrinsic factors, such as gene 

expression profiles and chromatin accessibility, as well as extrinsic signals from the 

microenvironment. Moreover, the stochastic nature of molecular interactions introduces another 

layer of complexity, making it essential to investigate decision-making at the single-cell level. 

Investigating the mechanisms by which cells transition between states during normal development, 

tumor progression, or tissue regeneration is crucial, as this knowledge can inform the development 

of targeted therapies and interventions in cancer treatment, regenerative medicine, and immune 

system modulation(53). 

From a computational perspective, scRNA-seq data is often represented as a matrix ὢ with 

dimensions ὲ ά, where ὲ is the number of cells and ά is the number of genes. This structure 

facilitates a variety of downstream analytical tasks, including clustering cells into distinct 

subpopulations, identifying differentially expressed genes, and reconstructing developmental 

trajectories(54). These tasks enable us to explore how gene expression changes across cell types, 

how cells progress through different states over time, and how rare cell types can be identified 

within a heterogeneous population. Furthermore, dimensionality reduction techniques, such as 

PCA or UMAP(28), are commonly used to visualize high-dimensional data in two or three 

dimensions, providing interpretable visualization of cellular diversity. 

The continuous advancement of single-cell technologies has also introduced new 

modalities, expanding beyond RNA sequencing to include measurements of chromatin 

accessibility (scATAC-seq), protein expression (CITE-seq), and even multi-omic approaches that 

capture multiple layers of cellular information simultaneously(55). These technologies offer a 

more comprehensive view of cellular states by integrating data on transcriptional activity, 

epigenetic regulation, and protein expression. Multimodal data can provide a richer context for 

understanding the regulatory networks that drive cellular decision-making. For instance, scATAC-

seq can reveal the regions of the genome that are accessible due to open chromatin conformation, 

https://sciwheel.com/work/citation?ids=14790213&pre=&suf=&sa=0&dbf=0
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while CITE-seq allows for the quantification of surface proteins in conjunction with RNA 

expression, giving a more complete view of cell identity and function (55). Furthermore, 

advancements in single-cell methodologies have paved the way for other techniques like Perturb-

seq and lineage tracing. These methods offer powerful tools to study not only the static gene 

expression profiles of cells, but also the temporal and causal relationships between gene regulation, 

cellular identity, and fate. 

Lineage tracing is a method that allows researchers to track the developmental trajectories 

of cells over time, which provides a direct view into how individual cells evolve into distinct 

lineages(56). This method has been invaluable in studies of development, regeneration, and 

disease, as it enables the mapping of how a single progenitor cell can give rise to diverse cell types. 

Traditionally, lineage tracing involved genetic markers introduced into cells to permanently label 

their progeny. However, with the advent of high-throughput sequencing, more sophisticated 

barcoding strategies such as CRISPR-based lineage tracing have been developed. In these 

approaches, cells are engineered to express unique DNA sequences (barcodes) that can be read out 

via sequencing, to reconstruct their lineage relationships. When combined with scRNA-seq, 

lineage tracing provides a detailed view of how cells transition through various states. This 

integration allows us to map not only where a cell came from but also how its gene expression 

changes as it commits to a specific fate. Lineage tracing can reveal how a stem cell differentiates 

into various cell types or how cells evolve during cancer progression. By integrating lineage data 

with transcriptional profiles, we can identify the molecular mechanisms and key regulators driving 

these transitions within a biological process which are essential in developmental biology and 

regenerative medicine, leading to new strategies for tissue engineering and repair. 

Perturb-seq is another transformative technique that combines CRISPR-mediated gene 

perturbation with scRNA-seq, enabling the systematic study of gene function at high resolution 

(57). This method allows us to simultaneously target multiple genes and assess the downstream 

consequences on cellular behavior and leads to a high-resolution view of gene regulatory networks 

(GRNs). The strength of Perturb-seq lies in its ability to link perturbations with cellular phenotypes 

in a highly multiplexed manner. By perturbing dozens or even hundreds of genes concurrently, 
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researchers can measure how each perturbation affects the transcriptional landscape of individual 

cells. This is particularly powerful for causal discovery in GRNs, as it overcomes the limitations 

of relying solely on observational data (58). Perturbation data generated by Perturb-seq can 

provide the necessary interventions to enable causal inference and the identification of true causal 

relationships between variables which facilitates a more accurate reconstruction of GRNs. Perturb-

seq has been successfully applied across various fields, including immunology and cancer 

research. In immunology, it has uncovered key regulators of immune responses that could be 

targeted for therapeutic intervention (59). In cancer research, it has revealed how different cell 

types within tumor microenvironments respond to perturbations, highlighting the variability in 

cancer progression and resistance mechanisms (60). By perturbing transcription factors or 

signaling pathways, we can learn how molecular circuits shape cellular decision-making processes, 

which reveals crucial mechanisms underlying cell identity, differentiation, and responses to 

external stimuli. Integrating Perturb-seq with computational models enables prediction of 

perturbation effects across different cell types, advancing precision medicine strategies that tailor 

treatments based on cell-specific gene regulatory profiles. 

Throughout my PhD research, I focused on developing various computational methods that 

leverage scRNA-seq data to model and explore the complexities of cellular decision-making 

processes. My work addressed various aspects of this complex process, including unraveling the 

temporal dynamics of cell fate decisions within biological systems, aiming to uncover the timing 

of these pivotal moments and their consequences on the system. I also developed methods to 

identify key genes and active gene programs driving these decision-making processes and 

examined how different perturbations such as genetic manipulations, disease states, and drug 

interventions affect gene expression and cell states. These methods revealed fundamental 

mechanisms underlying cellular decision-making and established a robust and precise framework 

for predicting cellular responses to different perturbations. I hope my research advances our ability 

to understand and manipulate cellular decision making processes in both health and disease 

contexts. 
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Chapter 3 

Fatecode 

This chapter introduces Fatecode, the first algorithm developed during my PhD. Fatecode is a 

computational method designed to predict cell fate regulators solely from scRNA-seq data. By 

learning a latent representation through a deep learning-based classification-supervised 

autoencoder, it enables in silico perturbation experiments. These experiments identify genes that, 

when perturbed, can shift cell type distributions, either increasing or decreasing the population of 

specific cell types. The research titled Fatecode Enables Cell Fate Regulator Prediction Using 

Classification-Supervised Autoencoder Perturbation was conducted with Prof. Anita T. Layton, 

Prof. Sidhartha Goyal, and Prof. Gary Bader and has been published in Cell Reports Methods (1). 

The author list on the publication is below: 

Mehrshad Sadria1, Anita Layton1,2,3,4, Sidharta Goyal5, Gary D. Bader6,7,8,9,10 
1 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada. 
2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada. 
3 Department of Biology, University of Waterloo, Waterloo, Ontario, Canada. 
4 School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada. 
5 Department of Physics, University of Toronto, Toronto, Ontario, Canada.  
6 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. 
7 The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.  
8 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.  
9 The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.  
10 Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. 

 

We also experimentally validated Fatecode by reprogramming astrocytes into oligodendrocytes, 

in collaboration with researchers at the University of Toronto, in the study titled Direct lineage 

conversion of postnatal mouse cortical astrocytes to oligodendrocyte lineage cells, which is 

currently under review in eLife journal (22). 
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3.1 Overview 

Cell reprogramming, which guides the conversion between cell states, is a promising technology 

for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or 

injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. The 

ability to accurately identify cell fate regulators from single-cell transcriptomics data would help 

accomplish this goal. We propose Fatecode, a computational method that predicts cell fate 

regulators based only on scRNA-seq data. Fatecode learns a latent representation of the scRNA-

seq data using a deep learning-based classification-supervised autoencoder and then performs in 

silico perturbation experiments on the latent representation to predict genes that when perturbed 

would alter the original cell type distribution to increase or decrease the population size of a cell 

type of interest. We assessed Fatecodeôs performance using simulations from a mechanistic gene 

regulatory network model and scRNA-seq data mapping blood and brain development of different 

organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell 

transcriptomics datasets. We hope this method will accelerate the discovery of novel cell fate 

regulators that can be used to engineer and grow cells for therapeutic use in regenerative medicine 

applications. 

 

3.2 Introduction  

In tissue development, specific regulator genes control how cells change state and type to form a 

complete tissue (61). These regulators are also important because they can be used to control cell 

fate for multiple applications, including in regenerative medicine and cancer (62). However, it 

remains a challenge to identify these regulators within complex and dynamic tissue systems (61). 

Cell fate regulators can be identified using experimental methods such as high-throughput 

genetic perturbation screens (e.g. CRISPR-based) with single-cell gene expression (scRNA-seq) 

readouts (63,64). However, these methods are challenging to run on arbitrary biological systems. 

Computational methods have been developed to predict gene expression programs that explain the 

difference between perturbed and unperturbed states (4,65ï67) or to predict the linear effect of 
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perturbing a particular transcription factor (68). Also, computational methods which determine the 

ordering of cell states along a trajectory, based on their gene expression profiles using a pseudotime 

or actual time approach (69ï73), have been used to examine the cell decision-making process by 

identifying genes that are differentially expressed between trajectory branches. However, these 

latter methods often have trouble identifying accurate trajectories and branch points (74). 

Furthermore, none of the above methods are designed to identify cell fate regulators in normal 

developmental processes. 

We develop Fatecode, a computational method to predict important cell fate regulator genes 

for cell types of interest. Fatecode predicts cell fate regulators based only on scRNA-seq data 

covering a given range of cell types to be analyzed. Fatecode learns a latent representation of the 

scRNA-seq data using a deep learning-based classification-supervised autoencoder (75,76) and 

then performs in silico perturbation experiments on the latent representation to predict genes that 

when perturbed would alter the original cell type distribution to increase or decrease the population 

size of a cell type of interest. Fatecode can be thought of as an in silico CRISPR perturbation screen 

that identifies genes that influence cell fate, based on a cell type readout. These genes can be 

traditional (e.g. transcription factors) or non-traditional regulators (any other genes). We assessed 

Fatecodeôs performance using simulated data produced by a mechanistic model based on a pre-

defined gene regulatory network with known cell fate regulators (77) and tested it on scRNA-seq 

maps of blood and developing brain from zebrafish and mouse (78ï81). 

 

3.3 Results 

3.3.1 Fatecode method overview 

Fatecode uses a classification-supervised autoencoder to detect key genes that can shift the cell 

type frequencies in an input scRNA-seq data set towards a desired distribution of cell types. Taking 

single-cell gene expression profiles as input, the autoencoder learns a latent space with reduced 

dimensions capturing the input information (reduce gene dimension x cell matrix). A supervised 

cell type classifier is included as part of the loss function to create a latent space composed of 

https://sciwheel.com/work/citation?ids=14346796&pre=&suf=&sa=0
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features that support optimal cell type classification in addition to input data reconstruction. 

Known cell type annotations in the input data are used to train the classifier. This ensures that the 

latent space is relevant for cell type classification used in later stages. Each latent layer node of the 

autoencoder, which represents a reduced dimension of the input, is systematically perturbed to 

simulate altering key gene expression programs (sets of genes that are correlated with each other 

that are represented by individual learned latent layer dimension). Cell types are then reclassified 

to characterize the effect of the perturbation and the autoencoderôs decoder uses the perturbed and 

unperturbed latent embeddings to generate a gene-by-cell matrix of gene prioritization scores. This 

matrix is used to identify genes important for the perturbation effect (Method section, Fig. 1, 

Supplementary Fig. 1). Resulting cell type distributions are generated for each possible 

perturbation and then manually evaluated to identify those that increase or decrease proportions of 

desired cell types. In this way, regulator genes are identified to increase or decrease a given cell 

type proportion relative to all other cell types and these are predicted to be cell fate regulators for 

the given cell type. An average of the cell fate regulator prioritization scores across cells in each 

cell type is computed to produce a final regulator list for each cell type. 

Our latent layer perturbation approach is inspired by latent vector operations used in natural 

language processing and computer vision applications to generate novel text and images (82ï84). 

In those applications, perturbation operations performed on the latent layer generally yield superior 

results compared to operations performed directly in the input space. The classification component 

of Fatecode is used to exclude possible latent space regions that do not conform to the overall 

structure of the data. This helps in learning a model which is more representative of the underlying 

data distribution. 
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Figure 3-1: Fatecode workflow for in silico perturbation experiments and cell fate regulator detection. The 

3D model (top) represents a Waddington-like landscape depicting cellular reprogramming processes. We 
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seek to identify genes (question marks) that regulate paths on this landscape (wavy lines), by transitioning 

them to another path (red arrows). A classification-supervised autoencoder learns a latent space 

representing the original data, optimized for both input reconstruction and cell type classification. The latent 

layer is systematically perturbed and by investigating all resulting perturbation-generated cell type 

distributions, distributions with an increase or decrease in a cell type of interest are identified. Perturbation 

output is simulated by subtracting the perturbed from unperturbed latent layers and feeding it to the decoder 

to identify a cell by gene matrix of prioritization scores that can help us to prioritize genes predicted to be 

important for achieving a desired cell population distribution. An average of the cell fate regulator 

prioritization scores across cells in each cell type is computed. By sorting these genes based on their 

prioritization scores for a cell type of interest, the model predicts genes that are important for regulating the 

levels of a given cell type. 

 

3.3.2 Optimizing model architecture and hyperparameters 

Fatecode relies on the latent embedding of an autoencoder, but different types of autoencoders 

may produce different results, depending on the input data (see Supplement) (66,85ï87). To 

investigate this in our problem context, we evaluated the performance of three common 

autoencoder architectures: under-complete autoencoder (AE), variational autoencoder (VAE), and 

conditional variational autoencoder (CVAE) (88). The first step of Fatecode evaluates these three 

autoencoder architectures, and other hyperparameters (Supplementary Note 1), to find the ones 

that reconstruct the input data best, measured by mean squared error (MSE) for reconstruction and 

cross-entropy for cell type classification. To illustrate the importance of this step, we compared 

how the choice of autoencoder affects learning the underlying representation for two single-cell 

gene expression data sets in adult zebrafish blood (78) and murine pancreatic development (89). 

AE produced the lowest reconstruction error for the zebrafish data (averaged over cell types) (Figs. 

2a,b). AE also produced a latent layer that successfully reduces the dimension and cleanly 

separates the five known cell types in the data (Fig. 2c), and its cell type classifier yields a high 

accuracy (Fig. 2d). However, for the mouse data, VAE achieved a higher accuracy compared to 

the other autoencoders (Supplementary Fig. 2). 
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Figure 3-2: Comparison of autoencoder architectures for analyzing data for hematopoiesis regulation in 

zebrafish blood a, Comparison of correlation between input and output of AE, variational autoencoder 

(VAE), and conditional variational autoencoder (CVAE). b, Mean square error between input and output 

of the three autoencoder architectures showing that AE produces the lowest error rate for this data set. c, 

UMAP visualization of the latent layer of the under-complete autoencoder (AE). d, Confusion matrix for 

the classifier connected to the latent layer of AE demonstrating excellent classification performance.  

 

3.3.3 Fatecode accurately detects known regulators from simulated scRNA-seq 

data 

To assess the accuracy by which Fatecode identifies cell fate regulators using gene expression 

profiles, we applied the method to simulated single-cell RNA-seq data generated from known gene 
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regulatory network (GRN) structures using SERGIO (77). SERGIO allows users to specify the 

number of cell types and key regulators in the simulated GRN (Fig. 3a). While Fatecode is not 

specific to gene regulatory networks (i.e. it can identify a list of genes of any type, not just 

transcription factors), a GRN-based simulation is expected to provide a good benchmark for our 

method. A matrix of 400 cells and 2700 genes, with 20 known regulators and 9 cell types was 

generated and run through Fatecode. Predicted cell fate regulator genes and their prioritization 

scores were compared to the known SERGIO regulator list. The number of known regulator genes 

identified increases as more genes are prioritized (Fig. 3b). Almost all of the known regulator 

genes (18 out of 20) were identified when 150 genes were prioritized (out of 2700). To compare 

with a naive baseline, we identified cell type markers (top 20 genes) using differential gene 

expression (DGE) analysis on the same data using Seuratôs non-parametric Wilcoxon rank-sum 

test (90). Fatecode identifies a greater proportion of known regulators than DGE analysis over up 

to 150 prioritized genes (Fig. 3b). As SERGIO is a stochastic method, we analyzed five additional 

simulated datasets of the same size, all of which yielded similar results (plotted as shading in Fig. 

3b). We repeated this analysis on a larger dataset consisting of 2700 cells, 1,200 genes, with 65 

predefined regulators, and 9 distinct cell types. We used Fatecode to identify the top 180 key genes 

of this data, and DGE analysis to identify the top 25 differentially expressed genes from each cell 

type. Also, for comparison, we included scFates, a method specifically designed for trajectory-

based differential gene expression analysis. Fatecode consistently outperformed both DGE 

methods in detecting known regulators. We further evaluated performance by varying the top k 

gene threshold of DGE, and Fatecode consistently outperformed DGE across all tested thresholds, 

demonstrating its robustness while varying the number of genes considered (Fig. 3c, 

Supplementary Fig 3). Thus, Fatecode performs well at identifying known regulators in simulated 

single-cell RNA-seq data.  

We also examined the sensitivity of our model by the size of the latent layer in the autoencoder, 

by training Fatecode with different latent layer sizes (n=50, 75, and 100 dimensions) using the 

2700 cell simulated data (Fig. 3d). Our results show general consistency across the different latent 

layer sizes, indicating that Fatecode exhibits robustness across a range of latent layer sizes. 
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Figure 3-3 Fatecode detects known regulators using simulated data generated by SERGIO. a, The schematic 

structure of the gene regulatory network to generate scRNA-seq. Red nodes are known regulators and green 

nodes are non-regulators whose production rates are determined by their associated regulators. Our goal is 

to identify known regulators from the generated scRNA-seq data using Fatecode. b, Benchmark 

comparisons of the detection rate of predefined regulators generated by SERGIO using Fatecode compared 

with a naive differential gene expression (DGE) baseline. The red and green areas represent the performance 

of Fatecode and DGE, respectively, on the simulated data with 400 cells. c, Benchmark comparisons of the 

detection rate of known regulators using Fatecode, scFates, and DGE on simulated data with 2700 cells. d, 

Venn diagram showing the similarity between the number of known regulators uncovered by Fatecode 

across various latent layer sizes. 
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3.3.4 Fatecode identifies known cell fate regulator genes in mouse 

hematopoiesis 

Hematopoiesis is a cell differentiation process by which the body produces mature blood cells 

from hematopoietic stem cells. We applied Fatecode to a published mouse hematopoiesis single-

cell differentiation dataset which involves the differentiation of myeloid progenitors into 9 cell 

types (Fig. 4a)(80). We then examined Fatecodeôs accuracy in predicting cell fate regulators that 

lead to the desired cell type distribution by comparing the results with ground truth experimental 

perturbation data and known regulator genes (68,80,91,92). Fatecode learned a latent node that, 

when perturbed, simultaneously increases the monocyte population and decreases erythrocytes and 

granulocytes (Fig. 4b). Previous studies have demonstrated that Irf8 is important in promoting the 

differentiation of the GM (Granulocyte-Monocyte) lineage, particularly monocytes, and functions 

as a key regulator in determining the fate between granulocytes and monocytes. Fatecode 

accurately predicted Irf8 as an important cell fate regulator in the monocyte differentiation process. 

It correctly assigned a high positive score for monocytes and late_GMP (Granulocyte-Macrophage 

Progenitor) and negative scores for granulocytes and MEP (Megakaryocyte-Erythroid Progenitor) 

lineages, consistent with previous studies (Fig. 4c). Next, we investigated the prediction results for 

Cebpa, the knock-out of which leads to a decline in the population of differentiated myeloid cells, 

while concurrently increasing the number of erythrocytes. Fatecode accurately assigned a high 

positive score to Cebpa for monocytes and granulocytes and a negative score to erythrocytes and 

MEPs (Figs. 4d,e). In another example, Klf1 is a key regulator in driving differentiation towards 

the ME (Megakaryocyte-Erythroid) lineage, specifically promoting the development of 

erythrocytes, while simultaneously inhibiting the GMP lineage. Fatecode correctly assigned a set 

of positive scores to Klf1 for erythrocytes and MEP, indicating its ability to capture a key regulator 

in ME lineage differentiation (Supplementary Fig. 3a). We also tested Fatecode's ability to detect 

genes which are known to be important in maintaining stemness and inhibiting differentiation. 

Fatecode correctly predicted Runx1 as a candidate that has negative scores for perturbations that 

increase all mature cell types (all cell types expect MEP and GMP) (Supplementary Fig. 3b). 

Lastly, we examined the prediction results for Fli1, which exhibits diverse effects on 
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differentiation. Fatecode accurately gives positive scores for the association between Fli1 and 

megakaryocytes, monocytes, and granulocytes and also assigns a notable negative score to 

erythrocytes in agreement with the literature (68,93) (Supplementary Fig. 3c). These simulations 

show Fatecode accurately identifies known cell fate regulators that have been reported in previous 

perturbation-based experimental studies. 

Furthermore, to evaluate the role of the top 200 genes detected by Fatecode for monocytes, 

we performed pathway enrichment analysis. Pathways that are significantly enriched in these 200 

genes include those related to the immune system, hemopoiesis, cell development, and cell 

differentiation, which agrees with their Fatecode-predicted role in monocyte development (Fig. 

4f). 

We extended our analysis to a larger hematopoiesis single-cell differentiation data that 

involves differentiation into twelve cell types (Supplementary Fig. 4a) (81). We applied Fatecode 

to detect genes that can increase the pool of undifferentiated cells in this system (Supplementary 

Fig. 4b). One candidate detected by Fatecode in this process is Entpd8, the deletion of which in 

mice elevates the neutrophil and monocyte population (94). Fatecode predictions are consistent 

with this experimental result. Fatecode also predicted Nlrp6 as a regulator of neutrophil and 

monocyte differentiation. Cai et al. showed that the number of hematopoietic stem cells and 

granulocyte-monocyte progenitors is reduced in Kp-infected Nlrp6-/- mice, while the survival of 

mature neutrophils in bone marrow is increased (95). We repeated gene set enrichment analysis 

using the top 200 genes detected by Fatecode. Biological processes related to mouse 

hematopoiesis, stem cell development, and metabolic signaling were enriched, showing that 

Fatecode can again capture relevant pathways for this biological process (Supplementary Fig. 4c).  
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Figure 3-4: Fatecode accurately detects regulators and predicts the effect of single-cell perturbations. a, 

Hematopoiesis data from Paul et al. (80) visualized as a UMAP and clustered into 9 cell types. b,d, The 

results of in silico perturbations that change the initial cell frequency to the desired distribution (for b our 

objective is to promote monocytes while reducing the number of erythrocytes. As for d, we aim for an 

increase in the erythroid population and a decline in MEP and megakaryocytes). c,e, Gene prioritization 

scores per cell type for Irf8 and Cebpa. f, Pathway enrichment analysis results. Gene ontology (GO) 

biological processes show significant processes related to cell development and hematopoiesis. 

 

https://sciwheel.com/work/citation?ids=1028522&pre=&suf=&sa=0


 

 48 

3.3.5 Fatecode detects important regulators in cell differentiation and lineage 

commitment in zebrafish 

We applied Fatecode to zebrafish hematopoiesis data (78) as an additional demonstration and test. 

From all possible perturbations on the latent layer performed by Fatecode, we selected ones that 

resulted in the greatest predicted relative increase in Hematopoietic Stem and Progenitor Cells 

(HSPCs) (Fig. 5a). As shown in Fig. 5b, following the perturbation, some cells (mostly monocytes) 

are predicted to switch to HSPCs (Fig. 5b). Fatecode gives a significant score to Signal Transducer 

And Activator Of Transcription 5A (stat5a) as one of the most important genes for HSPCs. Stat5a 

is a key regulator of normal hematopoiesis with pleiotropic roles in hematopoietic stem cells (96). 

Also, knockout studies have shown that the deletion of stat5a led to an increase in HSPC cycling, 

gradually reduced survival, and depleted the HSPC pool (97). Next Fatecode gives irf8 a high 

positive score for monocytes. Irf8  is a key regulator of monocyte development and it has been 

known to be important for myelopoiesis in different model organisms (98,99). It functions at an 

early step of the transcriptional program that governs differentiation from myeloid progenitors to 

monocytes/macrophages and plays a key role in stem cell renewal and maintenance (99,100). 

Fatecode also identified a strong negative connection between foxo3 and myeloid cell 

differentiation, consistent with foxo3 knockout studies, which show a significant increase in 

granulocyte/monocyte progenitors in the spleen, bone marrow, and blood and enhance short-term 

hematopoietic stem cell proliferation (101ï103). Fatecode found an important role played by the 

otud gene family, a subgroup of deubiquitination enzymes, by assigning a high positive score 

between HSPCs and the otud gene family. Consistent with our prediction, knockout of otud genes 

in Xenopus results in developmental impairments (104). Also, elevated expression of otud genes 

leads to the acquisition of stem cell properties (105). Fatecode also predicted the negative score 

between thbs1 and HSPCs, where thbs1 has been previously shown to limit the expression of 

essential self-renewal transcription factors, including oct3 and oct4, sox2, klf4, and c-myc, within 

cells (106). Other key gene candidates identified by Fatecode for this perturbation are also known 

to be involved in hematopoiesis (Table 1). 
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https://sciwheel.com/work/citation?ids=78980&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7041317&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=606781,6759984&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1016891,6759984&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13331540,8122783,66527&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=14962437&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14962436&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1135225&pre=&suf=&sa=0
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Figure 3-5: In silico experiments to induce hematopoietic stem/progenitor cells using hematopoiesis in 

zebrafish. a, A series of latent layer perturbations and their effect on cell distribution. b, Cells that switch 

from their initial cell type to HSPCs are highlighted. 

 

Gene  Roles References 

cdk1 Plays an important role in the maintenance of 

pluripotency and genomic stability in human 

pluripotent stem cells. 

(107) 

top2a Controls the survival of human pluripotent stem 

cells. 

(108) 

hmgb2 Regulates hematopoietic stem cell maintenance. (109) 

ube2c Highly expressed in hESCs and is a biomarker of 

cancer stemness. 

(110,111) 

https://sciwheel.com/work/citation?ids=749774&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13331548&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13331551&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12535355,13331553&pre=&pre=&suf=&suf=&sa=0,0
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fbxo11 Depletion leads to the hematopoietic population with 

stem cell characteristics 

(112) 

hmgn2 Facilitates the maintenance of active chromatin 

states required for stem cell identity in a pluripotent 

stem cell model. 

(113) 

aspm Regulates symmetric stem cell division by tuning 

Cyclin E ubiquitination. 

(114) 

myb Regulates hematopoietic stem cell and myeloid 

progenitor cell development. 

(115) 

kpna2 Exhibits strong interactions with oct4 in embryonic 

stem cells. 

(116) 

Table 3-1: List of zebrafish hematopoiesis regulator genes predicted by Fatecode with 

literature evidence for involvement in this process. 

 

3.3.6 Fatecode identifies cell fate regulators in mouse hippocampus 

development 

To demonstrate Fatecode on a larger biological dataset, we applied it to developing mouse 

hippocampus cell scRNA-seq data (79), composed of 18,213 cells and 3,001 genes. The data is 

clustered in 14 annotated cell types (Fig. 6a). We first sought to identify regulators in the 

differentiation process that preferentially increase mature granule cells (Fig. 6b). Fatecode predicts 

the ZFP gene family (Zfp94, Zfp189, Zfp706) as positively important in granule cell differentiation. 

The Zfp family is a definitive marker for the cerebellar granule neuron lineage and plays a critical 

role in granule cell specification within the developing cerebellum (117). For example, the lack of 

https://sciwheel.com/work/citation?ids=13805294&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10280430&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=998488&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=463086&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13331567&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4778959&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15231339&pre=&suf=&sa=0
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Zfp521 results in a significant reduction in the number of granule cells (118). Id2 and Id3 are 

important in maintaining the size and cellular structure of the brains of adult mice. It also has been 

shown that the absence of ὍὨς leads to a decrease in the number of granule neurons (119,120). In 

line with this earlier research, Fatecode assigns a high positive score between both Id2 and Id3 for 

mature granule cells. These two transcriptional regulators have also been found to determine the 

fate of differentiating  CD8+ T cells (121). 

Next, we applied Fatecode to determine regulators that mediate the differentiation process 

which preferentially increases oligodendrocyte progenitor cells (OPC), and decreases granulocytes 

(both mature and immature) and oligodendrocytes. Fatecode predicted Igfbpl1 as having an impact 

on OPC to oligodendrocyte differentiation, which is consistent with published experimental 

studies (122,123). Furthermore, we considered Fth1, which provides neuroprotection and is 

enriched in oligodendrocytes. Mice lacking Fth1 have more microglia cells compared to the 

control and a significant reduction in neurons and oligodendrocytes (124). Fatecode accurately 

assigned a high positive score linking Fth1 to oligodendrocytes and mature granule cells and a 

negative score for Fth1 and microglia cells showing knocking out of Fth1 leads to an increase in 

microglia cells consistent with the experimental studies. Thymosin beta 4 (Tmsb4x) is a key 

candidate in the context of neurogenesis during brain development (125). Its expression is linked 

to neurogenic processes and exerts regulatory control over the expansion of the stem cell pool 

within the early neuroepithelium. The Tmsb4x gene knock-out elicits a pronounced effect on the 

differentiation process in vitro. Specifically, it significantly promotes the differentiation of stem 

cells, further emphasizing its role in orchestrating cellular fate determination (126). Our method 

correctly assigns a negative score for Tmsb4x and all cells except Neuroblasts and Radial Glia-like 

cells. To further validate the performance of Fatecode in detecting key genes, we performed 

pathway enrichment analysis on the top 200 Fatecode-predicted regulators. This analysis showed 

that pathways related to brain development, synaptic signaling, and protein synthesis were 

significantly enriched in these genes (Fig. 6c). 

To illustrate further downstream analysis that is possible based on Fatecode results, we 

applied SCENIC on the mouse hippocampus development dataset to construct a GRN consisting 

https://sciwheel.com/work/citation?ids=15231347&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10467650,11142385&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=56848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13332074,5636602&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9114608&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=705938&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9980134&pre=&suf=&sa=0
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of the top 2000 interactions based on their SCENIC Importance Measure (IM) scores which shows 

the significance of the input gene (referred to as the "TF") in determining the prediction outcome 

for the target (127). We then mapped the top 400 Fatecode-predicted regulators to the SCENIC-

inferred GRN. The resulting networks can be used as a guide for identifying specific GRN 

mechanisms to target in follow-up experiments (Ybx1 example, Supplementary Fig. 5) to test the 

regulatory relationships and potential roles of regulators in cellular reprogramming. While 

SCENIC predicts useful additional information to support experiment planning, it only considers 

transcription factor regulators. Other types of genes in Fatecodeôs output can be identified as cell 

fate regulators and should also be examined. 

 

Figure 3-6 :Fatecode identifies key genes in mouse neurogenesis. a, UMAP embedding of fourteen 

major cell types. b, latent layer node perturbation leads to an increase in mature granule cells while 

https://sciwheel.com/work/citation?ids=4362786&pre=&suf=&sa=0
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a decrease in immature granule cells. c pathway enrichment analysis shows the relevant biological 

process using the top 200 genes selected based on their prioritization scores for mature granule 

cells. 

 

3.4 Discussion 

Cell reprogramming is a promising technology for tissue repair and regeneration, with the ultimate 

goal of accelerating recovery from diseases or injuries, as well as the development of novel 

therapies (128). An important component in successful cell reprogramming is to correctly identify 

the regulators and trajectories from single-cell transcriptomics data. However, the number of genes 

in these datasets is large and the number of underlying regulatory interactions is much larger. 

Recent studies have demonstrated that the expression of a single regulator is insufficient to produce 

an end-point phenotype (129). Instead, a group of control networks acts together across a variety 

of biological processes and pathways to induce a complete lineage conversion (130). To efficiently 

and accurately map these control networks, we have developed a deep learning method, Fatecode, 

which we have successfully applied to analyze diverse datasets. First, our method discovers an 

efficient architecture and latent layer for an input single-cell dataset. Then by performing 

operations on the latent layer, it is able to predict perturbations for cell fate reprogramming. 

Fatecode was validated using simulated scRNA-seq data with predefined regulators and by 

predicting regulators in a variety of scRNA-seq data and manually comparing the results to the 

literature. 

The fundamental idea in Fatecode is similar to the minimum Hamiltonian in physics and 

the potential energy landscape concept (131). The authors have shown that the most common 

autoencoders are naturally associated with an energy function, independent of the training 

procedure. This reasoning suggests that regulators can be seen as genes that allow the system to 

achieve a target cell type distribution via the most efficient path through the energy landscape. 

Fatecode uses the latent layer as a guide to determine what node in the latent layer must be 

perturbed to achieve the desired reprogramming effect. Then the decoder maps the modified latent 

layer to gene space for gene identification. It's also useful to understand if regulators are cell type-

https://sciwheel.com/work/citation?ids=5498307&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3263288&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1912964&pre=&suf=&sa=0
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specific or not. For example, the mammalian target of rapamycin complex (mTORC1) is widely 

important in cell fate decision-making, and also important in the regulation of T-cell fate 

(19,20,132,133). Running Fatecode for different cell conversions can help identify cell-type 

specific and non-specific regulators. 

Fatecode can be thought of as an in silico CRISPR perturbation screen that identifies genes 

that may influence cell fate. Unfortunately, we were not able to find a published genome-wide 

CRISPR perturbation screen of an appropriate cell line and with a cell fate readout. Most genome-

wide CRISPR-screens use standard cell lines that are not naturally multi-potent and thus are not 

expected to generate multiple cell fates. CRISPR has been used to evaluate cell fate regulators, but 

only examining one or a few candidate genes in a single paper. We used these latter small-scale 

results to verify that Fatecode results agree with these experiments (cited publications in text). 

Because we couldnôt find genome-wide CRISPR screens with a cell fate readout, we used GRN 

simulations and small-scale CRISPR experiments to validate our findings. In the future, we hope 

genome-scale CRISPR screens for cell fate regulators will be published for us to compare to. 

Despite offering a useful input data representation, how the autoencoder latent layer 

represents the input data may be difficult to understand. Future work will need to better understand 

how the input data is represented and learned in the latent layer given diverse input data. However, 

our results showed that Fatecode predictions are relatively stable when changing the size of the 

latent layer, indicating that latent information is likely captured consistently. 

In conclusion, we developed an effective computational framework for predicting key 

players in cell fate control and the consequences of perturbations on cell type frequencies. 

Fatecode's modular design enables users to select an autoencoder architecture that produces an 

accurate model for their data. By leveraging the power of classification-supervised autoencoders 

and the associated energy manifold learning process, Fatecode generates useful hypotheses about 

genes that could be manipulated to achieve desired cell transitions. 

 

https://sciwheel.com/work/citation?ids=142759,11196196,12582297,4712468&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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3.5 Method 

3.5.1 Deep representation learning 

Autoencoders are a class of neural networks with a latent layer capable of learning nonlinear 

representations of the input data in an unsupervised manner. An autoencoder consists of an encoder 

that maps the input to the latent space and a decoder which transfers the latent space back to the 

original space. It can be used for denoising, reducing dimensionality, or learning the representation 

(or manifold) of the data. We implemented three autoencoder architectures: under-complete 

AutoEncoder (AE), Variational AutoEncoder (VAE), and Conditional VAriational Encoder 

(CVAE) (88) (Fig. 1). AE has a single latent layer. VAE constrains the latent layer by modeling 

the latent space as a multivariate Gaussian distribution with a mean and a standard deviation. 

CVAE conditions the latent space on class labels and thus can generate data based on a given class 

label. The biological task for our autoencoder is to learn a reduced dimension representation of a 

cell by gene matrix capturing measurements of a single-cell transcriptomics experiment mapping 

cellular trajectories. Only the gene dimension is reduced, so the latent space describes a reduced 

representation of each input cell transcriptome. To make the latent layer more specific for our 

biological task, we added a cell type classification task to the standard regression tasks. The 

classification task, described in more detail below, predicts the type of each latent cell and 

compares it to a known input cell type. The training process works to optimize both classification 

and regression performance simultaneously. This reduces the space of latent layer candidates since 

not all possible latent layers are useful for the classification task. 

 

3.5.2 VAE 

VAE is a type of autoencoder that estimates a latent set of probability density functions that model 

the input data. Unlike AE, which learns an unconstrained representation of the data, VAE assumes 

a Gaussian distribution for the prior. An input gene by cell matrix X is run through an encoder, 

which generates parameters for the set of distributions Q(z | X). Then, from Q, a latent k-vector z 

https://sciwheel.com/work/citation?ids=15511867&pre=&suf=&sa=0
https://www.nature.com/articles/s41598-019-52937-5#Fig1
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is sampled, and the decoder transforms z into an output, with the condition that the output is similar 

to the input, where k equals the number of components (or distributions) in the VAE. The VAE 

total loss consists of the reconstruction loss (first term) and the KL-divergence loss (second term): 

 

Ὀ ὗᾀȿὢȿȿὖᾀ
ρ

ς
ρ ὰέὫ„ ‘ „   

where ‘ and „ are the k-th components of output vectors ‘ (X) and „(X), respectively. 

3.5.3 CVAE 

CVAE is distinguished from VAE by its embedding of conditional information in the objective 

function. CVAE relies on two inputs: the features and the class labels, c, instead of using only the 

features, as is done with a VAE and AE. The CVAE architecture allows the encoder and the 

decoder to be conditioned by c. Hence, the variational lower bound objective is changed to the 

following form: 

 

 

3.5.4 Overall network architecture of Fatecode 

The Fatecode autoencoder architecture was chosen for each of the datasets analyzed in this study 

using a hyperparameter search (More details in Supplementary Note 1). Encoder and decoder 

architectures are constrained to have the same number of outer and inner layer nodes. For the 

analysis of hematopoiesis regulation in zebrafish, Fatecode consists of a fully connected encoder 

and decoder. The encoder and decoder are both two-layer networks of 92 (outer layer) and 48 

(inner layer) nodes with the LeakyReLU activation function and the latent layer has 18 nodes. For 

the analysis of hematopoiesis in mouse data by Weinreb et al. (81), the encoder/decoder has a 506-

node outer layer and a 253-node inner layer, and the latent layer has 125 nodes. For the mouse 

https://sciwheel.com/work/citation?ids=8126612&pre=&suf=&sa=0
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hematopoiesis data by Paul et al. (80) the encoder/decoder has a 100-node outer layer and a 40-

node and the latent layer has 20 nodes. For the developing mouse hippocampus data, we used a 

two-layer encoder/decoder of 50 (outer), 26 (inner), and a latent layer of 15 nodes. Our model was 

built using software packages and libraries, including TensorFlow V2.10.0, scikit-learn V1.1.3, 

scanpy V1.9.1, numpy V1.23.4, and pandas V1.5.1. Differential gene expression analysis was 

performed using the Wilcoxon rank-sum test. To account for multiple testing, we applied the 

BenjaminiïHochberg correction to the calculated P-values obtained from the DEG analysis. Genes 

with a corrected p-value below 0.05 were considered statistically significant. For the identification 

of enriched gene ontology terms in our study, we used the GSEApy package V1.0.4 with its default 

parameter settings. 

 

3.5.5 Classification 

The classifier determines cell types using the latent layer as input to a single hidden layer and then 

an output layer (with one node per cell type), all fully connected. ReLu and softmax activation 

functions are used for the hidden and output layers, respectively. The number of nodes in the 

hidden layer is varied during the hyperparameter optimization. For adult zebrafish blood data (78), 

we use 15 and 5 nodes for the hidden and output layers, respectively. We use 25 and 12 nodes for 

classifying hematopoiesis in mouse data by Weinreb et al (81), 20 and 9 nodes for data from Paul 

et al (80), and 22 and 14 for the developing mouse hippocampus data (79). All cell labels are 

assigned by using the predefined cell type labels of the original studies. 

 

3.5.6 Identifying key regulators in cell differentiation 

Consider adjustments (e.g. one or more gene knock-outs or over-expressions) that will transition 

a baseline cell type distribution (ñAò) to a given desired target distribution (ñBò). For example, in 

the target cell distribution, our objective is to increase the number of cell type N while decreasing 

https://sciwheel.com/work/citation?ids=1028522&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4939518&pre=&suf=&sa=0
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the number of cell type P (Supplementary Figure 1). To detect genes that are important in a given 

transition, Fatecode analyzes the effects of perturbations on cell fate by systematically perturbing 

individual autoencoder latent nodes learned from a single-cell transcriptomics data set capturing 

cellular trajectories. Each latent variable perturbation results in a single-cell transcriptome through 

the decoding process and a corresponding cell type distribution, proceeding as follows after 

training Fatecode: 

1. The gene expression data, denoted as E, corresponding to a mixture of cells with cell type 

distribution A, undergoes encoding to produce a matrix of latent variables represented as 

ὢ (ὢ ὩὲὧέὨὩὶὉ). Each column of ὢ is associated with a cell in E; each row 

corresponds to a latent variable). 

2. In a series of simulations, finite perturbations of different sizes ╚ (e.g., from a 50% 

reduction to a 10-fold increase) are applied to each row j (number of latent variables) in ὢ 

sequentially. For each perturbed latent layer row, ὢᶻ 

ὢᶻ Ὧὢ 

3. We then run the cell type classifier trained within Fatecode on the perturbed latent layer to 

predict the cell type distribution for each across all perturbation conditions. 

ὔὩύ   ὧὰὥίίὭὪὭὩὶὢᶻ  

4. Then, we can identify a perturbed latent layer row, ὢᶻ, and its associated perturbation size, 

k, that is closest to the desired target distribution B. 

5. To identify genes important for the transition from cell type distributions A to B, we 

compute the difference between the selected ὢᶻ and the ὢ latent layers. For instance, if 

increasing latent node #9 5-fold can best approximate the desired distribution B, then the 

difference between the selected ὢᶻ and ὢ latent layers is a latent node by cell matrix with 

all zero entries, except for the 9th row, which is 5 times ὢ. 
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6. With this selected perturbation matrix ὢᶻ ὢ, the decoder produces a gene-by-cell 

matrix. Then the average gene expression profile of all cells in each cell type is computed, 

resulting in a gene by cell_type matrix M. The (i,j)-th entry of M is the prioritization score 

for the i-th gene in cell_type j. 

7. To identify the regulators predicted to be important for transitioning initial cell type 

distribution A to target B, we rank the genes based on their prioritization scores for a cell 

type of interest. 

 ὙὩὫόὰὥὸέὶίίέὶὸὓ    

We note that M does not directly specify how much each gene should be perturbed to yield target 

B. Nonetheless, M contains information about genes that are important in transitioning cell type 

distribution from initial state A to the desired state B. This idea is similar to the minimum 

Hamiltonian and potential energy in physics or the optimal path with the least action (131).  

We also examined the model's performance in detecting regulators when operating on the output 

of the decoder compared to the latent layer. To achieve this, we fed the perturbed vector to the 

decoder and subtracted the result from the unperturbed condition. We then investigated the genes 

that showed significant changes. Our results indicate that working on the latent layer led to better 

outcomes in detecting regulators than operating on the output of the decoder. This observation is 

in line with previous research in computer vision and natural language processing, where using 

the latent space consistently yielded superior results compared to the original data space (83,134). 

We assume this is true in general when using an autoencoder with a non-linear activation function 

with reasonably complex data, as we have in biology (in contrast to the linear activation function 

case where ὈὩὧέὨὩὶὢ ὈὩὧέὨὩὶὢ ὈὩὧέὨὩὶὢ ὢ ). 

 

https://sciwheel.com/work/citation?ids=13332524&pre=&suf=&sa=0
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3.5.7 Data visualization 

Python package ñUMAPò was used to visualize the latent layer as a reduced dimensionality space. 

Network visualizations used Cytoscape (135). 

 

3.5.8 Differential expression analysis  

Differential gene expression analysis was performed using the Wilcoxon rank-sum test. To account 

for multiple testing, we applied the BenjaminiïHochberg correction to the calculated P-values 

obtained from the DEG analysis. Genes with a corrected p-value below 0.05 were considered 

statistically significant. For scFates we used the default parameters. For the identification of 

enriched gene ontology terms in our study, we used the GSEApy package V1.0.4 with its default 

parameter settings. 

 

3.5.9 Data preprocessing 

The scRNA-Seq gene expression data is log normalized, scaled, and centered. In the training 

process, 80% of the data is allocated for training the classification autoencoder, while the 

remaining 20% is utilized for testing purposes. 

3.5.10 Data availability 

The datasets used in the present study are openly accessible in public repositories. The zebrafish 

hematopoiesis data can be found under the accession number E-MTAB-5530 on ArrayExpress. 

We downloaded a preprocessed version of the ñDentate Gyrus neurogenesisò data (under accession 

number GSE95753) from https://scvelo.readthedocs.io/en/stable/. The hematopoiesis Paul et al. 

data can be downloaded from the GEO under accession code GSE72859 and the preprocessed 

version was downloaded from https://celloracle.org/. To generate simulated data we used the same 

parameters for the differential equations as in https://github.com/PayamDiba/SERGIO (77). The 

https://sciwheel.com/work/citation?ids=15521476&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9570265&pre=&suf=&sa=0
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hematopoiesis Weinreb et al. data can be downloaded from GEO under accession number 

GSE140802 and the preprocessed version was downloaded from 

https://cospar.readthedocs.io/en/latest/. 

 

3.5.11 Code availability 

Code supporting this study is available on: https://github.com/MehrshadSD/Fatecode 

 

https://cospar.readthedocs.io/en/latest/
https://github.com/MehrshadSD/Fatecode


 

 62 

Chapter 4 

Discovering Governing Equations of Biological Systems 

through Representation Learning and Sparse Model 

Discovery 

This chapter presents CLERA, a novel computational framework for uncovering dynamic models 

and identifying active gene programs from single-cell RNA sequencing data. By combining a 

supervised autoencoder with Sparse Identification of Nonlinear Dynamics, CLERA uses prior 

knowledge to extract low-dimensional representations and reveal the driving forces behind cellular 

processes. It pinpoints central genes, reconstructs gene expression dynamics, and captures key 

regulatory genes and temporal patterns across various cell types using personalized page rank. The 

research titled Discovering Governing Equations of Biological Systems through Representation 

Learning and Sparse Model Discovery was conducted in collaboration with Vasu Swaroop (an 

undergrad student in our lab at the time of the study), and is currently under review in Nucleic 

Acids Research journal (2). The author list on the publication is below: 

 

Mehrshad Sadria1, Vasu Swaroop2 

1 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, 

Canada. 

2 Department of Computer Science Information Systems, BITS-Pilani, Pilani Campus, Pilani, 

333031, India 

 

4.1 Overview 

Understanding the governing rules of complex biological systems remains a significant challenge 

due to the nonlinear, high-dimensional nature of biological data. In this study, we present CLERA, 

a novel end-to-end computational framework designed to uncover parsimonious dynamical models 

and identify active gene programs from single-cell RNA sequencing data. By integrating a 

supervised autoencoder architecture with Sparse Identification of Nonlinear Dynamics, CLERA 

https://sciwheel.com/work/citation?ids=17003553&pre=&suf=&sa=0&dbf=0
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leverages prior knowledge to simultaneously extract related low-dimensional representation and 

uncovers the underlying dynamical systems that drive the processes. Through the analysis of both 

synthetic and biological data, CLERA demonstrates robust performance in reconstructing gene 

expression dynamics, identifying key regulatory genes, and capturing temporal patterns across 

distinct cell types. CLERAôs ability to generate dynamic interaction networks, combined with 

network rewiring using Personalized PageRank to highlight central genes and active gene 

programs, offers new insights into the complex regulatory mechanisms underlying cellular 

processes. 

 

4.2 Introduction  

Across many scientific disciplines, discovering governing equations has traditionally served as the 

cornerstone of understanding systems (46). Derived from mathematical and physical laws, these 

equations provide interpretable and generalizable frameworks for explaining and predicting 

various phenomena. In areas such as biology (20), epidemiology (18), and finance (136), 

mathematical models are used to model signalling pathways, population dynamics, and disease 

spread, and market fluctuations, respectively. However, for complex systems with high 

dimensionality and nonlinearity, including biological processes, traditional approaches often fall 

short (137). Discovering the main equations governing these systems can be challenging, and even 

when partial knowledge exists, relying solely on first principles becomes impractical (138). 

The modern era, with its abundance of data and computational power, has facilitated the 

emergence of data-driven model discovery as a powerful paradigm in scientific exploration (41). 

This approach directly leverages data to uncover the hidden principles that govern complex 

systems. In the context of cellular biology, single-cell RNA sequencing (scRNA-seq) provides an 

unprecedented window into individual cells, which offers insights into gene expression variation 

across diverse cellular populations (139). By analyzing this data, researchers can investigate the 

molecular machinery underlying development, disease, and response to external perturbation 

(4,24). The noisy, nonlinear, and high-dimensional characteristics of scRNA-seq data and the 

https://sciwheel.com/work/citation?ids=8428658&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12582297&pre=&suf=&sa=0
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https://sciwheel.com/work/citation?ids=15616337&pre=&suf=&sa=0
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biological processes it captures pose significant challenges for analysis and interpretation (140). 

These complexities make it difficult to uncover the underlying principles of biological processes 

and pinpoint their key drivers (141). While previous methods have achieved success in specific 

tasks, limitations remain. For instance, the correlative nature of most methods prevents them from 

capturing causal features and true representations, thus limiting their generalizability (142). 

Furthermore, these models struggle to discover governing relationships among underlying 

variables in a parsimonious manner, similar to classical physics settings, which further hinders true 

interpretability. Therefore, a crucial step in understanding any biological process lies in developing 

models that not only can accurately predict but also reveal the underlying connections between 

features in an interpretable and parsimonious manner (42). This ensures the models can be applied 

across diverse environments and provides clearer insights into the mechanisms governing the 

process (46).  

In the realm of high-dimensional biological data like scRNA-seq, the ability to capture 

causal representations of the data becomes particularly valuable. This approach goes beyond 

identifying correlations and allows us to understand the true relationships between variables (143). 

In this context, identifiability, the ability to uniquely recover the underlying causal structure from 

observed data, becomes a crucial aspect of representation learning. Traditional methods like 

Independent Component Analysis (ICA) have achieved success in many areas of linear 

representation learning (40). In fact, if all latent components are non-Gaussian and independent, 

ICA can be identifiable. However, ICA struggles with the inherent nonlinearities and complex 

interactions present in biological data (40). While perfect identifiability, especially in non-linear 

settings, remains a challenge, incorporating temporal structure, employing additional tasks, or 

using auxiliary information can facilitate the way to attain identifiability (144,145). Notably, 

autoencoders can offer a promising avenue for achieving identifiability in non-linear settings 

(146). By carefully designing their architecture and loss function, autoencoders can help extract 

meaningful representations from complex biological data (1,5,66,147). 
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In this work, we present CLERA (Cellular Latent Equation and Representation Analysis), a novel 

end-to-end computational framework that combines the power of data-driven model discovery, 

specifically Sparse Identification of Nonlinear Dynamics (SINDy), and representation learning. 

Leveraging a supervised autoencoder architecture, CLERA simultaneously extracts a compact and 

relevant representation from high-dimensional data and uses it to discover the underlying low-

dimensional, non-linear dynamical model governing the system. This learned embedding further 

allows us to not only identify active gene programs and key genes but also track their transitions 

over time across cell types, providing insights into the complex dynamic regulatory mechanisms 

of biological systems. We validate CLERA's performance on both simulated data (with known 

active gene programs) with different sizes and real-world biological datasets. 

 

4.3 Result 

4.3.1 Discovery of Dynamical Systems and Gene Programs from Simulated 

Data 

We first investigate the performance of the SINDy part of CLERA in discovering the underlying 

governing equations of a simple simulated biological system with two driver genes (Fig. 1a). The 

dynamics of this system are described by a well-established set of differential equations commonly 

used in various biological contexts such as the lac operon, metabolic signalling pathways, and the 

cell cycle (148). Synthetic data is generated using this system of equations with varying noise 

levels. We then apply SINDy, to recover the equations. Notably, the governing equations are 

discovered with high accuracy. Figure 1a shows this successful reconstruction, with the recovered 

parameters closely mirroring the original values (Method section). Also, the results from solving 

the discovered differential equation closely match the generated data, further validating the 

accuracy of the equations discovered (Fig. 1b). 

Then to evaluate the performance of CLERA in a more realistic scenario with a larger 

dataset, we apply it to simulated data generated by SERGIO, which incorporates various types of 

noise for realistic data generation (77). We train CLERA on a simulated dataset, with 6300 cells 
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across 100 genes and nine distinct cell types. We hypothesize that an optimal representation 

learned by the model should not only achieve high accuracy in data reconstruction (autoencoder 

loss) but also should perform well in tasks such as cell type classification and sparse dynamical 

model discovery.  

To address stochasticity and ensure robustness in finding the optimal latent embedding, we 

run CLERA multiple times (50 for this data) using various initial conditions. We select the model 

with the lowest combined loss (method section) while also prioritizing parsimony in the discovered 

model. In our analysis, we observe that CLERA successfully identified a latent embedding with 

high accuracy in both reconstruction and classification (Supplementary Figure 1, Supplementary 

Figure 5a). 

We then leverage the representation learned by CLERA to identify active gene programs 

and their dynamics over time. To uncover the connection between latent nodes and genes we 

compute SHAP (149) values between each node in the autoencoder's latent layer and genes and 

rank the identified genes based on their SHAP values (choosing the top 30 genes for each node). 

Using the results from the SHAP method and the discovered differential equations, we construct a 

network of interactions between latent nodes and genes. We then apply Personalized PageRank 

(PPR) to this network, starting from each gene, to identify the most relevant genes for the selected 

gene (150). This approach enables us to refine the network by selecting only the top connected 

genes with the highest PPR scores while filtering out the latent nodes. A clustering algorithm is 

applied to this graph to detect the gene programs. Given that CLERA can uniquely incorporate a 

time component, this process can be done for different stages of the trajectory and cell types. To 

assess CLERA's performance in capturing active gene programs, we perform the same clustering 

analysis on the SERGIO ground truth network and compare the resulting clusters obtained (Fig. 

1c for celltype7). We also observed a high degree of similarity between the gene programs of the 

SERGIO predefined network and the identified gene interaction networks for each cell type, as 

measured by the Jaccard similarity. This suggests that the latent embedding learned by CLERA 

can effectively capture active gene programs (Fig. 1d).  
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Figure 4-1. CLERA discovers dynamical systems and gene programs from simulated data. a, 

Schematic of a two-gene regulatory network (G  and G ) with discovered governing equations and 

parameters shown. b, Comparison of generated gene expression data (top) and solutions from equations 

discovered by SINDy (bottom) for the two-gene system over time. Gene 1 and Gene 2 expression levels 

are plotted against time. c, Gene interaction networks for cell type 7 derived from SERGIO ground truth 

(top) and CLERA (bottom). Nodes represent genes, coloured by gene programs identified through 

clustering. d, Heatmaps showing Jaccard similarity between SERGIO and CLERA-derived gene program 

clusters across nine cell types (CellType0 to CellType8). Colour intensity indicates the degree of similarity, 

with lighter colours representing higher similarity and darker colours lower similarity.  

 

4.3.2 CLERA Uncovers Dynamics and Gene Programs in Pancreatic 

Development 

We further evaluate CLERA on biological scRNA-seq data from mouse pancreas during 

embryonic development. This dataset comprises 3696 cells, with 27998 genes clustered into eight 

distinct cell types (89). Following hyperparameter optimization and preprocessing, we trained 

CLERA several times with varying initializations (Methods), using the gene expression and 

computed pseudotime (cell ordering) information. CLERA successfully identifies a set of sparse 

and interpretable differential equations with all individual loss terms in our total loss function 

decreasing (Fig 2a, Supplementary Figure 2). Also, we observe the temporal dynamic of different 

latent variables captures distinct patterns for each cell type (Fig. 2b, Supplementary Figure 9a). 

CLERA also achieves a high classification accuracy using the latent variables where certain latent 

variables emerge as dominant predictors for individual cell types (Supplementary Figure 5b, 

Supplementary Figure 7). 

To explore the connection between latent nodes and genes, we calculate the SHAP values 

(151) for each gene-latent node pair and identify the top "K" genes (K=300 for this data) connected 

to each latent node, ranked by their absolute values. Using the discovered equations (latent node-

latent node interaction) and SHAP values (gene-latent node interaction), we generate a series of 

interaction graphs for various stages of pancreas development (Fig. 2c). Unlike traditional network 

inference methods, which only produce a static graph for the whole process, our approach captures 

dynamic graphs over time. Next, we apply a clustering algorithm to the interaction graphs to 
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identify groups of interconnected and potentially co-regulated genes. These graphs, representing 

different stages of pancreatic development, allowed us to observe changes in gene interactions 

over time. To understand the similarity of active gene programs across different cell types, we 

analyze the clustering results for a specific cell type and transfer the identified gene colours to the 

analysis of other cell types (Fig. 2d). We observe a high degree of similarity in shared genes for 

cluster 1 among Ductal, Ngn3 low EP, and Ngn3 high EP cell types. Analyzing these shared genes 

reveals several previously known key genes, such as Sox9, Neurog3, Hes1, Foxa3, and Nfib, as 

well as important signalling pathways like Wnt, Notch, and TGF-ɓ (152). Furthermore, Gene Set 

Enrichment Analysis reveals several pathways related to pancreatic development, demonstrating 

the biological relevance of the gene programs discovered by CLERA (Fig. 2e). Interestingly, 

CLERA also captures pathways involved in neurogenesis and neural development, which aligns 

with previous studies and highlights the molecular and cellular similarities between pancreatic and 

neural cell differentiation (89,153). 

To identify key and central genes for each cell type, we restructure the interaction network 

using the PPR technique to remove latent nodes. This network rewiring allows us to focus directly 

on gene interactions. We then apply centrality measures to the restructured network to identify the 

most influential genes for each cell type (Fig. 2f, Supplementary Figure 10a). As a result of the 

centrality analysis, several key genes are identified, including Spp1 (154), a regulator of the 

epithelial-mesenchymal transitory axis and duct cell de-differentiation; Chgb (155), a 

neuroendocrine cell marker; and Neurog3 (156,157), crucial for endocrine cell differentiation. The 

analysis also confirms the central roles of Ins1 and Ins2 in beta cell function, along with Clu (158) 

and Sox9 (159), both critical for progenitor cell maintenance and differentiation. CLERA correctly 

captures these key genes, aligning with prior studies that emphasize their importance in pancreatic 

development. 
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Figure 4-2: CLERA uncovers dynamics and gene programs in pancreatic development. a, Discovered 

differential equations governing mouse pancreas development data from scRNA-seq, showing sparse and 

interpretable models and connections between latent variables. b, Temporal dynamics of latent variables, 

which illustrate distinct patterns across cell types. c, Interaction graphs for various stages of pancreatic 

development, show dynamic gene interactions over time for different cell types. d, Clustering results 

showing gene program similarities across cell types, with shared genes in cluster 1 among Ductal, Ngn3 

low EP (endocrine progenitor), and Ngn3 high EP cell types. e, Gene Set Enrichment Analysis results 

indicating pathways related to pancreatic development and neurogenesis. f, Degree centrality analysis 

identifying key genes for each cell type, including Spp1, Chgb, Neurog3, Ins1, Ins2, Clu, and Sox9.  

 

4.3.3 CLERA Reveals Central Genes and Dynamics in Hematopoietic 

Differentiation  

Next, we investigate bone marrow development, examining the differentiation of hematopoietic 

stem cells (HSPCs) into erythroids, monocytes, and dendritic cells (DCs). This dataset comprises 

5780 cells and 14319 genes clustered into 10 distinct cell types (73). 

To enhance CLERA's performance on this data, we apply transfer learning from our 

previous pancreas study (method section). By initializing CLERA with pre-trained weights, we 

leverage the knowledge and relationships obtained from the previous part, which results in a faster 

optimization and more accurate representation of the data. Also, we observe a decrease across all 

components of the loss function, showing that all loss terms were effectively optimized and also 

parsimonious discovered equations (Fig. 3a, Supplementary Figure 3). Furthermore, investigating 

the latent space shows that the temporal dynamics of different latent variables capture distinct 

patterns for each cell type, which shows that the embedding learnt by CLERA can identify and 

characterize unique behavioural signatures for each cell type (Fig. 3b, Supplementary Figure 9b). 

We observe that the latent embedding discovered by CLERA achieves high classification accuracy 

and also shows distinctive cell type-level differentiation, where specific latent variables drive the 

classification of particular cell types (Supplementary Figure 5c, Supplementary Figure 8). 

Then, by identifying top genes using the SHAP method and leveraging the discovered 

equations, we generate a series of graphs representing different stages of bone marrow 

development (Fig. 3c). Through clustering analysis on these graphs, we identify groups of co-
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regulated genes at each developmental stage (Fig. 3d). Moreover, using label transfer techniques, 

we identify a significant similarity in co-regulated genes between precursors (cluster 1), monocytes 

(cluster 3 in Mono_1 and cluster 2 in Mono_2) and DCs (cluster 0). Some of the key genes 

discovered have been shown to be crucial for monocyte development, including ID2, TYROBP, 

FLT3, PDE4B, and GLIPR1(160ï162). We also observe a strong similarity between the two 

erythroid subpopulations Ery_1 and Ery_2, particularly between clusters 1 and 3, and between 

clusters 2 and 1. Similarly, the monocyte subpopulations Mono_1 and Mono_2 show considerable 

overlap, with cluster 3 in Mono_1 closely aligning with cluster 1 in Mono_2, cluster 2 in Mono_1 

resembling cluster 0 in Mono_2, and cluster 0 in Mono_1 closely matching cluster 2 in Mono_2. 

This suggests that these subpopulations have many common genes, which shows similarities in 

their developmental pathways and active gene programs. 

To identify the critical genes within these networks, we apply PPR for network rewiring, 

which allows us to remove latent nodes and focus on direct gene interactions. Centrality measures 

then pinpoint key genes driving cellular differentiation during hematopoiesis (Fig. 3e, 

Supplementary Figure 10b). MPO (163), crucial for neutrophil differentiation, is identified as a 

key myeloid marker, while HOPX (163) emerges as a regulator of primitive hematopoiesis, 

guiding early progenitor cell fate. Malat1 (164), known for regulating gene expression in 

hematopoietic stem cells, and FOS (165,166), linked to cell proliferation and differentiation under 

cytokine signalling, are also highlighted. Also, CD52 (167), a marker of mature lymphocytes, 

FAm30A, which has shown links to immune response regulation and other hematopoietic lineages, 

and CD74 (168), essential for antigen presentation in immune cells, are captured. CLERA 

effectively identified these genes, which align with their known roles in hematopoiesis. 
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