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Abstract

Low-gradient landscapes found in parts of the Taiga Plains and the North American
Prairies can be dominated by many depressional wetlands with variable storage capacity.
Runoff from these regions is influenced by the local storage capacity of individual wetlands
and water exchange between the wetlands. Fill-and-spill conceptual models have been pro-
posed to consider the connectivity-controlled process in wetland dominated catchments.
Although fill-and-spill phenomenon has been locally observed, few studies examine the re-
sponse of a landscape to thousands of cascading wetlands, as is seen in a number of Cana-
dian landscapes. Being able to characterize, understand, and parameterize this response in
hydrological models may enable successful simulation of the contribution area and runoff
response in wetland-dominated regions. Current probabilistic fill-and-spill models consider
individual features rather than the cumulative connections between adjacent wetlands in
a cascade. The lack of understanding of the regional effects of wetland distributional char-
acteristics on landscape hydrology, combined with insufficiently resolved elevation data,
particularly in flat terrains, are two concerns that signify the need for an improved proba-
bilistic runoff model. We propose an upscaled wetland fill-and-spill (UWFS) algorithm to
investigate the response of large-scale wetland systems in low gradient areas to rainfall or
snowmelt events. The research addressed in this thesis consists of the following:

1. An explicit probabilistic-analytic model is developed and tested for cascades of wet-
lands, providing an upscaling approach to understand and characterize system re-
sponses. To do this, first, a probabilistic analytic model is developed based on the
fill-and-spill conceptualization, which considers each wetland in the basin as a mem-
ber of an ensemble. The mathematical solution requires information about the initial
deficit distribution and distribution of wetland local contributing areas which may be
estimated via a combination of spatial analysis and field observation. Then, by using
the derived distribution approach, the response of a landscape with a single wet-
land cascade is upscaled to the response of a landscape with thousands of wetlands.
This event model is extended to evaluate the continuous response of a heterogeneous
wetland complex to rainfall and snowmelt events by evolving the deficit distribution
based on evaporation and precipitation.

2. A Monte Carlo based approach is proposed here that samples from initial deficit and
concentrating factor distributions and finds the generated runoff from water balance
equation applied to wetland cascade networks. This model along with the analytical
model enables us to explore the impacts of network depth, branching, and gatekeeping
on fill-and-spill runoff responses from complex wetland networks. The accuracy of
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the probabilistic analytical solution is also assessed by comparing the results with
those from the Monte Carlo approach.

3. The proposed probabilistic analytical runoff model has been implemented into an
existing two-dimensional semi-distributed hydrologic model, Raven, to test the ability
of the upscaling method in lumped runoff simulation of wetland-dominated basins
influenced by fill-and-spill hydrology. The model has been tested at 10 subbasins
inside the Qu’Appelle River Basin in Prairie and the simulation results has been
compared to an existing Prairie model named HYdrological model for Prairie Region
(HYPR).

4. The proposed UWFS algorithm has been applied to a discontinuous permafrost re-
gion, Scotty Creek basin in the Northwest Territories, to simulate runoff generation
from secondary runoff areas (the wetlands not directly connected to the fen network).
The streamflow responses to different landcover transitions and meteorological forc-
ings from different climate change scenarios are applied to quantify the effects of
lateral permafrost thaw on the hydrological response of the study basin.

The UWFS algorithm is applied to improve our understanding of the effects of distribution
characteristics, network branching, wetland deficit conditions, and cascade depth upon the
contributing area and effective runoff from heterogeneous wetland-dominated basins. We
can use the proposed model to understand potential long-term hydrological impacts of
climate change located in regions where climate warming changes the role of wetlands
from storage features to water conveyors.
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Chapter 1

Introduction

In low gradient landscapes, such as the Prairie Pothole Region (PPR) of central Canada
or the Boreal and Taiga plains, the landscape is covered by depression storage features
(often wetlands) which control runo� generation. In the simplest conceptual model for the
functioning of these regions, each depression is �lled by the lateral and vertical addition of
water, and when the water level reaches a certain level, water spills, and runo� is produced.
In the hydrology literature, this process is called \�ll-and-spill", and has received signi�-
cant attention in the research literature (Tromp-van Meerveld and McDonnell, 2006; Shaw
et al., 2012; Spence and Woo, 2006). A number of studies have investigated the local-scale
storage e�ects on catchment-scale runo�, including through the development of numerical
models (Watson et al., 2008; Shook et al., 2013; Evenson et al., 2016; Muhammad et al.,
2019). However, the problem with most existing models is that each depression must be
individually de�ned within a detailed physically-based model. They may also require com-
plex processing of high resolution Digital Elevation Models (DEMs) to determine out
ow
and storage characteristics. The shallow subsurface water movement in Taiga Plains plays
a critical role in �lling depressions (Connon et al., 2014), and accurately quantifying the
water pathways is a major limitation as it cannot be achieved through LiDAR data. In
contrast, the dynamic connection of wetlands is neglected in lumped models, which inte-
grate the storage capacity of a catchment over a hydrologic unit rather than considering
the cascades between di�erent wetlands. Probabilistic approaches are a potential solution
that may avoid the need to characterize individual wetlands while not oversimplifying the
response of these complex systems.

Some discontinuous permafrost regions in Canada's north are dominated by wetlands
such as bogs and fens. Those regions are experiencing twice as much warming as the rest
of the world as a result of anthropogenic climate change, which is speeding up the thawing
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of permafrost (IPCC, 2014). A proper representation of wetland �ll-and-spill processes in
hydrological models can help to improve our understanding of the e�ects of permafrost
thaw induced by climate change. A large portion of Canada's northern regions, including
the southern portion of the Northwest Territories, is covered by discontinuous permafrost,
which is a landscape that is partially covered by ground that has been frozen for two or
more years in a row (NRC, 1995). Permafrost thaw alters water balance components in
basins, disrupts or expands connectivity between hydrological features, and consequently
changes total discharge from a basin. Although there are several studies on �ll-and-spill
processes and connectivity variations between wetlands and other hydrological features
in discontinuous permafrost regions (Connon et al., 2015, 2014; Haynes et al., 2018; Mack
et al., 2021), there are few studies which utilize hydrological models to simulate stream
ow
in those regions (Stone et al., 2019) and investigate lateral permafrost thaw in
uences at
the regional scale. A hydrological modeling approach coupled with a landcover transition
model is needed to provide insight into potential long-term hydrological impacts of climate
change and permafrost thaw for future decision making in discontinuous permafrost regions.

1.1 Thesis Objectives and Structures

This thesis studies the �ll-and-spill process and in
uence of the heterogeneity of thousands
of wetlands throughout a basin using a probabilistic approach. The approach is a gener-
alization of the Probability Distributed Rainfall-Runo� Model (PDM) of Moore (1985).
In addition, we apply discrete network models of wetlands to examine the upscaling be-
havior of �ll-and-spill systems, and test the approaches developed herein in an existing
distributed hydrological model (i.e., Raven developed by Craig et al. (2020)) to enable
successful simulation of the contributing area and runo� responses in wetland-dominated
regions.

The objectives of this thesis are

1. To develop and test a probabilistic-analytic event model for cascades of wetlands,
providing an upscaling approach to understand and characterize system responses;

2. To use the analytical event based model and numerical network models to explore
the impacts of network depth, branching, and gatekeepers on �ll-and-spill network
responses;

3. To extend the event based model to a continuous model and examine the capability
of the algorithm in accurate simulation of prairie basins by comparing the simulation
results with an existing prairie lumped model.
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4. To investigate the impacts of permafrost thaw induced by climate change on a hydro-
logical response of a wetland-dominated basin in the Northwest Territories (NWT).

In order to present the methods and �ndings of this research, the thesis is organized as
follows: Chapter 2 provides a comprehensive review of the literature on upscaling methods
of hydrological processes, �ll-and-spill hydrological models, and representation of wetland
complexes. Chapter 3 introduces the methodology of the Upscaled Wetland Fill-and-Spill
Model (UWFS) and the application of this algorithm in wetland dominated subbasins
in prairie. Chapter 4 investigates the e�ects of UWFS assumptions and how di�erent
properties of wetlands can be captured by a single parameter. Chapter 5 demonstrates a
coupling approach that utilizes information from a land cover change model in a hydrologic
model to examine the e�ects of climate change on stream
ow generation in discontinuous
permafrost regions. Chapter 6 concludes with a summary of the contributions made. The
detailed analytical solutions of the UWFS algorithm is presented in Appendix A.1 to A.4.
Appendix B.1 includes supplementary materials related to Chapter 3.
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Chapter 2

Background and Literature Review

Depressional wetlands are dominant features in low gradient landscapes such as the PPR
of southern Alberta and Saskatchewan or the Taiga plains of the NWT. These terrains
are historically challenging to simulate in hydrological models. In order to accurately
simulate the historical hydrological responses to climatic inputs and predict the responses
to future climate change impacts, it is important to understand the role of wetlands,
the dominant hydrological process in those regions, and the current state-of-the-art in
modelling approaches for these landscapes.

For this purpose, this chapter �rst discusses the connectivity and hydrology of wetlands.
After that follows a review of the �ll-and-spill phenomenon, the hydrological process that
serves as the focus of this study, and the modelling techniques employed in the literature.
Then, permafrost hydrology and climate change in cold regions are covered. Knowledge
gaps and takeaway messages are presented at the chapter's conclusion.

2.1 Wetland Hydrological Connectivity

Depressional wetlands are also known as sloughs, bogs, depressions, ponds, or potholes
(van der Kamp and Hayashi, 1998), and in this thesis they are referred to as wetlands.
They have a signi�cant impact on a catchment's water balance because they gain water
from local runo�, over
ow from upstream wetlands, and precipitation/snowmelt, store wa-
ter as storage features, and lose water via groundwater recharge or evaporation (Bullock
and Acreman, 2003). Wetlands carry out the three main hydrological functions of storing,
contributing, and transmitting water (Spence and Woo, 2006) based on the weather condi-
tion. Wetlands' high storage capacity during dry conditions can disrupt water movement
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and block interconnection between wetlands. During wet conditions, the depressions may
�ll, and once they reach a certain threshold, they may spill and can then be hydrologically
connected to each other or basin's outlet (Hayashi et al., 2016; Shaw et al., 2012). Water
exchange between wetlands has a signi�cant impact on the water budget and hydrological
processes within the catchment, including overall runo�. For example, during dry condi-
tions in 2011, 4.4% of the St. Denis Basin in Saskatchewan, Canada contributed to runo�,
compared to 11.9% during the same year's spring snowmelt event (Shook et al., 2013).

Hydrological studies have recently paid signi�cant attention to hydrological connectiv-
ity. According to the de�nition given in Bracken and Croke (2007), hydrological connec-
tivity refers to a concept of runo� generation that happens wherever there is a possibility
for water to move between various zones and locations. This connectivity can be achieved
through surface, shallow subsurface, and deep groundwater 
uxes or combinations of such

ows (Golden et al., 2017), and can be of \permanent, intermittent, ephemeral or episodic"
duration (Leibowitz et al., 2016). The role of wetlands in catchment runo� is determined
by the degree of hydrological connectivity and controlled by wetland proximity, location,
and storage capacity (Spence, 2010). Wetland connectivity, along with other properties of
a watershed and weather conditions such as topography, landcover, precipitation frequency,
duration, and magnitude (Rains et al., 2016), can control the quantity of runo� and the
extent of the contributing area in a basin.

Field studies in the Taiga Plains (e.g., Connon et al. (2014, 2015)), Canadian shield
(e.g., Spence and Woo (2003)), and Canadian Prairies (e.g., Shaw et al. (2012)) have
repeatedly demonstrated the importance of connectivity on runo� generation. Connon
et al. (2014) investigated the e�ects of permafrost thaw on runo� and stream
ow variations
in the lower Liard River valley within the Northwest Territories, Canada. Results of their
study show that land-cover change, i.e., transformation from plateaus to wetlands (or 
at
bogs) caused by permafrost thaw, has increased the resulting runo�, runo� ratio, and
contributing area because of the increasing hydrological connectivity through surface and
subsurface pathways. Investigation of runo� generation in the bog cascades at Scotty Creek
research basin by Connon et al. (2015) shows that neglecting wetland connectivity in those
areas leads to 5-15% underestimation in the stream
ow magnitude. The �eld observations
in that study also revealed that remotely sensed imagery cannot accurately characterize
the hydrological connectivity in the basin. This is because the previously assumed isolated
bogs were found to be connected, highlighting the limitations of using remote sensing for
this purpose.

In the Canadian Prairies, runo� generation is in
uenced by water input from precipi-
tation, wind-driven snowmelt, and the spilling of upstream wetlands (Fang and Pomeroy,
2007). Surface spilling is the main cause of total landscape out
ow in those basins due to
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the low in�ltration rate of wetlands into subsurface glacial till (van der Kamp and Hayashi,
1998). In some Canadian Shield landscapes, inputs from upland bedrock, which is driven
by hydrological linkage, into the soil-�lled valleys are higher than the input from vertical
sources, i.e., snowmelt and precipitation (Spence and Woo, 2003). This shows the sig-
ni�cance of taking hydrological connectivity into account to enhance the performance of
hydrological models. According to the results of a surface water survey conducted for the
spring freshet runo� event in 2006 (Shaw et al., 2012), only 39% of the St. Denis basin
in Saskatchewan contributes runo� to the outlet and this can be impacted by dynamic
basin conditions like man-made structures and antecedent conditions of the basin that can
change the hydrological connectivity.

Several investigations into the connectivity of wetlands in low relief landscapes have
been conducted using both �eld-based and modelling techniques. Wetlands are often
treated as isolated in the isolation-connectivity continuum framework because they can
be connected or isolated at di�erent points in time (Leibowitz, 2003). A threshold concept
that suggests wetlands are disconnected prior to the satisfaction of a storage threshold can
be used to represent wetlands in such frameworks. Wetlands move from being isolated to
being connected after achieving a speci�c storage threshold. Models that simulate con-
nectivity in a watershed, whether via surface or subsurface pathways, were categorised by
Golden et al. (2017) into three general categories: spatially lumped, semi-distributed, and
fully distributed, as shown in Figure 2.1.

A brief explanation of each category is provided here. The lumped models (e.g., Liu and
Schwartz (2011)) represent implicit connectivity of a watershed's entire area. The semi-
distributed models linked to \quasi-explicit" connectivity take similar connection patterns
into account for parts of the watershed (e.g., Mekonnen et al. (2016) and Beven and Kirkby
(1979) rely upon some form of probabilistic treatment of the landscape). For each wetland
in fully distributed models, connectivity is explicitly calculated (e.g., Shook and Pomeroy
(2011); Shaw et al. (2013a); Shook et al. (2013); Ameli and Creed (2017); Amado et al.
(2018); Ahmed et al. (2020a); Ahmed et al. (2021)). Underestimating the signi�cance of
wetlands on the structure and function of watersheds and water supplies can result from
a lack of understanding of wetlands' hydrologic connectivity (Ameli and Creed, 2017).
This thesis aims to address a critical gap between understanding of the signi�cance of
connectivity and the capacity to represent it on a landscape predominated by hundreds or
thousands of wetlands.

The distribution of surface storage a�ects wetland connectivity and consequently the
area that contributes runo� to the outlet of a basin. Shaw et al. (2013a) has shown
this relationship for four types of landscapes with di�erent spatial storage distribution
patterns located inside the Prairie Pothole Region as depicted in Figure 2.2. Curve A,
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Figure 2.1: Representation of connectivity by a) lumped (implicit), b) semi-distributed
(quasi-explicit), c) fully-distributed (explicit) models (adapted from Golden et al. (2017))

C, and B in Figure 2.2 depicts the contributing area/ storage relation for systems where
storage is concentrated in the upper portion, lower portion, or evenly in the entire basin,
respectively. The situation where both stream channels and wetlands are present within
the catchment is depicted by Curve D. Wetlands with a lot of storage capacity (labelled
G in Figure 2.2) appear to be inactive before a certain amount of precipitation. These
wetlands were referred to as \gatekeepers" by Phillips et al. (2011) because they can only
gather and store precipitation during normal events, only releasing water during extreme
events. Gatekeepers can contribute to runo� and become active based on their storage
threshold (i.e., the volume of water needed to �ll a storage capacity before the 
ow cascades
downslope) (Spence, 2007), the intensity and the duration of storm, and the upstream
runo� (Phillips et al., 2011). Curve C in Figure 2.2 shows that decreases in storage capacity
are not immediately re
ected in increases in the percentage of contributing area. The
location and relative size of the gatekeeper can signi�cantly a�ect the relationship between
the depressional storage and the connected fraction of a basin (Shook et al., 2021a). In fact,
a larger percent of the storage capacity must be �lled to generate runo� from gatekeeper
\G" leading to the out
ow. In this extreme case, other wetlands may be full and will
connect together after the threshold has been reached, making the resulting contributing
area signi�cant. The importance of size and spatial distribution of depressions may be
controlled by the number of depressions in a basin. Shook et al. (2021a) shows that the
spatial distribution of depressions loses signi�cance as the number of depressions rises,
which is followed by a decline in the areal fraction of gatekeepers (i.e., the area of the
gatekeeper relative to the total area of depressions).

The wetland stage relative to the threshold can control the magnitude and timing of
the hydrologic connectivity. McLaughlin et al. (2019) developed an empirical tool (i.e.,
the Connectivity and Flow from Stage model (CFS)) to �nd the hydrologic connectivity
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Figure 2.2: A schematic overview of the relationship between spatial distribution of basin
storage and contributing area (adapted from Shaw et al. (2013a))

threshold. This model is based on a daily water budget, which is used to calculate a metric
called net
ow based on daily precipitation, evaporation, and wetland stage variations.
Negative net
ow represents initiation of surface hydrologic connectivity and the associated
wetland stage is assumed to be the threshold height. The model's reliance on bathymetric
data, however, limits its usability in regions with ungauged basins (McLaughlin et al.,
2019). Furthermore, this model does not take into account the cascading e�ects of wetlands
on connectivity.

To demonstrate the developments and knowledge gaps in wetland connectivity and
runo� simulation, existing hydrological models of �ll-and-spill are examined for their
strengths and weaknesses in Section 2.2.

2.2 Fill-and-spill Phenomena and Existing Models

Wetlands are either explicitly or implicitly represented in hydrological models. In order
to comprehend the scienti�c context and the challenges of wetland-dominated landscape
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simulations, this section reviews both kinds of wetland representations in hydrological
models.

2.2.1 Explicit Representation of Wetlands

Many studies on wetland hydrologic simulation have been carried out using di�erent ver-
sions of the Soil Water Assessment Tool (SWAT) (Arnold et al., 1998). This model pre-
viously had used three di�erent methods to represent wetlands (Mekonnen et al., 2016).
One strategy is to ignore depressions because they all contribute to the outlet within the
catchment. Another strategy is to view depressions as isolated geographical features dis-
connected from the rest of the basin. A third strategy is to combine all of the depressions
in each sub-basin into a single, large depression (Almendinger et al., 2014). The third
method divides each basin into number of sub-basins, which are further divided into sev-
eral Hydrologic Response Unit (HRU). The curve number (CN) method is used to calculate
surface runo� in each HRU. The resulting runo� is then directly discharged into a single
depression, which serves as an e�ective representation of all of the depressions' combined
storage in the sub-basin. The accumulated water draining from each sub-basin's depression
then spills into the main channel of the basin. This lumped model has the drawback of
simulating just one wetland, with a single over
ow threshold, ignoring the heterogeneity of
landscape depression storage. Moreover, this version of SWAT did not take into account
the storage and retention capacities of wetland HRUs. To account for the hydrological
functions of wetlands, Wang et al. (2008) incorporated the Hydrologic Equivalent Wetland
(HEW) concept into SWAT. Each HEW is de�ned by parameters that represent the spatial
distribution of wetlands, a retention function, the storage capacity of wetlands, channel
length, and Manning's n value. Its area is equal to the sum of the wetlands area in each
subbasin. However, in these lumped models, the threshold of each individual wetland and
its e�ects on runo� generation are simply ignored.

In order to improve the representation of wetland inter-connectivity through the �ll-
and-spill process, Evenson et al. (2016) rede�ned HRU boundaries in SWAT as shown in
Figure 2.3. In this method, every Geographically Isolated Wetland (GIW) is an HRU with
a catchment area, as indicated by the dashed line in the Figure 2.3, and all HRUs that are
part of a GIW's catchment area drain to that GIW. Each \GIW-HRU" then drains to the
downstream one, and �nally to the outlet. As a result of this boundary re�nement, the
number of HRUs for a small study area increases about 50 times comparing to the initial
version. This makes the simulation computationally expensive and increased the run times
from hours to weeks (Muhammad et al., 2019). This method is also hard to apply in
large basins without �ne resolution elevation data. Evenson et al. (2018) later developed
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Figure 2.3: a) Standard HRU boundaries, b) GIW placement in the watershed with con-
tributing area, c) HRU re�nement in a way that each wetland is identi�ed as a new HRU
itself and all unique parts of drainage area are respected (adapted from Evenson et al.
(2016))

SWAT for Depression Storage and Flows (SWAT-DSF), which treats depressions and the
contributing area as a single HRU rather than two separate ones. They incorporated
high resolution Light Detection and Ranging (LiDAR) data for delineation of depression
HRUs. They also removed small depressions with perimeter to area ratio less than 0.3 and
catchments with insu�cient runo�. Muhammad et al. (2020) also proposed a modi�ed
form of wetland representation to reduce the computational costs of this \fully-discretized"
version of wetland modelling in SWAT. They compared wetland storage capacity with a
predetermined threshold that reduces computational cost. Wetlands that have storage
capacities above the threshold are referred to as \GIW-HRU" and the remaining wetlands
are removed from the model and their combined storage capacity is added to the capacity of
the remaining wetlands in the subbasin. If there are no more wetlands in the subbasin with
storage capacities greater than the threshold, the total volume of low storage wetlands is
distributed equally among the remaining wetlands in the catchment. This approach reduces
the number of HRUs and, consequently, the run time. Although these more complex models
more accurately depicted the dynamics of wetland water storage, the explicit representation
of wetlands and the need for high resolution data are problematic in low-gradient landscapes
with many wetland features.

Wetlands can be explicitly represented in fully distributed models. For instance, Shook
and Pomeroy (2011) created the Wetland DEM Ponding Model (WDPM), a fully dis-
tributed model of prairie wetlands based on high resolution LiDAR data. Within this
distributed model, a variety of hydrological processes, including evaporation, runo�, and
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Figure 2.4: Schematic diagram of water 
ow from a DEM cell using WDPM (adapted from
Shook et al. (2021b))

drainage, can be modelled. The three modules that make up WDPM are based on the
Shapiro and Westervelt (1992) iterative algorithm. First, a uniform depth of water is added
as rainfall and water can be distributed to a lower cell or to a higher cell with insu�cient
water as shown in Figure 2.4 depending on the elevation of the water surface at adjacent
cell to make the 
at surface. Second, without considering any speci�c evaporation 
uxes,
a uniform depth of water is subtracted from each cell to represent the evaporation pro-
cess. Finally, the excess water 
ows to depressions and the outlet of the basin by draining
downhill.

There are several limitations in using the WDPM (Shook et al., 2013). First, the
model's dependency on high resolution LiDAR data restricts its applicability and increases
its computational complexity. Second, the water depth in depressions is limited to the land
elevation at that point which con�nes the depression elevation variation. Third, wetland
lateral extent is limited to the LiDAR resolution and it fails to account for the presence
of subsurface 
ow pathways. The methodology of WDPM is similar to the Scalable Pot-
hole terraIn anaLysis aLgorithm (SPILL) model by Shaw et al. (2013a) who developed a
\simple pothole terrain analysis algorithm", which applies a certain depth of water to each
wetland considering its contributing area. Using the watershed function in ArcGIS, this
model delineates the resulting contributing area. In this model precipitation is uniformly
redistributed within a basin and the interactions between various wetlands and between
inputs from other wetlands in a cascading network are neglected. This leads to inaccu-
rate estimates of the inputs to each wetland and, as a result, inaccurate estimates of the
magnitude and timing of stream
ows, which a�ect how much water is stored and released
by wetlands. Although, the methodologies of WDPM and SPILL model are similar, the
SPILL model does not simulate the removal of water. Similar models developed later in-
clude the Prairie Region Inundation Mapping (PRIMA) model by Ahmed et al. (2020a),
later implemented in MESH (MESH-PRIMA by Ahmed et al. (2021)), and the Pothole
Cascade Model (PCM) by Shook and Pomeroy (2011), which take into account the addi-
tion and removal of water. The removal of water per iteration is possible in PRIMA and
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makes this model to be more e�cient than WDPM.

PCM treats wetlands as distinct reservoirs and randomly chooses the wetland dimen-
sions from the frequency distribution of wetlands' characteristics, such as areas and vol-
umes, in each basin rather than relying on a high resolution elevation data like WDPM.
The collective wetland behaviour can then be simulated with the aid of parameterization.
However, since wetlands dimensions have been recognised based on the maximum area and
volumes of water, the drawback of using PCM is that it cannot subdivide wetlands when
water level drops below internal sill elevations. Thus, the size and number of empty or
partially full wetlands are simulating incorrectly, which a�ects the accuracy of runo� cal-
culations (Shook et al., 2013). Furthermore, wetland contributing areas in 
at landscapes
are hard to estimate from digital elevation data, and can prevent PCM from determining
the correct distribution frequency of the volume and area of wetlands. Also, wetlands are
receiving water from shallow subsurface 
ow which cannot be accurately delineated since
even LiDAR data are not su�cient to characterise subsurface water pathways.

2.2.2 Implicit Representation of Wetlands

Saturation/in�ltration excess models, such as the Soil Conservation Service curve number
(SCS-CN) method, have been commonly used to simulate runo� generation (Wang, 2018).
Runo� production by SCS-CN event-based empirical model is based on a rainfall-runo�
curve, a function of the cumulative storm rainfall and antecedent wetness condition, and
has been used since 1970s, widely because of its simplicity. However, the lack of su�-
cient description of the runo� physics and the in
uence of spatial variability of antecedent
moisture a�ects the accuracy of the runo� simulation (Bartlett et al., 2016a). Several
semidistributed rainfall-runo� models account for a watershed's heterogeneity by consid-
ering distributions of watershed properties including storage. Xinanjiang (Zhao, 1980),
TOPography-based hydrological MODEL (TOPMODEL) (Beven and Kirkby, 1979)), and
the PDM (Moore, 1985) models are saturation excess runo� models that use a distribu-
tion function to account for the spatial variability of watershed properties, particularly
water storage capacity. These models were developed between the mid 1970s to 1980s and
have been repeatedly modi�ed and improved until now. For instance, TOPMODEL is a
semi-distributed rainfall-runo� model which considers each point of the landscape as a soil
reservoir (Beven and Kirkby, 1979). In this model, a topographic index distribution is
used to describe the spatial variability of the reservoir's storage capacity in a landscape.
The area draining through a point from an upslope divided by the local slope angle is the
topographic index. The key premise of the method is that it is not necessary to model ev-
ery point in a catchment because points with similar index values should respond similarly
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to equivalent rainfall. Although TOPMODEL has been used by several studies (Goudarzi
et al., 2023; Zulka
i et al., 2021; Beven et al., 2021), the assumptions of the model re-
garding runo� mechanisms limit its successful use to certain types of basins, and excludes
utility in wetland systems.

The Xinanjiang model is another implicit probabilistic runo� model that considers a
Pareto probability distribution of soil water storage capacity. This model then uses the
Muskingum method to route the runo� generated at each sub-basin to the outlet of the
catchment (Zhao, 1980). There exist several improved versions of the Xinanjiang model
(Sahoo, 2005), that add new parameters to increase the model ability in simulating complex
hydrological process in a basin. One is the study by Jayawardena and Zhou (2000) that
considers a double parabolic distribution to account for the complexity of soil moisture
variability in landscapes. Another example is the Variable In�ltration Capacity (VIC)
that considers the distribution of in�ltration capacity to represent variable soil moisture
storage (Wood et al., 1992). To separate subsurface 
ow from surface 
ow, Liang et al.
(1994) added a new soil layer to the structure of the TOPMODEL model, called VIC-
2L, which responds to the rainfall only once the main layer is saturated. The ARNO
model of Todini (1996) is another semi-distributed model which uses the basics of the soil
moisture balance concept of the Xinanjiang, but adds features to incorporate drainage and
percolation losses.

Moore (1985) proposed a rainfall-runo� model called PDM, further discussed in Moore
(2007), which considers each point at a catchment to act like a single tank with a storage
capacity ofc0, as shown in Figure 2.5-a. Each point is characterized with a storage capacity.
The spatial variation of storage capacity is represented by a distribution function to calcu-
late runo�. Each storage level can be exceeded due to rainfall or depleted by evaporation,
continuously until the input exceeds a critical storage capacity threshold,c� , and generates
runo� as depicted in Figure 2.5-b. Moore (2007) showed that total water storage within a
basin, S(t), can be related to a critical capacity,C � (t), through:

S(t) =
Z C � (t )

0
cf (c)dc+ C � (t) �

Z 1

C � (t )
f (c)dc =

Z C � (t )

0
(1 � F (c))dc: (2.1)

wherec is the storage capacity/depth of the soil column at each point,f (c) represents the
frequency of occurrence of a storage's depth, andF (c) is the cumulative distribution func-
tion of storage capacity. The PDM provides a starting point for probabilistic description
of the storage dynamics in heterogeneous catchments. However, the connectivity between
di�erent storage features is not replicated by PDM. Rather, water is redistributed such
that the storage is always uniform, equal toC � (t) in all non-full storage situations. The
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Figure 2.5: Graphical illustration of a) runo� production by a single store, b) storage ele-
ments of di�erent depth and direct runo� production from a population of stores (adapted
from Moore (2007))

invocation of this type of simplifying approximation is common in analytic-probabilistic
methods such as PDM and the methods derived in this thesis.

Bartlett et al. (2016b) suggest a generalized expression of runo� curve which relates
average runo� to antecedent potential retention to unify the SCS-CN, TOPMODEL, TOP-
MODEL, and PDM based models, although each of these models assumes a di�erent prob-
ability distribution of storage capacity. Bartlett et al. (2016a) also suggest a framework
that uses joint distributions of soil moisture de�cit, water storage capacity, and rainfall to
modify the runo� simulation by SCS-CN model. The new probabilistic method accounts
for watershed heterogeneity and improves the saturation excess representation by separa-
tion of runo� production into classes of \pre-threshold" and \threshold" runo�. While the
Bartlett et al. (2016a,b) model was able to unify those approaches for treating heteroge-
neous landscape storage, the interaction between adjacent stores is still not represented {
each store is assumed to function independently. These methods therefore cannot repre-
sent the impact of cascading 
ow between stores or the impact of di�erent types of storage
networks.

To implicitly represent the e�ective response of a heterogeneous watershed with thou-
sands of wetlands, multiple e�orts have applied the ideas developed in PDM (Moore, 1985,
2007). For instance, Mekonnen et al. (2014) developed the Probability Distribution Model
based RunOFf generation (PDMROF) algorithm in a stream
ow routing model (WAT-
FLOOD) to represent the spatial variability of wetlands storage capacity (rather than soil
storage) in a basin, using the Pareto distribution function. This algorithm also provided a
relationship between direct runo� and available storage in a basin by considering depres-
sions with di�erent storage capacities on a \tile". \Tile", de�ned as a hydrological unit
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accounts for sub-grid scale heterogeneity. The equation used in PDM is identical to that
of PDM, except that in PDM, water storage is assumed to be wetland storage, rather than
soil storage. Ahmed et al. (2020b) incorporated the PDM algorithm in Hydrologiska Byrns
Vattenbalansavdelning (HBV)-light model and introduced a new conceptual HYdrological
model for Prairie Region called HYPR. This algorithm is one of the Prairie algorithms em-
beded in Raven, the hydrological model (Craig et al., 2020), and will be more discussed in
chapter 3. A shortcoming of the PDM is that it considers all the water draining from a wet-
land 
ows to the outlet, directly, without consideration of runo� movement in a cascading
network. It also neglects local runo� contributing area, implicitly treating entire landscape
as wetlands. Another model based on the PDM model has been developed by Mekonnen
et al. (2016). This model incorporates the Probability Distributed Landscape Depressions
(PDLD) approach into the SWAT. SWAT-PDLD considers the water balance equation in
every single depression, and by aggregation of runo� from each depression calculates the
total out
ow from the basin. The exponential distribution of depression storage enables
SWAT to consider spatial heterogeneity of numerous wetlands within the basin. PDMROF,
PDLD, and PDM (Mekonnen et al., 2014, 2016; Moore, 1985, 2007) are among the few
models that represent �ll-and-spill in a probabilistic framework. However, these models
represent over
ow from individual storage units rather than interaction between di�erent
depressions. All depressions in these models receive the same amount of water, resulting in
an equal �lling of each depression. The PDM approach redistributes basin-average storage
between various-sized wetlands during evaporation periods. This means that even when
the depressions are at or below their storage capacity, water is unrealistically redistributed
among depressions. Also, it means that the model is unable to replicate the hysteresis in
the �lling and emptying of various-sized depressions and between storage and contributing
fraction (Clark and Shook, 2022; Shook and Pomeroy, 2011) because there is a simple 1:1
relationship which relates a basin contributing area to average storage. Hysteresis matters
since it de�nes the dependency of model simulation output (in this case, runo�) on the
\history of cause" (in this case relationship between contributing area and storage, now
and past) (Gharari and Razavi, 2018). Clark and Shook (2022) formulated a spatially
integrated model, called meta-depression model as a modi�ed form of PDM which includes
hysteretic behavior between storage and contributing area. They demonstrated that the
new meta-depression model is comparable with an ensemble-depression model similar to
WDPM which explicitly simulate depression storage dynamic. They use the same formu-
las as Moore except instead of using probability distribution of depressions they de�ned
a meta depression with the area and volume equal to spatial average area and volume of
depressions in the basin.
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Figure 2.6: Length and time scale of hydrological processes (adapted from Bl•oschl and
Sivapalan (1995))

2.3 Upscaling Hydrological Process

Hydrological processes function at di�erent length scales from several meters to a million
square kilometers (Bl•oschl and Sivapalan, 1995). Bl•oschl and Sivapalan (1995) de�ned
upscaling as a process by which small-scale (sub-grid) information is transferred to in-
creasingly large (grid) scales. It is not always possible to simulate all processes at the �ne
scale, typically because of data and computational limitations. The linkage between scales
is depicted in Figure 2.6, which classi�es upscaling as having two steps: �rst, small scale
variables are distributed over the catchment and then, the spatial distribution of variables
are aggregated in one large scale value. As is consistent with Figure 2.6, the purpose of
the current study is to transfer the hydrological response of the small scale, with one cas-
cade sequence of wetlands (one small scale value) to a larger scale that has thousands of
wetlands (many small scale values) and aggregate this response to �nd the total out
ow
from the basin given some snowmelt or rainfall event.

2.3.1 Upscaling Methods

Upscaling methods in hydrology may be classi�ed in three groups based on how they
account for sub-grid variability, i.e., the heterogeneity within a unit: e�ective parame-
terization; stochastic method, and bulk description (Bl•oschl and Sivapalan, 1995). E�ec-
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tive parameterization essentially ignores sub-grid heterogeneity by substitution of a single
macro-scale parameter in the micro-scale equations. Stochastic approaches (e.g., Beven
and Kirkby (1979), Zhao (1980), Moore (1985), or Craig et al. (2010)) often rely upon
probabilistic representation of landscape heterogeneity using probability distribution func-
tions. The upscaled value of interest is generated by aggregation of distributed values
using ensemble or volume averaging methods. In volume averaging methods, integration
is accomplished over physical volumes of the media rather than in ensemble space (Wood,
2009). In the third approach, an aggregated bulk description replaces sub-grid variabil-
ity using a single lumped equation. For instance, in Darcy's Law, hydraulic conductivity
instead of detailed geometric information about a soil's pore network, represents sub-grid
variability (Bl•oschl and Sivapalan, 1995).

2.3.2 Derived Distribution Approach

In the probabilistic treatment of upscaling, small scale variability is characterized by a
probability distribution function (PDF) which represents the spatial variability of small
scale parameter values and/or state values over a computational unit. Here, the derived
distribution approach which propagates probability distributions through known functions,
is used to aggregate this variability and generate an upscaled response. For instance, if
y = g(x) de�nes the relationship between two random variables,X and Y, the derived
distribution approach helps to calculate the CDF of outputs/dependent variables (y) based
on the known variability of inputs (x). For a monotonic function g(x), we can relate the
input ( x) and output (y) CDFs as follows (Benjamin and Cornell, 2014):

FY (y) = P[Y � y] = P[X � g� 1(y)] = FX (g� 1(y)) (2.2)

where FY represents the cumulative distribution function of random variableY, and P
stands for the probability. The function, g(x), relates dependent parametery to the inde-
pendent parameterx, and g� 1(y) is its inverse. Here, the PDF of the dependent variable
can be calculated from di�erentiation of the CDF. Using the following equation (Benjamin
and Cornell, 2014), we can �nd the PDF of the dependent variable directly from the PDF
of the independent one:

f Y (y) =
d
dy

FY (y) =
d
dy

[FX (g� 1(y))] =
d
dy

[
Z g� 1 (y)

�1
f X (x)dx] =

dg� 1(y)
dy

f X (g� 1(y)) (2.3)
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Figure 2.7: Graphical representation of the derived distribution approach whilef Y (y) =
jdx=dyjf X (x) and the shaded areas are equal (adapted from Benjamin and Cornell (2014))

wheref Y represents the probability distribution function of random variableY. A graphical
representation of the derived distribution approach is depicted in Figure 2.7, which shows
a single one-dimensional monotonic input-output relationship.

For any function z, as a function of two random variables,x and y, the probability
distribution function of a dependent variablez can be calculated based on thex, the y and
the function g. For instance, the respective distribution relationships for scaling, sum, and
ratio operations upon random variables are as follows (Papoulis, 1965):

f z(z) =
1

jaj
f x

� z
a

�
wherez = ax (2.4)

f z(z) =
Z 1

�1
f x (x)f y(z � x)dx wherez = x + y (2.5)

f z(z) =
Z 1

�1
jyjf x (zy)f y(y)dy wherez = x=y (2.6)

Based on this approach, Craig (2018) derived the following distribution function forz =
max(x; a)

18



f z(z) = � (z � a)
Z a

�1
f x (x)dx + H (z � a)f x (z) (2.7)

whereH (x) is the Heaviside step function, which returns one for positive arguments and
returns zero for negative one, and� (x) is the Dirac delta function, which returns zero
everywhere except atx = 0 and its integral over the entire domain is one (Arfken and
Weber, 1999). Output distributions of more complicated functions can be generated via
repeated application of these basic rules, provided that the input distributions are not
correlated. This approach may be thought of as a closed-form analytical version of Monte
Carlo methods, which requires repeated sampling of the input distribution and model to
generate a discrete output distribution.

2.4 Wetland Hydrology in the Taiga Plains

Rapid permafrost thaw is occurring in the subarctic, especially at thaw sensitive discon-
tinuous permafrost regions. Thawing occurs as a result of large-scale drivers, like warming
air temperature and intensifying wild�re activity, and low-scale drivers, like lateral thaw
through advection and conduction from water bodies and permafrost-free wetlands ad-
jacent to permafrost (Devoie et al., 2021). Permafrost thaw might increase stream
ow
in discontinuous permafrost region because of thawing of ice-rich peat plateaus, ground-
water discharge increase caused by reactivation of groundwater 
ow paths, and (most
importantly) increased hydrological connectivity due to thaw-induced landcover changes
(Wright et al., 2022). There has been widespread thawing and degradation of permafrost
in southern regions of Canada's permafrost region, where permafrost is discontinuous, nar-
row, and relatively warm, with an increase in the thickness of the supra-permafrost layer,
which includes both the active layer (i.e., the region of soil on top of the permafrost that
freezes and thaws annually) and the talik (the region of soil which is permanently thawed)
(Connon et al., 2018). The mean annual temperatures in discontinuous permafrost region
is mainly above zero (about +2°C), making it hard for reformation of permafrost in those
regions (Shur and Jorgenson, 2007; Bonnaventure and Lamoureux, 2013; Quinton et al.,
2019). The permafrost in this climate regime remains from previous colder climate periods
and without the insulation provided by peat deposits, it would thaw (Devoie, 2021).

Between 1950 and 2009, the areal permafrost extent in the North Slave region, one of �ve
administrative regions in Canada's Northwest Territories, decreased by approximately 28%
(Zhang et al., 2014). Morse et al. (2016) note that due to signi�cant latent heat e�ects and
the insulating qualities of organic ground cover, permafrost in the �ne-grained sediment
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beneath forests is currently being protected from thawing. However, these landscapes
are becoming more and more vulnerable to climate change, and a warmer climate can
be expected to signi�cantly reduce the extent of permafrost such that a small extent of
permafrost region might remain by 2090 (Zhang et al., 2014). Permafrost thaw in the
Taiga Plain has been accelerated by climate change, and landscapes that were previously
dominated by forests and permafrost are now more frequently wetland-dominated and free
of permafrost (Wright et al., 2022; Gibson et al., 2021; Quinton et al., 2011).

To date, several studies have investigated the e�ects of permafrost thaw on the gen-
erated runo� from a basin using observational research. Previously, it was thought that
the most important reason for increased stream
ow was the reactivation of groundwater
pathways caused by permafrost thaw (St. Jacques and Sauchyn, 2009). Connon et al.
(2014) studied the increase in annual runo� between 1995 and 2012 in four river basins
in the lower Liard River valley, Northwest Territories, Canada, where permafrost-free wet-
lands have expanded because of the thawing of the permafrost. By using historical aerial
photographs and high-resolution satellite imagery, they discovered the most likely factor in
increasing annual runo� rate is the conversion of storing landcover features to producing
ones, as well as increase in hydrological connectivity between runo� producing landcovers.
In this study, they de�ned secondary and primary contributing areas as parts of a basin
that drains to bog and fen, respectively (This terminology will be used in chapter 5 of this
thesis).

Taiga shield and taiga plains hydrology are dominated by the "�ll-and-spill" processes
discussed in Section 2.2. Forested peat plateaus underlain by permafrost and interspersed
with permafrost-free wetlands, including channel fens and 
at bogs, form the landscape
in much of the Taiga plains (Connon et al., 2015). Channel fens transfer water to the
basin outlet via wide, hydraulically rough channels and 
at bogs retain moisture inputs
as storage features, draining to other bogs and fens once full. During spring freshet, large
volumes of snowmelt over frozen active layer produces large surface runo� (Wright et al.,
2009). It was also observed by Connon et al. (2015) that secondary runo� from bog
cascades is comparable to the basin average during melt events when the bog is frozen and
in�ltration is restricted. Bogs are dynamic transmission features and a key element of the
water balance in discontinuous regimes, as demonstrated by a study of two adjacent bog
cascades by Connon et al. (2015). Ignoring this storage dependency of runo� leads to an
underestimation of stream
ow magnitude and an incorrect estimation of the contributing
area.

Most studies of the e�ects of permafrost thaw on runo� generation in headwater basins
are based on comparing stream
ow observations over time and few of them use hydrological
models (Stone et al., 2019). How these basins will hydrologically respond to climate change
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is still poorly understood. Stone et al. (2019) simulated the discharge of a channel fen
sub-basin in the headwaters of Scotty Creek, Northwest Territories, dominated by peat
plateau-bog complexes from 2009 to 2015, using the Cold Regions Hydrological Modelling
Platform (CRHM; Pomeroy et al. (2007, 2022)) which is a physically based model capable
of simulating key hydrological processes predominant in cold region hydrology (Annand
et al., 2022; Spence et al., 2022). According to the �ndings of this study, for every 10%
reduction in permafrost area, the total annual discharge increased by 2.5%. They related
this reduced discharge to increase in the surface storage due to the peatland thaw, landscape
evapotranspiration, and underground 
ow path routing. Field observations in the studied
basin were used to collect the water balance components, which is impractical in larger
basins. Also, instead of using the actual historical landcover transitions, they de�ned
transition scenarios to estimate the permafrost thaw e�ects on the hydrological response.

There is a need for additional techniques and conceptual models to distinguish between
runo� generation processes in primary and secondary contributing areas while taking inter-
mittent wetland interconnections into account, in order to better understand and manage
northern water resources. Also, because of the non-stationary landcover due to climate
change, use of coupled landcover-hydrological models is desired to comprehend how land-
cover transitions a�ect the hydrologic response. Chapter 5 of the thesis will suggest a
coupling approach in which the information from a landcover classi�cation and prediction
model is used in the hydrological model to investigate the e�ect of land cover transition
induced by permafrost thaw on the generated stream
ow magnitude and timing.
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Chapter 3

An Upscaled Model of Fill-and-Spill
Hydrological Response

The hydrology of wetland-dominated landscapes is often controlled by a �ll-and-spill mech-
anism, whereby surface depressions retain water and release it once a de�cit is �lled. The
response of these systems to precipitation/snowmelt events is in
uenced by the local stor-
age de�cit and connectivity between storage features. To estimate runo� generated from
a heterogeneous wetland complex, a closed-form analytical upscaled probabilistic model is
developed. The mathematical solution requires information on the distribution of initial
de�cits and wetland local contributing areas, which may be estimated via a combina-
tion of spatial analysis and �eld observation. The model is used to explore the in
uence
of spatial heterogeneity of wetland properties including de�cit depth, local contributing
area, and cascade depth (the number of wetlands in-series within a cascade) on runo�
response. It is also used to clarify \gatekeeper" storage features role at large scales and
for systems with shallow wetland cascade depths. The proposed solution is shown to be
a generalization of the well-known Probability Distributed Model and Xinanjiang runo�
models, augmented to include information about local contributing areas and wetlands
connectivity. The closed form probabilistic mathematical solution is veri�ed by comparing
results with Monte Carlo simulations. The proposed runo� model has been implemented in
Raven, a hydrologic model, to test the method performance in lumped runo� simulation of
wetland-dominated basins in
uenced by �ll-and-spill hydrology. This study can contribute
to our understanding of wetland characteristics distribution on landscape hydrology, and
compensate for insu�ciently resolved elevation data in 
at terrains where threshold criteria
are hard to estimate.
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3.1 Introduction

The term `�ll-and-spill' has been used to describe runo� generation for situations where
a portion of the landscape �rst stores incoming water and then releases it once a storage
threshold has been reached. First, recognized as an important rainfall-runo� process by
Spence and Woo (2003), it has been found to be a key driver of the hydrologic response in
wetland systems (Connon et al., 2014), lake systems (Spence and Woo, 2006), and pothole
regions of Canadian prairies (Shaw et al., 2012). In cold regions such as prairies, topo-
graphic depressions (here referred to as `wetlands' for simplicity) also receive water from
precipitation, snowmelt and redistribution of snow by wind, and runo� from upstream
wetlands and local contributing areas (Fang and Pomeroy, 2008; Shook et al., 2013). They
lose water by evaporation, in�ltration, discharge to ground water, evapotranspiration, and
over
ow after exceeding a threshold storage (Hayashi et al., 2003; Shook et al., 2013). This
threshold behavior has also been observed in the Boreal Canadian Shield and Taiga plains
in the Northwest Territories where wetlands are surrounded by raised land underlain by
frozen permafrost Connon et al. (2015). In prairies, wetlands tend to be bowl-like topo-
graphic depressions with larger contributing areas, whereas in the discontinuous permafrost
region they are steep-sided and separated by berms of permafrost. The �ll-and-spill pro-
cess has likewise been observed in shallow storm
ow from hillslopes (Tromp-van Meerveld
and McDonnell, 2006), runo� over frozen ground (Coles and McDonnell, 2018), and be-
tween lakes in Arctic regions (Bowling and Lettenmaier, 2010; Spence and Woo, 2003). A
literature review of �eld investigations of such �ll-and-spill phenomenon may be found in
Spence (2010).

Modelling the �ll-and-spill phenomenon on a unit-by-unit basis is relatively straight-
forward, and is the foundation of a number of lumped conceptual models (e.g., the Tank
model of SugaWara (1979)). In these models, individual storage compartments (i.e., soil
or wetland stores) are represented explicitly, and are allowed to �ll and over
ow once a
storage threshold is exceeded. Other examples include the fully distributed WDPM, a
hydraulic model that distributes a simulated water depth over land (Shook and Pomeroy,
2011; Shook et al., 2013), and conceptual reservoir network models such as the parameter-
ized PCM (Shook and Pomeroy, 2011; Shook et al., 2013, 2021a), Simple Pothole Terrain
Analysis Algorithm (SPILL) (Shaw et al., 2013b), and modi�ed versions of the SWAT
used to assess the e�ects of geographically isolated wetlands (Wang et al., 2008; Evenson
et al., 2015, 2016; Lee et al., 2018; Muhammad et al., 2020). Ease of implementation is a
reason why distributed modelling is often applied to simulate threshold-controlled systems.
Challenges arise, however, in wetland complexes with thousands of storage features. Not
only are these thresholds for individual storage features often poorly known, but these are
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heterogeneous systems with spatial variability in contributing area, runo� 
uxes, storage,
and storage capacity. This complicates our ability to e�ectively estimate the basin-scale
response and if we choose not to explicitly represent individual wetlands, leads to an up-
scaling problem.

A variety of probabilistic models have been used to investigate the response of a land-
scape characterized by a distribution of storage areas to a runo� event. The PDM of
Moore (1985) envisioned soil storage on a landscape as a continuum of interacting or
non-interacting stores with di�erent storage capacity; smaller stores were more likely to
be full and spill water, larger stores would store water until their capacity was satis-
�ed. Once a probability distribution of storage capacity is speci�ed, the rainfall/snowmelt
magnitude and system mean storage are su�cient to mathematically estimate landscape-
scale runo� using a closed-form expression. In the non-interacting form of PDM, there
can be a nonuniform distribution of water through the stores. In the interacting form
(most often used), the PDM assumes that un�lled stores have uniform water content, that
stores are independently receiving water from precipitation with no contribution from or
to upstream/downstream stores, and that all portions of the landscape are covered with
storage features. The PDM has been applied successfully to the Canadian prairies, by
re-conceptualizing the algorithm in terms of wetland stores rather than the original soil
stores, without changing the mathematics. Examples include the PDMROF algorithm
in MESH land surface model (Mekonnen et al., 2014) to replicate stream
ow and chang-
ing contributing area (Mengistu and Spence, 2016) and a modi�ed version of HBV model
called HYdrological model for Prairie Region (HYPR) (Ahmed et al., 2020b). In these
models, the presence of local contributing areas to wetlands is neglected (i.e., the entire
landscape is implicitly covered in wetlands), and cascades of wetlands, where wetlands can
�ll-and-spill in series, are not represented. Another example of using the PDM for wetland
simulation is the Puddle-based Unit PDM (PBU-PDM) implementation in SWAT (Zeng
et al., 2020). They aggregated all the depressions located in a subbasin into one large de-
pression and applied the PDM to �nd the generated runo� from the aggregated landscape.
A shortcoming of such a model is that the �ll-and-spill process is considered implicitly in
groups of depressions while explicit connectivity between storage features (wetlands) and
contributing areas are ignored.

A similar strategy, with di�erent assumptions about the storage capacity distribution,
leads to the Xinanjiang runo� model (Zhao, 1980; Sahoo, 2005). In the Xinanjiang model,
a Pareto distribution characterizes the point-scale spatial heterogeneity in storage capacity.
The equivalent forms of the PDM and the Xinanjiang model were �rst recognized in Moore
(1985). Working with the VIC model, an evolution of the Xinanjiang model, Bartlett et al.
(2016a) derived analytical expressions that translate the semi-distributed frameworks of
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the PDM and Xinanjiang approaches into event-based rainfall-runo� relationships, and
demonstrated that the SCS-CN method, PDM, and VIC model are e�ectively equivalent.

We here develop an upscaled model of �ll-and-spill runo� from cascading storage fea-
tures, henceforth referred to as wetlands, for e�ective simulation of runo� in prairies, Taiga
plains, and Boreal regions of Canada - landscapes composed of thousands of cascading wet-
lands which drain into channels (Connon et al., 2014, 2015). The model is unique in that:
(1) storage features are not necessarily disconnected from upstream storages; the impact
of cascading wetlands is explicitly treated and assessed; (2) the landscape is divided into
storage features and permeable local contributing areas to those storage features; (3) the
approach simulates the storage de�cit relative to the overtopping threshold rather than
storage volume; and (4) the approach explicitly (and probabilistically) represents hetero-
geneity in local contributing area, in�ltration capacity of local contributing area, and local
storage de�cit. The use of a derived distribution approach enables the development of
closed-form expressions for landscape runo� and local contributing areas as a function of
system de�cit distribution, precipitation/snowmelt magnitude, and landscape character-
istics. The closed-form analytical solution is �rst derived and then incorporated into a
semi-distributed hydrological model to simulate runo� in wetland dominated basins.

The following steps are taken to present the new �ll-and-spill method for simulating
the hydrological responses of wetland-dominated landscapes. Here, we:

1. Introduce a new method, the UWFS method, which handles the probabilistic treat-
ment of �ll-and-spill phenomenon in systems represented by wetland cascades

2. Derive the closed-form analytical solution for the special case of speci�ed truncated
exponential distributions of wetland storage de�cit and wetland local contributing
area ratio

3. Demonstrate that the approach is a generalization of the PDM (Moore, 1985), and
Xinanjiang (Zhao, 1980) models

4. Compare the analytical event model against Monte Carlo solutions of thousands of
wetlands

5. Demonstrate the sensitivity of landscape runo� response to the de�cit distribution,
wetland cascade depth, and local contributing area ratio

6. Assess the performance of the proposed method by incorporating it into a continuous-
time hydrologic model, where de�cit distribution is allowed to evolve in time, and
simulating the upscaled daily runo� response and mean storage dynamics in systems
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of hundreds to thousands of wetlands in prairie basins at the spatial scale of on the
order of 1000 km2 without simulating individual wetlands.

3.2 Methods

The UWFS method is presented here in four parts. First, general expressions are estab-
lished for event runo� from a landscape in which individual wetlands drain to a surface
stream network. Second, the full UWFS method is extended to account for the impact of
(1) the number of wetlands in a cascade series (termed the \wetland cascade depth") and
(2) the e�ective out
ow from a wetland-dominated landscape comprised of thousands of
cascading storage features. Third, the PDM and Xinanjiang methods are demonstrated to
represent a speci�c simpli�ed case of the UWFS method. Finally, the event-based model
is extended for continuous applications and deployed to simulate runo� response in a set
of prairie basins.

3.2.1 Conceptual Model and Approach

The foundation of the probabilistic treatment of �ll-and-spill in this work is the catego-
rization of the landscape into wetland cascades: groupings of wetlands that are serially
ordered with one downstream connection to a surface water network (i.e., streams or fen
channels). Initially, only cascades with a network branching ratio equal to one are con-
sidered (i.e., wetlands are structured in series and each has a maximum of one upstream
input). If the distribution of initial storage across all wetland cascades is speci�ed, an
analytical upscaling procedure can be used to determine the bulk response of a basin to
continuous series of rainfall or snowmelt events. A conceptual illustration of a wetland cas-
cade is provided in Figure 3.1a. For each wetland in a cascade, a simple event model (or
single-time step) represents the �ll-and-spill response, as depicted in the conceptual model
in Figure 3.1b. In this conceptualization, the total water available to the most upstream
wetland in a cascade is the sum of the water directly falling onto the wetland and the runo�
from the surrounding local contributing area. Wetlands are e�ectively treated as prismatic
storage units that receive water until a threshold is reached, after which any additional
water 
ows downstream. The assumption of prismatic storage unit is not wholly necessary
for the derivations, but simpli�es presentation of the basic model and de�cit volume-depth
relationship. The total out
ow from the most upstream wetland in a cascade can be de-
rived based on the amount of water input minus the storage de�cit that would prevent the
downstream movement of water as follows,
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Figure 3.1: (a) Plan view of a wetland cascade network focusing on one wetland cascade
with the depth of three wetlands (Sources: Google Earth), (b) schematic of the wetland
cascade network, and (c) simpli�ed model representation.D represents de�cit depth of each
wetland, �R represents the runo� from each wetland's local contributing area, normalized
by wetland area, andO represent out
ow from a wetland.

O�
1 =

A1
u

A1
w

� R + P0 � D1 = � 1:R + P0 � D1 (3.1)

O1 = max( O�
1; 0) (3.2)

whereO �
1 [mm] and O1 [mm] represent the potential and actual volumetric out
ow nor-

malized by the wetland area to reduce calculation dimension and prevent the need for
wetland area values, respectively (\potential" in that Equation 3.1 can resolve in a neg-
ative value, which cannot be de�ned as out
ow);A u

1 [L2] is the local contributing area
of the �rst wetland, which does not include the wetland area;A w

1 [L2] is the area of the
wetland itself; and � 1 [-] is the relative size of the local contributing area (� 1 = A1

u=A1
w),

herein de�ned as the \local contributing area ratio"; R [mm] is the rainfall excess from
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the local contributing area (i.e., the fraction of precipitation or snowmelt remaining after
other processes such as evapotranspiration are applied and that can contribute to runo�,
which can be found from any desired runo� generation algorithm);P0 is rainfall over the
wetland area and it is equal to zero during snowmelt events; andD 1 [mm] is the wetland
storage de�cit. Note that if the local contributing area greatly exceeds the wetland area,
the de�cit term becomes negligible and the wetlands play no role in moderating the out-

ow. Conversely, for large de�cits and low runo� ratio (such as when a storm happens after
a dry period) wetlands play a dominant role in controlling basin runo� response. Based
upon integral relations describing the sum of two random variables, (Papoulis and Pillai,
2002):

f A (A) =
Z 1

�1
f B (x)f C (x � A)dx whereA = B � C (3.3)

whereA, B , and C are random variables andf A (A), f B (B ), and f C (C) are their distribu-
tions, Equation 3.1 may be written for an in�nite number of wetlands subjected to a �xed
runo�, R, initial de�cit, D , and local contributing area ratio, � , sampled from frequency
distributions, f D and f �R , as,

f O � (O� ) =
Z 1

�1
f �R + P 0(x)f D (x + P0 � O� )dx (3.4)

where f �R + P 0 and f D are the probability distributions of the local in
ow and de�cit, re-
spectively. The probability distributions of local contributing area ratio, � , and de�cit, D ,
represent spatial variability in the size of the contributing areas for individual wetlands and
variability in the water level of each wetland relative to its spilling threshold, respectively.
Note that Equation 3.1 describes the most upstream wetland in a cascade, which is distinct
from all other wetlands in that it has no upstream input. The water balance equation or
potential out
ow from the nth wetland within a cascade of depthN > 1 is,

O�
n = � nR + P0 � Dn +

�
An� 1

w

An
w

On� 1

�
= 
 n + On� 1 (3.5)

where
 n is the sum of the water added through precipitation/snowmelt minus the storage
de�cit ( 
 n = � nR + P0 � Dn ). Note that in this work, all wetlands in a single cascade are
assumed to have comparable areas to make the problem mathematically tractable. The
impacts of this assumption on generated runo� from wetlands in wetland cascade depth
greater than one is later investigated in Section 3.4.5. The distribution of potential out
ow
from any wetland in the cascade is therefore (using the same relations used to generate
Equation 3.4):
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f O �
n
(O�

n ) =
Z 1

�1
f 
 n (O�

n � x)f On � 1 (x)dx (3.6)

Using the derived distribution relationships for the maximum of two random variables
as,

f A (A) = � (A)
Z 0

�1
f B (x)dx + H (A)f B (A) where A =max( B; 0) (3.7)

The actual out
ow from a wetland cascade is derived as the maximum of the potential
out
ow and zero (Equation 3.2) as

f On (On ) = � (On )
Z 0

�1
f O �

n
(x)dx + H (On )f O �

n
(On ) (3.8)

whereH (x) is the Heaviside step function, which returns one for positive arguments and
returns zero for negative one, and� (x) is the Dirac delta function, which returns zero
everywhere except atx = 0 and its integral over the entire domain is one (Arfken and
Weber, 1999). These integrals may be handled via numerical or analytical integration and
are an alternative to Monte Carlo simulation of wetland out
ow via sampling of the input
distribution. This equivalency is discussed in section 3.4.1.

3.2.2 Analytical Solution for Wetland Cascade Depth of One

A closed-form analytical solution for the total out
ow from a landscape of wetland cascades
can be derived by assigning practical and mathematically tractable probability distribu-
tions to the distributions of the local contributing area ratio, � 1 which is equal toA1

u=A1
w ,

and de�cit, D . Here, these distributions are characterized by truncated exponential distri-
butions as follows,

f D (D) = H (D � Dmin )de� d(D � D min )(1 � Pf ) + � (D)Pf (3.9)

f � (� ) = H (� � � min )be� b(� � � min ) (3.10)

f �R + P 0(�R + P0) = H (�R + P0 � � min R)
b
R

e� b
R (�R + P 0� � min R) (3.11)

wheref D (D), f � (� ), and f �R + P 0(�R + P0) are the distribution functions of de�cit, D , local
contributing area ratio, � , and the available water to wetlands (i.e., local in
ow),�R + P0,
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Figure 3.2: Distribution functions of wetlands' a) initial de�cit and b) local contributing
area ratio. Dashed lines show the average of de�cit (�D) and local contributing area ratio
( �� ).

respectively; D = ( D � Dmin )� 1 and b= ( � � � min )� 1 are the shape parameters of the
exponential distributions, P f is the percentage of the wetlands with zero de�cit prior to
the runo� event, Dmin and � min are the minimum de�cit and local contributing area ratio,
and D and � are the average de�cit and local contributing area ratio, respectively. A� min

greater than zero implies that all wetlands must have non-zero contributing area. These
distributions are depicted in Figure 3.2.

Following Equations 3.4 and 3.8, an analytical solution for a landscape of wetland
cascades, each composed of an identical number of wetlands, can be derived. For example,
the analytical solution for the mean out
ow from a landscape of wetland cascades with
a wetland cascade depth of one (N = 1) is (by evaluating integral in Equation A.2 using
Equations 3.9 and 3.10),

�O1 =
Z 1

0
Of O(O)dO =

1
( �� + 1)

8
>><

>>:

ad
a+ d(1 � Pf )

h
dP � � 1+ e� dP �

d2 + aP � +1
a2

i
+

Pf (P � + 1
a ) for P � > 0

ad
a+ d

h
eaP �

a2

i
for P � � 0

(3.12)
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wherea = b=Rand P � = � min R + P0� Dmin . Also, since the out
ow rate is for the out
ow
in mm normalized by the wetland area, to convert the out
ow to a mean basin-wide runo�
the term 1=( �� + 1), equivalent to Aw=(Au + Aw), is needed. The detailed derivations for a
wetland cascade depth,N , of one, two, three, and four are provided in Appendix A.1 to
A.4.

To test the validity of the proposed model, the analytical solution presented in Equation
3.12 is compared to a Monte Carlo model. A Monte Carlo sampling of the two distributions
(initial de�cit and local contributing area ratio de�ned in Equations 3.9 and 3.10, respec-
tively) is performed. Out
ows for each wetland are calculated directly using Equations
3.1 and 3.5 and the total out
ow form a system of 10000 wetlands are compared to those
obtained analytically.

3.2.3 Equivalency to PDM and Xinanjiang Model

The proposed model is a generalization of the existing PDM of Moore (1985) and the VIC
model (Wood et al., 1992), both of which follow the basic approach of the Xinanjiang
model (Zhao, 1980). The PDM is underpinned by a Pareto distribution function of the
soil storage capacity (c) over a basin (Moore, 1985),

f c(c) =
s

cmax

�
1 �

c
cmax

� s� 1

0 � c � cmax (3.13)

where s is the shape factor parameter, andcmax [mm] is the maximum storage capac-
ity within the basin. After a precipitation event of magnitude P, all soil columns with
a storage capacity less than the critical storage capacity,c� , are considered to be full.
Here, we considered the approach in the PDMROF model of Mekonnen et al. (2014), in
which the storage capacity of wetlands is used rather than soil columns. Because the
VIC/Xinanjiang and PDMROF/PDM approaches are equivalent (Bartlett et al., 2016b),
the UWFS method is here only directly compared to the results of the PDMROF method.
Although the PDMROF model characterizes the total contributing area of the basin, it is
unable to characterize the local contributing area of each wetland store, which in PDM-
ROF is assumed to be equal to the storage area. To establish equivalency of UWFS with
PDMROF (based on a distributed store capacity of wetlands), the wetland is forced to
have no local contributing area by setting� to zero. Thus, the potential out
ow, O� , of
Equation 3.1 is simpli�ed to,

O� = P0 � D (3.14)
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The PDMROF model is expressed in terms of the distribution of storage capacity,c.
Here, we �rst re-express the formulation in terms of de�cit distribution, which is related
to the critical storage capacity (the storage beneath which all storage compartments have
a de�cit). The relationship betweenf c(c) and f D (D) is,

f D (D) = H (D)f c(c � c� ) + � (D)
Z c�

0
f c(c)dc (3.15)

By substituting Equation 3.15 and a �xed single value of�R in Equation 3.4, the
distribution function of potential out
ow from all wetlands across the landscape in response
to a rainfall magnitude, P0, can be characterized as,

f O � (O� ) = H (O� � P0)f c(O� � (c� + P0)) + � (O� � P0)
Z c�

0
f c(c)dc (3.16)

The average runo� from the UWFS method can be calculated by subsequently inserting
Equation 3.16 into Equation 3.8 then calculating the expected value of the resultant out
ow
distribution f O(O),

�O =
Z P 0

max( P 0+ c� � cmax ;0)
Of O(O)dO

= P0 �
cmax

s + 1
:

(
(1 � c�

cmax
)s+1 for P0 > cmax � c�

[(1 � c�

cmax
)s+1 � (1 � (1 � c� + P 0

cmax
)s+1 )] for P0 < cmax � c�

(3.17)

which is equivalent to the relationship between rainfall and runo� proposed in the PDM
of Moore (1985),

V(t + � t) = � i � t �
cmax

s + 1
:

(
[(1 � c� (t )

cmax
)s+1 for � i � t > c max � c� (t)

(1 � c� (t )
cmax

)s+1 � (1 � c� (t+� t )
cmax

)s+1 ] for � i � t < c max � c� (t)
(3.18)

whereV is the direct runo�, and � i � t is the net rainfall over the time interval of (t; t + � t)
which is equivalent toP0 in UWFS method. Figure 3.3 shows the runo� calculated from
Equation 3.17 by UWFS method versus runo� calculated from Equation 3.18 by PDM. The
perfect match between those two shows the ability of the UWFS formulation to replicate
the results of PDM when� is set to zero and a Pareto distribution is used. Although the
UWFS model is able to replicate the PDMROF simulation results, it additionally includes
the impact of local contributing areas and cascading wetlands.
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Figure 3.3: Direct Runo�, �O, generated by PDM (points) and simpli�ed UWFS method
(lines) in response to the net rainfall or rainfall excess fors = 0:4, cmax = 140, and varying
critical storage capacities (c� ) (Modi�ed from Moore (2007))

3.2.4 UWFS Algorithm Implementation in a Hydrologic Model
and Performance Evaluation

In previous sections, the event-based form of the UWFS algorithm was presented. The
continuous-time UWFS model is a modi�ed version of HBV-light model (Seibert, 2005)
which simulates stream
ow in the following steps: �rst, degree day method is used to repre-
sent melt and refreezing of the snow-packs. Then, the abstraction process (i.e., redirecting
the rainfall and rainfall excess including snowmelt and runo� from local contributing area
to surface wetlands) is computed using the UWFS algorithm presented in section 3.2.1.
Here, to extend the UWFS method into a continuous runo� model, the evolving de�cit
distribution across the landscape is tracked and modi�ed via evapotranspiration between
runo� events. The magnitude of runo� in wetland complexes is highly dependent on the
storage dynamics rather than the travel time; therefore, the advection due to the travel
time is neglected. To revise the de�cit distribution, the values ofDmin and Pf , which
characterize the distribution, are updated at each time step. If runo� is released from the
whole basin, the new minimum de�cit depth, Dmin (t + � t), is set to zero and the new
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percentage of full storage units,Pf (t + � t) may be calculated as

Pf (t + � t) =

(
1 � a

a+ de� dP �
(1 � Pf (t)) for P � > 0

1 � ( a
a+ d(1 � Pf (t)) + ( d

a+ d(1 � Pf (t)) + Pf (t))(1 � eaP �
)) for P � � 0

(3.19)
which takes a value between zero and one. Alternatively, if no runo� is released from
the wetland complex thePf (t + � t) is set to zero and the de�cit distribution is shifted
rightward after accounting for the added runo� from the local contributing area to the
wetlands,

Dmin (t + � t) = max( Dmin (t) � min ( ��R + P0; Dmin (t)) + ET; 0) (3.20)

where �� = � min + 1=b, the mean local contributing area ratio andET stands for evapo-
transpiration calculated using the method of Oudin et al. (2005). The average de�cit,Davg

as one of the parameters required to characterize the exponential distribution is calculated
as

Davg =
Depmax � Depression

Depf rac
(3.21)

whereDepmax and Depf rac represent the maximum of depression depth and maximum area
that is covered my depressions, respectively.

Figure 3.4 shows the shifted de�cit distribution after an evapotranspiration and precip-
itation event. The approach outlined here is designed to preserve the global mass balance
of the wetland complex. To have a tractable description of the resultant de�cit distribu-
tion, the local mass balance is adjusted by a redistribution of water between wetlands,
as done in comparable statistical models such as the PDM and VIC. Otherwise, in order
to exactly adjust de�cit depths for each event, the distribution would quickly become in-
tractable, and would have to be de�ned as a summation of multiple Dirac functions and
truncated exponential distributions. This probabilistic approach is required in order to re-
spect spatial variable de�cit depths without explicitly representing thousands of wetlands
or converting all wetlands into a single e�ective wetland. The initial de�cit distribution is
shown in Figure 3.4-a, wherePf % of the wetlands are full. After evapotranspiration the
entire de�cit distribution and the Dirac representing the truncated part is shifted to the
right as shown in Figure 3.4-b. Then, the distribution is updated, as the average de�cit
becomes equal to initial average de�cit plus evapotranspiration, as shown in Figure 3.4-c.
It can also be noted that the magnitude of these changes to the distribution are quite small
over a single time step, since the daily evapotranspiration magnitude is small. The de�cit
distribution changes in response to precipitation is depicted in Figure 3.4-d to f. Where
available water, �R + P0, is applied to the de�cit depths and the distribution is shifted to
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Figure 3.4: De�cit distribution change after evapotranspiration (top-row) and precipitation
(bottom-row). Black arrows show the distribution shift due to evapotranspiration and
precipitation. Pf , P0

f , and P00
f are the initial, after precipitation, and modi�ed percentage

of full wetlands in a basin, respectively.

the left. A new Dirac, P0
f , represents the full de�cit after precipitation in Figure 3.4-e. The

distribution is updated as depicted in Figure 3.4-f to a new exponential distribution with a
new Dirac, P00

f . The �nal distribution may be narrower or broader since the distribution is
adjusted di�erently in response to precipitation and evapotranspiration. The excess runo�
not stored in wetlands in�ltrates and the in�ltration rate is calculated using the partition
coe�cient method (Craig, 2020).

The UWFS algorithms were implemented in the Raven hydrologic modeling framework
(Craig et al., 2020) along with the other hydrological processes mentioned above. Raven is
a 
exible hydrologic modelling framework that has over 100 hydrological process algorithms
and new hydrological processes are readily implemented in the source code. The UWFS
model used here is a modi�cation of the HBV model, where the runo� calculation is
handled via Equation 3.17 and the de�cit is updated via Equation 3.20. The UWFS
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Raven implementation is therefore analogous to the HYPR model of Ahmed et al. (2020b)
except the PDMROF algorithm is replaced with the UWFS algorithm. Raven can also
emulate the HYPR model, which facilitates direct comparison between simulated runo�
using the HYPR and the UWFS algorithms.

Ten hydrological models were built for ten prairie sub-basins inside the Qu'Appelle
River Basin (QRB) as discussed in Section 3.3. A set of parameters a�ecting the model
performance and their ranges are listed in Table 3.1, and used in the manual and auto-
mated calibration. The Dynamically Dimensioned Search (DDS) algorithm (Tolson and
Shoemaker, 2007) in OSTRICH (Matott, 2017) with 2,000 iterations and ten replicates
is used to calibrate parameters to improve the performance of the model in stream
ow
simulation. The capability of the model in simulation of runo� response during the model
calibration and validation periods is assessed using the Kling{Gupta E�ciency (KGE)
(Gupta et al., 2009) metric which is calculated as,

KGE =
r

(r � 1)2 + (
� sim

� obs
� 1)2 + (

� sim

� obs
� 1)2 (3.22)

where r is the correlation between simulated and observed stream
ow,� sim / � obs is the
ratio of the mean simulated to mean observed stream
ows, and� sim / � obs is the ratio
of the simulated to observed stream
ow variance. The Percent Bias (PBIAS) is another
metric used here to evaluate the performance of runo� simulation during calibration and
validation period. This metric is calculated as,

PBIAS =
� n

i =1 X obs
i � X sim

i

� n
i =1 X obs

i
(3.23)

where Xobs
i and Xsim

i are the observed and simulated stream
ow, respectively. The accept-
able range for PBIAS in stream
ow simulation is typically less than� 25% (Moriasi et al.,
2007), though larger PBIAS values are common for models of prairie basins (Ahmed et al.,
2020b), which are notoriously challenging to simulate.

3.3 Study Area

To test the ability of the UWFS algorithm in simulation of wetland-dominated low-gradient
landscapes, ten prairie sub-basins inside the QRB in Saskatchewan, Canada were selected
as the study area, shown in Figure 3.5. The Prairie Pothole Region of Canada is one of the
challenging wetland-dominated landscapes to simulate using hydrological models (Mekon-
nen et al., 2015, 2016). The required meteorological forcing data for hydrologic simulation
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Table 3.1: UWFS parameters range for calibration
Parameter name Description Units Min Max Model con�guration
RAIN CORR Rain bias correction factor [-] 0.8 1.2

UWFS, HYPR

SNOW CORR Snow bias correction factor [-] 0.8 1.2
DD MELT TEMP Degree day melt coe�cient � C -3 3
FIELD CAPACITY Field capacity saturation of the soil [0..1] 0 1
BASEFLOW COEFF Linear base
ow storage/routing coe�cient 1/d 0.01 1
DEPmax Maximum amount of water that stored in depressions mm 50 500
DEPfrac Percent of landscape covered by depressions when full [0..1] 0.1 0.8
DEPRESSION Initial amount of water that stored in depressions mm 0 300 Initial parameters
RAINSNOW DELTA Range of rain-snow transition zone � C 0 4

HYPR
HBV BETA HBV soil evaporation exponent [-] 0 7
PONDED EXP Exponent used in HYPR model [-] 1 5
PDMROF B Shape factor for Pareto distribution in pothole storage module [-] 0.1 30
PARTITION COEFF Runo� fraction [0..1] 0.5 1
RAINSNOW TEMP Rain/snow halfway transition temperature � C -1 1

UWFS

FOREST COVERAGE Fraction of land covered by vegetation canopy [0..1] 0 1
OW PET CORR Fraction of PET to apply to open water evaporation [-] 0.8 1.2
� min Minimum local contributing area ratio [-] 0 4
b Shape factor of local contributing area ratio distribution [-] 0.01 10
Dmin Minimum amount of de�cit in each depression mm 0 50 Initial parameters

by UWFS and HYPR in the Raven model includes precipitation and temperature. The
model uses the Regional Deterministic Reanalysis System (RDRS) second version (Gasset
et al., 2021) as retrieved from CaSPAr website (Mai et al., 2020) as meteorological forcing
inputs. The data are available at an hourly temporal scale and at 10 km spatial resolution
from 2000 to 2017. The stream
ow data at the gauge located at the outlet of each sub-
basin is sourced from the Water Survey of Canada (WSC, 2022a). The stations names and
areas are reported in Table 3.2.

Table 3.2: QRB sub-basin properties
Sub-basin name MooseJaw Cutarm Ekapo JumpingDeer KronauMarsh
WSC gauge number 05JE006 05JM015 05JM010 05JK004 05JF012
Total drainage area [km2] 9230 766 1100 1680 2980
Sub-basin name Lanigan Lewis Pheasant Ridge Saline
WSC gauge number 05JJ003 05JH005 05JL005 05JG013 05JJ009
Total drainage area [km2] 2280 572 1150 460 950
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Figure 3.5: Location of the ten study subbasins, and their hydrometric stations inside the
Qu'Appelle River Basin in Saskatchewan, Canada. The inset map is a typical land cover
in this basin.
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3.4 Results and Discussion

The evaluation of the UWFS method is herein demonstrated in relation to four objec-
tives. First, the method is benchmarked against Monte Carlo simulations to verify its
mathematical correctness. Second, the out
ow response of a landscape comprised of wet-
land cascades of varying depth as well as varying initial de�cit distributions is examined.
Third, a sensitivity analysis is completed to scrutinize the dependence of landscape out
ow
to wetland initial de�cit (i.e., wetness of the basin) and local contributing area ratio (i.e.,
wetland geometry). Lastly, the capability of the proposed method in simulation of the
runo� response from the ten sub-basins in the QRB is assessed by comparison of simulated
and observed stream
ow.

3.4.1 Benchmarking Against Monte Carlo Solutions

Figure 3.6 illustrates the normalized out
ow (i.e., out
ow for unit precipitation) from a
landscape in response to a range of precipitation events as derived by the analytical solution
and the Monte Carlo model using 10000 random samples from input de�cit and local
contributing area ratio distributions. This �gure also demonstrates the changing out
ow
behavior as the depth of each wetland cascade evolves from a wetland cascade depth of one
to four. The close match between the two models, the average RMSE value of 0.2% in all
four cases of wetland cascade depth, demonstrates the validity of the analytical solution.
In general, this exercise also demonstrates that the Monte Carlo approach, while more
computationally expensive, is an e�ective alternative to the derivation of new analytical
solutions at wetland cascade depths greater than four, for which the derivation of an
analytical solution is mathematically challenging.

3.4.2 E�ect of Wetland Cascade Depth and Initial De�cit on
Normalized Out
ow

Figure 3.7 depicts the simulated range of out
ow responses of a wetland landscape and how
it changes as a function of the wetland cascade depth,N , and the antecedent water de�cit,
D . The landscape is subjected to a range of precipitation events of di�erent magnitudes
at four minimum de�cit values, representing wetter (Dmin = 0 mm, Pf = 30%), wet
(Dmin = 0 mm, Pf = 0), average (Dmin = 50 mm, Pf = 0), and dry ( Dmin = 100
mm, Pf = 0) conditions. Qualitatively, these regimes represent how quickly the landscape
tends to spill in response to an input precipitation event (e.g., in the wet and very wet
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Figure 3.6: UWFS (lines) and Monte Carlo (points) simulation of normalized out
ow in
response to precipitation in a landscape with a wetland cascade depth (n) of one, two,
three, and four. In all cases� min = 0, �� = 2, b = 0:5, R = 0:8P, P0 = P, Dmin = 50 mm,
and Davg = 100 mm.

conditions, any added precipitation causes an immediate out
ow). The e�ect of the initial
de�cit on the out
ow from the landscape is illustrated in Figure 3.7. It can be inferred
that, for the same wetland cascade depth, as the initial condition is wetter the normalized
out
ow is higher. This fact is consistent with the observations from Ahmed et al. (2020a)
in which the probability of stream
ow exceedance is shown to be higher where potholes are
full compared to empty potholes. This �gure also illustrates the lag in out
ow response
that occurs under dryer conditions, where the initial de�cit must be overcome before any
out
ow is produced and the e�ect of the initial de�cit condition in minimizing the disparity
between the out
ow produced from wetland cascades composed of di�erent wetland cascade
depths. For example, at lower runo� magnitudes and under wet conditions, a wetland with
a wetland cascade depth of one will produce as much as 10% more out
ow than a cascade
composed of four wetlands in series; conversely, under dry conditions, the di�erence is only
around 5%. This re
ects the known control of \gatekeeper" wetlands (Phillips et al., 2011)
(which can only exist in a cascade of depth greater than one). In the case of wetland
cascade depth of one, a large de�cit acts as a gatekeeper for its own contributing area.
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However, for the wetland cascade depth larger than one, the gatekeeper disconnects the
downstream wetlands from upstream landscape until they themselves are over-topped and
out
ow is generated. Previous studies show that large gatekeepers (i.e., 30% of the total
basin area) located close to the outlet of a basin have dramatic impacts on the generated
stream
ow; however, for basins with thousands of wetlands and no large gatekeepers,
the spatial arrangement of wetlands is less important (Shook et al., 2021a). At larger
precipitation magnitudes, the in
uence of wetland cascade depth becomes negligible, as
input volumes are large enough to overcome the de�cits in all members of a wetland cascade,
therein overriding the gatekeeper e�ect. This, notably, also depends on the assumption that
the population of wetlands is so large that it can be represented by a continuous probability
distribution; for small watersheds with low number of wetlands (e.g., 20 wetlands), the role
of gatekeepers can be more salient.

It is worthy here to note the observed convergence of the curves with increasing wetland
cascade depth,N , in Figure 3.7 is also a sign of the presence of gatekeepers. Inactive
gatekeepers disrupt wetland connectivity in cascades, disconnect upstream wetlands from
the outlet, and limit the number of wetlands that are connected to the outlet and generate
out
ow. For this reason, the normalized out
ow does not change signi�cantly with the
increasing wetland cascade depth. This suggests that if the local contributing area and
de�cit can be presumed to be independent of the wetland location in the cascade sequence,
there is little practical need to extend the model to large values ofN . It also implies
that N =3 is a reasonable surrogate for deeper cascade networks. In examining the `wet'
curves of Figure 3.7, it is clear that for theN = 1 case, when thePf is 30%, which means
30% of full wetlands are over
owing, immediate runo� generates from the landscape upon
receiving any rainfall. However, the deeper networks decrease the generated runo�, since
the 30% of full wetlands may be further up the network and the downstream wetlands need
to be �lled to generate out
ow.

3.4.3 Sensitivity Analysis

To further explore the controls of the initial de�cit and local contributing area ratio dis-
tributions on landscape out
ow, a sensitivity analysis is conducted on a wetland system
comprised of individual wetlands draining to a main channel (N =1). Here, R, the excess
rainfall in Equation 3.1, is considered to be equal to 0:8P whereband � min , the parameters
of local contributing area ratio distribution in Equation 3.10, are perturbed. To capture
a feasible range of distributional characteristics, four di�erent de�cit distributions (rep-
resenting di�erent initial landscape wetness conditions) and three local contributing area
ratio distributions are considered. The sensitivity analysis demonstrates that a tendency
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Figure 3.7: Normalized out
ow (out
ow for unit precipitation) for a given precipitation
magnitude under wetter (Pf = 30%, Dmin = 0 mm), wet (Pf = 0%, Dmin = 0 mm),
average (Pf = 0%, Dmin = 50 mm), and dry (Pf = 0%, Dmin = 100 mm) conditions in a
landscape with one, two, three, and four wetland cascade depths (n). In all cases� min = 0,
�� = 2, R = 0:8P, P0 = P, and b = 0:5. Dashed lines for the wetter condition are the
results of the Monte Carlo simulation.

towards larger local contributing area ratio, interpreted as a higher ratio of non-wetland
to wetland area, increases the landscape out
ow, which we see manifested as a leftward
shift in the curves in Figure 3.8. As the local contributing area ratio,� , increases the
role of wetlands becomes negligible, as any amount of precipitation immediately cause all
wetlands to over
ow. Conversely, as the landscape tends towards dryer initial conditions,
landscape out
ow decreases, which we see manifested as a vertical downward shift in the
curves in Figure 3.8. During the dry periods, there is very little observed out
ow from
wetlands, and they are e�ectively isolated from the surface water 
ow network. The sen-
sitivity analysis also indicates that the landscape approaches an asymptotic out
ow limit
O = R as precipitation magnitude increases. This limit re
ects the limited e�ect of the
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\�ll" component of the �ll-and-spill process as the precipitation magnitude is large enough
to immediately induce out
ow, regardless of the initial de�cit or local contributing area
ratio.

The degree of clustering of the wetland complex is controlled by the parameterb in the
local contributing area ratio distribution function, Equation 3.10, a largeb corresponds to
uniformly sized local contributing areas, whereas a smallb corresponds to a large variation
in the local contributing areas across the landscape as shown in the bottom row of Figure
3.9. Figure 3.9 shows that when wetlands are more evenly distributed through the land-
scape, the normalized out
ow is generally lower during dryer initial conditions. However,
for the wetter condition the curves are very similar indicating relative insensitivity of the
out
ow to the distribution (i.e., how regular or clustered the wetlands are), as long as the
mean local contributing area ratio is the same. It also suggests that a proper estimate
of the average local contributing area ratio with high population of wetlands would be
su�cient for the simulation in these cases. In accordance with Figure 3.8, Figure 3.9 shows
that as precipitation magnitudes increase, the in
uence of the initial de�cit distribution is
minimized, such that the di�erence between the wet and dry conditions is reduced. How-
ever, the out
ow from dry initial conditions is distinct from wet initial conditions under
average precipitation magnitudes, as dry conditions result in a lag time before out
ow
is produced. It can be concluded that the maximum landscape out
ow occurs when the
landscape is wet and the local contributing area ratio is large (i.e., when dealing with a
clustered distribution of wetlands, or a con�guration of smaller wetlands with larger local
contributing areas). The �rst observation is well documented (Shaw et al., 2012; Spence
and Woo, 2006). However, the role of local contributing area has received less focus. Con-
versely, more densely packed wetlands systems with higher in�ltration capacity will tend
towards storing water.

The sensitivity analysis undertaken here assists in our understanding of the role of
the spatial distributions of wetlands characteristics on the total generated runo�. As
the spacing between wetlands increases, the local contributing area increases and more
water 
ows to each wetland. This allows the storage de�cit to be overcome more rapidly,
resulting in an increase in maximum out
ow and a reduction in lag times for dry initial
conditions. Unsurprisingly, this solution indicates that the upscaled �ll-and-spill response
from thousands of cascading wetlands di�ers quite dramatically from the response of a
single wetland. Thus, care must be taken with models that aggregate the bulk response
of a wetland complex by representation as a single equivalent wetland (e.g. Liu et al.
(2008); Yang et al. (2010)); the emergent upscaled response could not be emulated using
a single wetland, regardless of whether e�ective parameterization or calibration is used.
This �nding is consistent with other studies (e.g., Clark and Shook (2022); Mekonnen
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Figure 3.8: Top row (a to c): Sensitivity of the model to the variation of� min for wetter,
Dmin = 0 mm and Pf = 30%, wet, Dmin = 0 mm and Pf = 0, average,Dmin = 50 mm, and
dry, Dmin = 100 mm, conditions. In all casesb is kept constant and equal to 1,R = 0:8P,
and P0 = P. Bottom row (d to f): a representative spatial distribution of wetlands for
di�erent local contributing area ratios

et al. (2016); Pomeroy et al. (2014); Shook and Pomeroy (2011); Evenson et al. (2016))
which emphasize that for modelling complex �ll-and-spill dynamics in wetlands, a single
\equivalent wetland" is insu�cient. The capability of the UWFS model to consider the
e�ects of local contributing area of wetlands and wetland cascading depth increases the
ability of hydrological models to account for dynamics of �ll-and-spill process in wetland
complexes.
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Figure 3.9: Top row (a to c): Sensitivity of the model to the variation ofb in the local
contributing area ratio distribution for wetter, Dmin = 0 mm and Pf = 30%, wet, Dmin =
0mm and Pf = 0, average, Dmin = 50 mm, and dry, Dmin = 100 mm, conditions. In
all cases� avg (� = � min + 1=b) is kept constant and equal to 4,R = 0:8P, and P0 = P.
Bottom row (d to f): a representative spatial distribution of wetlands for di�erent clustering
conditions

3.4.4 Raven-UWFS and HYPR Stream
ow Simulations

Figures 3.10 and 3.11 depict the daily simulated and observed hydrographs for two sub-
basins in the QRB simulated using Raven-UWFS and HYPR models (Ahmed et al., 2020b),
where the HYPR model has also been implemented in Raven. The total study duration
is from 2001-10-01 to 2017-12-31 and it is divided into two parts for the purpose of cali-
bration (2001-10-01 to 2011-10-01) and validation (2011-10-02 to 2017-12-31). The initial
parameter values are selected randomly and inspired from Ahmed et al. (2020b) within
the speci�ed range indicated in Table 3.1. No run-up period was used, rather the initial
de�cit distribution was one of the calibration targets. The vertical dashed line in Figure
3.10 and 3.11 separates the calibration and validation period. The simulated and observed
hydrographs for the rest of the sub-basins in the QRB can be found in the Supplementary
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Material.

By visual inspection of the hydrographs in Figure 3.10 and 3.11, it can be inferred that
both UWFS and HYPR algorithms are reasonably successful in simulating stream
ow
in the QRB during the calibration period, with the exception of the Ridge sub-basin.
Figure 3.12, which reports the calibration and validation metrics for the studied sub-
basins indicates that both models su�er in validation for most sub-basins (common in
prairie hydrological modeling literature). The KGE values for Ridge sub-basin during the
validation period is not presented in Figure 3.12, because both models failed in simulating
stream
ow from this sub-basin during validation period. Poor model performance in Ridge
sub-basin might be originated from the presence of a high embankment upstream of the
gauge which regulates the stream
ow as discussed by Ahmed et al. (2020b).

Figure 3.12 shows that UWFS outperformed HYPR in terms of calibration KGE values
for Cutarm, Saline, and Pheasant creek sub-basins, while HYPR performed better for
Lanigan creek and Moose Jaw sub-basins. During validation, UWFS had higher KGE
scores than HYPR for four sub-basins, with similar performance for three others. UWFS
reliably simulated stream
ow at Cutarm creek with calibration KGE of 0.85 and validation
KGE of 0.8. Detailed analysis of the simulated hydrograph in Figure 3.10 and 3.11 indicates
that the UWFS model has potential in accurately capturing the timing, duration, and
magnitude of high stream
ow. Speci�cally, the high stream
ow in May 2011 was well-
captured by the UWFS model for the Cutarm sub-basin, while HYPR underestimated
it.

Table 3.3 also includes the values of KGE and percent bias for each model during cali-
bration and validation period for the ten study sub-basins. Percent bias values are near zero
for most sub-basins during the calibration period, which con�rms acceptable performance
of the UWFS and HYPR models. However, large percent bias values for a few sub-basins
show deteriorated performance of the models which is con�rmed by poor KGE metrics.
During the validation period, both models show satisfactory performance, except in the
Ridge sub-basin. Large number of zero stream
ow magnitudes observed at the sub-basins
over the historical record could be a reason for the deteriorated performance. The cali-
bration or validation results will be signi�cantly impacted if the model cannot accurately
simulate the major observed events. Another factor could be human interference, such as
occurs when wetlands are connected via drainage ditches, which alters the basin's natural
responses to precipitation/snowmelt events but also violate the assumptions of the UWFS
model. In that case, model parameters are calibrated to manipulated stream
ow values
which deteriorate the model simulation accuracy during validation period.

Overall, the results presented here indicate that the UWFS is comparably successful to
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the HYPR model in predicting stream
ow in prairie regions: neither model is uniformly
better across the multiple basins in terms of validation performance. However, unlike the
HYPR model, the UWFS model may be informed by map-based estimates of distribution
parameters. In addition, it may be considered more physically appropriate for simulating
runo� in prairie regions as it includes the e�ects of lateral 
ow from the local contributing
areas.

Table 3.3: Performance metrics of UWFS and HYPR simulations for calibration and vali-
dation duration

Sub-basin
UWFS (KGE) HYPR (KGE)

Best model
UWFS (PBIAS%) HYPR (PBIAS%)

Calibration Validation Calibration Validation Calibration Validation Calibration Validation
Cutarm 0.85 0.8 0.8 0.44 U -0.90 -5.23 2.14 -26.98
Ekapo 0.87 0.88 0.86 0.8 U 0.01 -6.18 -0.25 4.98
Saline 0.84 0.67 0.81 0.47 U -1.30 -18.23 -0.33 10.84

MooseJaw 0.79 0.6 0.81 0.59 = -0.33 -4.77 0.40 -8.28
Pheasant 0.84 0.85 0.8 0.41 U -2.09 5.09 2.24 -34.52

KronauMarsh 0.79 0.36 0.8 0.35 = -3.27 4.25 3.55 -3.30
Lewis 0.75 0.36 0.75 0.44 H 3.13 -31.35 4.60 -29.85

Lanigan 0.73 0.56 0.84 0.52 = -0.38 2.98 0.14 26.90
JumpingDeer 0.82 0.28 0.83 0.67 H 3.25 -54.41 1.47 8.07

Ridge 0.48 -2.4 0.5 -0.761 - 6.85 249.40 2.33 98.62

Unlike the PDMROF algorithm embedded in HYPR, the UWFS model is able to repre-
sent hysteretic in wetting and drying during the simulation period, a key element of prairie
storage/drainage characteristics (Shook and Pomeroy, 2011). Figure B.10 shows the hys-
teresis relationship between contributing area ratio found from Equation A.4 versus de�cit
depth simulated by the UWFS model. Direct comparison between the hysteresis observed
using the UWFS model and those of studies such as Shook and Pomeroy (2011) is not
possible because the UWFS model tracks wetland de�cit instead of explicitly representing
the absolute value of basin storage.

3.4.5 Model Limitations

Although the UWFS method provides some insights into the in
uence of landscape charac-
teristics on wetland system runo� response, this model has yet to incorporate some wetland
network characteristics that may additionally in
uence this response. The key assumptions
are that the wetlands are relatively uniform in size, that de�cit in single cascading wetlands
are independent of upstream, that wetland cascade depth is limited (N< 5), that there is no
branching of networks, that the wetland response is fast enough to ignore transient e�ects,
that exponential distribution is appropriate for de�cit and local contributing area ratio,
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Figure 3.10: Observed and simulated hydrograph generated with UWFS and HYPR models
in Raven for the Cutarm creek sub-basin for a) the total duration of the study period from
2000 to 2017, b) for an event in the Calibration period, c) for an event in the validation
period. The vertical dashed line separates calibration and validation period.

and the 
ow is all surface 
ow without considering the subsurface 
ow. However, the pro-
posed methodology is intended to be an improvement upon existing approaches for treating
lumped wetland systems with internal variability not a perfect assumption-free rendering
of reality. The impact of uniform size wetlands is considered in the following paragraph
and the assumption of an exponential distribution of local contributing area ratio is vali-
dated in this section. The impact of other assumptions require future investigation. The
speci�c functional form of the probability distributions, here treated as exponential for
analytical tractability, is only moderately in
uential, which is consistent with results of
the sensitivity analysis. Instead, the mean local contributing area ratio has a dominant
e�ect on the generated runo�, while the impact of degree of clustering is minor, except in
dry conditions.
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Figure 3.11: Observed and simulated hydrograph generated with the UWFS and HYPR
models in Raven for Lanigan sub-basin for a) the total duration of the study period from
2000 to 2017, b) for an event in the Calibration period, c) for an event in the validation
period. The vertical dashed line separates calibration and validation period.

To evaluate the impacts of the assumption of uniform size wetlands, the normalized
out
ow from a basin with wetlands of uniform size has been compared to the normalized
out
ow from three di�erent sets of non-uniform distributions of wetland area, using a
Monte Carlo approach. Considering non-uniform wetland area, potential out
ow from the
nth wetland in the wetland cascade depth ofN from Equation 3.5 is changed to

O�
n = � nR � Dn +

�
An� 1

w

An
w

On� 1

�
= 
 n + m:On� 1 (3.24)

wherem is the area ratio of the upstream wetland to the downstream wetland (m = A n � 1
w
A n

w
).

To solve Equation 3.24 and �nd the average runo�, a Monte Carlo approach is developed
by sampling from the area ratio distribution in addition to sampling from the de�cit and
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Figure 3.12: Comparison of KGE values for calibration and validation period at nine sub-
basins in QRB, located in Saskatchewan, Canada

local contributing area ratio exponential distributions as discussed in section 3.4.1. In the
Monte Carlo approach, the wetland area ratio is approximated by a log normal distribution
with an average value of one and di�erent standard deviations: one, �ve, and 10. The
generated normalized runo� from the four aforementioned distributions of wetland area
ratio is presented in Figure B.9 in Appendix B.1. The slight deviation between the resultant
curves shows the minimal impact of the assumption of uniform size wetlands on runo�
generation, provided the mean is one (i.e., larger or smaller wetlands do not preferentially
occur downstream or upstream).

The assumptions of branching wetland cascading networks may later be evaluated in
extensions to the UWFS model. Regardless, the current model does extend the existing
PDM/Xinanjiang distributed runo� paradigm by recognizing the in
uence of local con-
tributing areas and cascading of the �ll-and-spill process. Therefore the method is readily
used to extend the applicability of models built based on these methods (e.g., VIC or the
PDMROF model of Mekonnen et al. (2014)).

Deployment of the UWFS method for e�ective understanding of the hydrological re-
sponse of a wetland dominated landscape requires an accurate estimation of the param-
eters. In this study, we calibrate the exponential distributions of initial de�cit and local
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contributing area ratio. While measurement of the de�cit distribution is likely to remain
elusive because of the lack of information, this work may be extended in the future by con-
sidering the actual distributional characteristics of local contributing area ratio. Because
the model only requires four parameters - two of which (� min and b) are directly deter-
minable via geospatial analysis, the model is well suited for calibration. To examine the
�tness of an exponential distribution to local contributing area ratio, the wetland areas for
the Saline sub-basin were extracted using Geospatial Data Extraction tools (NRC, 2022).
Each wetland contributing area was estimated using a shape Voronoi diagram - any now-
wetland area closer to the wetland of interest than to the other wetlands was treated as
that wetland's contributing area. The ratio of wetland local contributing area to wetland
area was then calculated. An exponential distribution was �tted to the observed local
contributing area ratio distribution by minimizing the weighted error,

� = � NB
i =1 (h(i ):jh(i ) � be� b� i j) (3.25)

where NB and h show the number of bins in the histogram and the observed histogram,
respectively. The �tted exponential distribution to the local contributing area ratio values
with an error value of 0.008 is shown in Figure 3.13. This approach can be used to �nd
the distribution function of local contributing area ratio of any watershed.

3.5 Conclusions

Accurate estimation of basin-scale hydrological responses in wetland-dominated landscapes
is challenging due to the heterogeneity in wetlands properties. This study set out to de-
velop an upscaled �ll-and-spill model to provide basin-scale understanding of the impact
of wetland properties on hydrologic responses from a wetland-dominated landscape. The
low-parameter wetland model proposed in this study is the �rst closed form upscaled
runo� model to explicitly consider lateral 
ow from the local contributing area of wet-
lands. The spatial variability in wetland properties, including wetland de�cit depth and
local contributing area ratio, is di�cult to identify in low-gradient landscapes where those
properties cannot be easily measured due to a lack of high-resolution data. The probabilis-
tic treatment of wetland properties is in part motivated by the need to compensate for the
lack of high-resolution data and avoid high computational costs of representing individual
wetlands properties. In addition, it is hard to estimate the available storage volume in
wetlands due to the lack of accurate high resolution data. To overcome this issue, the
components of water balance have been de�ned in units of depth to reduce the degrees of
freedom in the model storage. The utility of the model, a generalization of the well-known
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Figure 3.13: Representation of the �tted exponential distribution to the histogram of local
contributing area ratio values for the Saline sub-basin in Saskatchewan, Canada

PDM and Xinanjiang runo� models, is assessed through an equivalency to previous concep-
tualizations of �ll-and-spill landscapes, as well as a numerical Monte Carlo exercise. The
sensitivity of landscape out
ow to changes in wetland connectivity, landform geometry, and
antecedent storage de�cit has been assessed. The relatively simple low parameter model
explicitly supports the impact of cascading wetlands on stream
ow generation, spatially
variable in�ltration capacity, and precipitation/snowmelt magnitude. Sensitivity analysis
shows that the wetland local contributing area has a signi�cant impact on runo� generation
from basin, even during high 
ows when wetlands are connected. The UWFS algorithm
has been implemented in the semi distributed hydrological model, Raven, to evaluate the
performance of the model in hydological simulation of wetland-dominated low-gradient
landscapes. The stream
ow simulation by the UWFS method has been compared with
the simulation results generated using the HYPR model, an alternative wetland runo�
model used for simulating stream
ows in prairie basins. Although, there are challenges in
comparing two model structures with multiple calibrated parameters, the results of this
comparison are favorable, and demonstrate the utility of the UWFS model. The abil-
ity of UWFS algorithm to represent wetland properties and network structures overcome
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the challenges of parameterizing thousands of wetlands and may improve the accuracy of
stream
ow simulation by current hydrological models in heterogeneous basins.
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Chapter 4

Analyzing Assumptions of Wetland
Representation in the UWFS
Algorithm

Wetlands are one of the important features in hydrological modeling of low-gradient land-
scapes. In order to simulate how a basin will respond to precipitation/snowmelt events,
it is essential to account for the hydrological connectivity within wetland networks and
between wetlands and other hydrological features of a basin. Di�erent branching or cas-
cading network structures can be used to de�ne the connectivity of wetlands. Wetlands'
de�cit, contributing area, and geometry are crucial characteristics that need to be con-
sidered in hydrological modeling of wetlands. The complexity and computational costs
may rise if wetland properties are explicitly represented in hydrological models. In this
chapter, the ability of the UWFS algorithm, an upscaled �ll and spill model, to accurately
capture the characteristics of regional wetland systems is tested using a Monte Carlo ap-
proach. Here, we examine the impact of wetland network properties on the hydrological
response of wetland-dominated landscapes. The �ndings of this study can contribute to
our comprehension of wetland characteristics and potential approaches for enhanced hy-
drological simulation of those features without requiring high resolution data or demanding
computational e�orts.
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4.1 Introduction

The hydrology of many low gradient landscapes is extremely complex because of the pres-
ence of large numbers of depressions (Woo and Rowsell, 1993; Hayashi et al., 1998; Van der
Kamp et al., 2003; Fang et al., 2010; Pomeroy et al., 2009). These depressions intermit-
tently connect to the primary stream network, leading to storage-dependent contributing
area dynamics, whereby the amount of runo� from a landscape is dependent upon the de-
gree of connection within it. Multiple attempts have been made to include the depression
storage of wetlands in hydrological models. For instance, the basic wetland module in the
SWAT aggregates all wetlands into one large wetland referred to as a Hydrologic Equivalent
Wetland (HEW), with a single over
ow threshold. This lumping method ignores the inher-
ent heterogeneity of these complex landscapes and the physical processes are oversimpli�ed
(Wang et al., 2008). To more capably represent isolated wetlands, Evenson et al. (2015,
2016) introduced a pothole module in SWAT, called the GIW Module which represents
contributing areas of individual GIWs. While successful for smaller systems, the computa-
tional costs of this fully-discretized module made the application of this model challenging
in larger areas. Muhammad et al. (2020) introduced a method in which wetlands with a
capacity below a speci�c threshold are removed from the modeling process to reduce the
number of GIW-HRUs in the basin, and the corresponding computational costs.

The explicit representation of wetland connectivity in fully-distributed models often re-
quires high resolution elevation data and computationally expensive hydrological modeling
e�orts (e.g., Shook and Pomeroy (2011); Shaw et al. (2013a); Shook et al. (2013); Ameli
and Creed (2017); Amado et al. (2018)). The simplest explicit treatment is as a network
of independent reservoirs. For instance, Shaw et al. (2012) conceptualized each wetland
as a simple reservoir in which water spills to the next wetland or stream network after
passing a storage threshold. They applied this theoretical representation of �ll-and-spill
in a watershed with fewer than 10 wetlands. The application of these models in basins
with large numbers of wetlands such as those found in prairies may be impracticable due
to the need to characterise individual wetlands. However, the characteristics of a popula-
tion of wetlands may instead be described statistically. For instance, Shook and Pomeroy
(2011) delineated a dendritic drainage network to explicitly represent the connectivity of
a statistically representative set of wetlands. In each time step, they added a constant
depth of water to all wetlands and simply scaled that depth to account for the local con-
tributing area and removed a uniform depth from the wetland water surface to account for
evaporation.

To reasonably represent the role of thousands of wetlands in basins without oversimpli-
�cation of the hydrological process, probabilistic models characterizing the wetland pop-
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ulation as a distribution of storage areas have been proposed. Examples of such models
include the PDMROF (Mekonnen et al., 2014) in the MESH land surface model, the PDLD
(Mekonnen et al., 2016) model in SWAT, and the HYPR (Ahmed et al., 2020a). These
models are inspired by the PDM (Moore, 1985, 2007), which proposed that soil storage on
a landscape may be represented as a series of connected or isolated \bucket" stores with
varying levels of storage capacity. However, these models do not include the e�ects of local
contributing area or the connectivity between upstream and downstream wetlands. The
previously introduced UWFS (Taheri et al., 2023) from Chapter 3, probabilistically han-
dles the treatment of �ll-and-spill phenomenon in systems represented by wetland cascades.
This model simpli�es the representation of wetlands in hydrological models subject to two
in
uential assumptions: that wetlands are prismatic (i.e., those with constant areas at
each depth) and that simple non-branching cascading networks of wetlands is su�cient to
represent the hydrological connectivity between wetlands. These assumptions are relaxed
in this chapter. We will also show that the concentrating factor of the UWFS model can
be extended to represent the heterogeneous in�ltration properties of wetland contributing
areas.

4.2 Method

The UWFS model from Chapter 3 simulates runo� from thousands of wetlands in response
to a series of precipitation or snowmelt events. In each time step (or for each individual
event), the algorithm considers the water balance in each wetland as

O = max
�

Au

Aw
� R + P0 � D; 0

�
= max ( �R + P0 � D; 0) (4.1)

whereO [mm] is the actual out
ow depth from a wetland, � is the local contributing area
ratio which is equal to the ratio of wetland contributing area,Au, over the wetland area,
Aw , D is the wetland de�cit depth, R is runo� from the local contributing area, and P0

is precipitation over wetland area. The UWFS model characterizes the local contributing
area ratio, � , and de�cit, D , of wetlands probabilistically using truncated exponential
distribution functions. One distribution must be de�ned for local contributing area ratios
based on the average,� avg and minimum values,� min , and one distribution must be de�ned
for initial de�cit depths based on their average,Davg and minimum values, Dmin . To
upscale the runo� from a single wetland to the runo� from a basin with thousands of
wetlands, an upscaling approach based on the derived distribution approach is used (For
more information about the UWFS method refer to Chapter 3 or Taheri et al. (2023)). The
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Figure 4.1: Schematic representation of a) a non prismatic wetland and b) the equivalent
prismatic form. A0(D 0) and A represent the wetland surface area at top in non-prismatic
and prismatic wetland, respectively. De�cit depth in non-prismatic and prismatic wetland
are shown byD 0 and D, respectively. � 8 represents changes in water storage after precip-
itation.

basic probabilistic approach used in the UWFS method nominally assumes that wetlands
are prismatic and non-branching cascading networks of wetlands may adequately represent
di�erent wetlands networks. In this paper we study the impacts of these assumptions on
the simulated runo� by the help of a Monte Carlo approach. We here, show that we can
relax these basic assumptions of UWFS model by adjusting one of the model parameters
(i.e., local contributing area ratio) to account for system characteristics not addressed in
the original model of Chapter 3.

4.2.1 Non-prismatic Wetlands

The storage capacity of wetlands is one of the important properties that is determinant of
their role in the basin. In the derivation of the UWFS method, wetlands were assumed to
be prismatic in shape, even though they may not be in reality. The available storage in
wetlands is de�ned by the de�cit depth, which is the vertical distance from the wetland's
water surface to its overtopping height. The degrees of freedom required to de�ne the
characteristics of each wetland is thus decreased because the storage dimension is changed
from volume, [L3], to depth, [L ]. Here we �rst present a general non-prismatic form
of wetlands and then we evaluate the impacts of assuming a non-prismatic trapezoidal
wetland geometry.

The area of a non-prismatic wetland at each level is a function of the de�cit depth as
shown in Figure 4.1. The geometry of the equivalent prismatic wetland is de�ned such that

57



its de�cit (or void) volume is equivalent to that of the non-prismatic wetland and that can
be determined as,

8v = D � A =
Z D 0

0
A0(D 0) � dD0 (4.2)

and changes in the volume due to receiving water may be found as,

� 8 = � D � A =
Z D 0+� D 0

D 0
A0(D 0) � dD0 (4.3)

whereA0(D 0) and A represent the wetland surface area at overtopping level where the de�cit
depths areD 0 in non-prismatic and D in equivalent prismatic wetland. By rearranging
Equation 4.2 and 4.3, the de�cit depth in the equivalent prismatic wetland may be found
as,

D =
1
A

Z D 0

0
A0(D 0) � dD0 (4.4)

and de�cit depth change may be found as,

� D =
1
A

Z D 0+� D 0

D 0
A0(D 0) � dD0 (4.5)

Figure 4.2 shows the relation between area and the de�cit depth in non-prismatic wetlands
in general shape and trapazoidal non-prismatic wetlands. As the de�cit depth, which is
the vertical distance between the overtopping level and the water surface level, increases,
the area decreases. Knowing the function that relates area,A0 to the de�cit depth, D 0, we
would be able to solve the integrals in Equation 4.4 and 4.5 to �nd the geometry of the
equivalent prismatic wetland. For a trapezoidal non-prismatic wetland this function can
be found as,

A0(D 0) = A(1 � bD0) (4.6)

where b is the side slope of the trapezoidal non-prismatic wetland. Then, the relation
between initial de�cit and the equivalent de�cit depth may be as,

D =
1
A

Z D 0

0
A(1 � bD0)dD0 =

Z D 0

0
dD0 � b

Z D 0

0
D 0dD0 = D 0 � b

D 02

2
(4.7)

It should be noted that for a non-trapezoidal wetlandb is changing with depth.

Based on Equation 4.7 and transforming the de�cit depth distribution in trapezoidal
wetland, the de�cit depth distribution in the equivalent prismatic wetland may be found
as shown in Figure 4.3 where the de�cit distribution of wetland in non-prismatic form is a
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Figure 4.2: The relationship between de�cit depth and area in a) a non prismatic wetland
and b) the non-prismatic trapezoidal wetland. Dashed area shows the void volume in the
wetland.

Figure 4.3: The relation between de�cit depth at non-prismatic wetland,D 0, and equivalent
wetland, D, and their distributions
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Figure 4.4: Schematic representation of a) a non prismatic wetland before applying the
excess runo�, b) a non-prismatic wetland after applying the excess runo�, and c) the equiv-
alent prismatic wetland. A1, A2, and A3 represent the wetland surface area at overtopping
level, water surface before excess runo�, and after excess runo� applied, respectively.D 0

and D 00 represent de�cit depth before and after excess runo� applied in non-prismatic
wetland. D represent equivalent de�cit depth in prismatic wetland. �R and � 0R are the
excess runo� depth.Dep and Dep0 represent the initial water level stored in prismatic and
non-prismatic wetland, respectively.

truncated exponential distribution and the one at the equivalent wetland is a truncated non-
exponential distribution with larger domain coverage. The equivalent de�cit distribution
can be found from the notes on Chapter 3 about the derived distribution approach and
Equation 4.7.

Here we evaluate the response of a non-prismatic trapezoidal wetland of Figure 4.4-a
in details to compare that with the equivalent form of Figure 4.4-c. The void volume of
the trapezoidal wetland,8v, may be found from

8v = D 0 �
(A1 + A2)

2
(4.8)

where A1, A2, and D 0 represent the wetland's area at the overtopping point and at the
water surface, the de�cit depth, and water storage depth, respectively.

Assume the excess runo� from precipitation over local contributing area,�R � A, shown
by a block at the top left of Figure 4.4-a, is added to this wetland. The added water may
�ll the wetland completely or to the depth of � 0R as shown in Figure 4.4-b. In the second
case, the volume of the added water,8f , may be found from

8f = � 0R �
(A2 + A3)

2
(4.9)
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where A3 is the area of the wetland at the new de�cit depth,D 00. This wetland can be
represented by an equivalent prismatic wetland as in Figure 4.4-c with a new initial de�cit
volume, 80

v, which can be found from

80
v = D � A (4.10)

where A is the area of the equivalent prismatic wetland andD is a new de�cit depth in
the equivalent wetlands. Since the volume of the �lled part in prismatic and non-prismatic
wetland needs to be the same, according to the conservation of mass, the relationship
between� values in both cases can be found from,

8f = �R � A = � 0R �
A2 + A3

2
(4.11)

where� 0R is the new �lled depth. It can be concluded that� and � 0 are equal as

� 0 =
A

(A2 + A3)=2
� � = � where A =

A
(A2 + A3)=2

(4.12)

Also, because the void volume in transformed and non-transformed forms are equal, the
relationship betweenD 0 and D 00may be shown as:

A � D =
(A1 + A3)

2
� D 00 therefore D =

(A1 + A3)
2A

� D 00 (4.13)

It shows that to replicate the results from a non-prismatic wetland with an equivalent pris-
matic wetland the de�cit depth is scaled by (A 1+ A 3 )

2A . Here, we suggest instead of scaling the
de�cit depth values by adjusting the local contributing area parameter,� , via the calibra-
tion process, we can replicate runo� from non-prismatic wetland using prismatic wetlands
conceptualization. In this case, the de�cit depth,D, should not be interpreted as the verti-
cal di�erence between threshold and water level. Rather, it is an equivalent (smaller) depth
in a prismatic wetland. This will also impact how the initial de�cit distribution should be
interpreted. One important consideration is that the re-conceptualization indicates that
non-prismatic wetlands can be handled with UWFS. However, it is important to note that
only non-prismatic wetlands with uniform slopes can be handled in this manner. It is not
possible to mix prismatic and non-prismatic wetlands in a straightforward manner. While
the assumption the speci�c functional form of the de�cit distribution is now violated, it
retains its essential features: that it is truncated and that the wetland system has some
variance in de�cit.
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4.2.2 Handling Branching Networks

The initial UWFS model of Chapter 3 assumes a linear cascading network of wetlands as
in Figure 4.5a in which wetlands in a cascading network receive water from precipitation
over their land area, the excess runo� from local contributing area, and a single upstream
wetland which is producing runo�. Therefore, The expected out
ow from the cascading
depth of two (i.e., where there are two wetlands in each cascade) is calculated as,

O2 = max(0; � 2R + P0 � D2 + O1) (4.14)

where O1 and O2 represent runo� from the �rst (upstream) and second (downstream)
wetland in a cascade, respectively. Here,� 2 is the local contributing area ratio andD2 is the
de�cit depth of the second wetland. Wetland complexes may also be de�ned in branching
networks as shown in Figure 4.5b. Branching networks are de�ned by cascade depth and
branching ratio (i.e., the ratio of the number of wetlands upstream over downstream). The
out
ow produced from a simple branching network with branching ratio and cascading
depth of two, can be found from,

O2 = max(0; � 2R + P0 � D2 + O1;1 + O1;2) (4.15)

whereO1;1 and O1;2 represent the out
ow released from wetland 1 and 2 at the upstream
cascade depth, respectively. Out
ow released from wetlands in a branching network can
be calculated via repeated application of UWFS basic rules using a Monte Carlo approach
instead of a closed-form analytical solution which is mathematically demanding. To test
the impact of branching, 100000 initial de�cit and local contributing area ratio values are
repeatedly sampled from their exponential distributions and substituted in the water bal-
ance equation, i.e., Equation 4.15. Results between branching and non-branching methods
of cascade depth of two are evaluated.

4.3 Results and Discussion

In Section 4.2.1, it had been hypothesized with some mathematical support that a model
with prismatic wetland con�guration and the scaled local contributing area ratio can ac-
curately simulate the runo� from non-prismatic wetlands. To test this statement and �nd
the minimum local contributing area ratio of prismatic wetland, � 0

min ), the \fminsearch"
function in MATLAB was used which is able to minimize the di�erence between the runo�
generated from non-prismatic wetlands and the equivalent prismatic wetland using the
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Figure 4.5: Wetlands in a) linear cascading network with cascading depth of two, and b)
branching network with both cascade depth and branching ratio of two

Nelder-Mead simplex algorithm (Nelder and Mead, 1965). Therefore, the objective func-
tion here is to minimize the error de�ned as,

Error (� min ) =
nX

i =1

mX

j =1

Op(P0
i ; D j ; � j (� min ; � avg)Ri ) � Onp(P0

i ; D 00
j ; � 0

j (�
0
min ; � 0

avg)Ri )

Onp((P0
i ; D 00

j ; � 0
j (�

0
min ; � 0

avg)Ri ))

(4.16)
where Onp represents generated runo� from non-prismatic wetlands with� 0 and D 00dis-
cussed in Section 4.2.1.Op represents generated runo� from equivalent prismatic wetlands
with an scaled de�cit, D , and local contributing area ratio, � which itself is a function of
� min and � avg. n is the number of studied precipitation events (i.e., 150), andm is the
number of Monte Carlo trials (i.e., the number of samples from de�cit and local contribut-
ing area ratio distributions, which is 100000 here). Figure 4.6 compares the simulated
runo� ratio for three di�erent cases of prismatic wetlands with initial de�cit depth of D 00

i
(i.e., the de�cit in non-prismatic wetland), prismatic wetlands with scaled de�cit depth of
D i (shown in Figure 4.4-c as an equivalent form of non-prismatic wetland), and the pris-
matic wetlands with de�cit of D 00

i and scaled local contributing area ratio of� min (found
from the optimization discussed in Equation 4.16). It can be concluded that non-prismatic
trapezoidal wetland responses can be replicated by a prismatic wetland con�guration with
a scaled local contributing area ratio while the de�cit depth remains constant. This is
important because it is not necessary to simulate the exact bathymetry of wetlands to
capture their responses correctly. The fact that the local contributing area ratio is capa-
ble of compensating for the de�ciency of the model reduces the complexity of solving this
problem. It can be concluded that a prismatic wetland con�guration with a scaled local
contributing area ratio can replicate the response of non-prismatic trapezoidal wetlands,
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