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Abstract

The crossing number of a graph is the minimum number of pairwise crossings of

edges among all planar drawings of the graph. A graph G is k-crossing critical

if it has crossing number k and any proper subgraph of G has a crossing number

less than k.

The set of 1-crossing critical graphs is is determined by Kuratowski’s The-

orem to be {K5, K3,3}. Work has been done to approach the problem of classi-

fying all 2-crossing critical graphs. The graph V2n is a cycle on 2n vertices with

n intersecting chords. The only remaining graphs to find in the classification

of 2-crossing critical graphs are those that are 3-connected with a V8 minor

but no V10 minor.

This paper seeks to fill some of this gap by defining and completely de-

scribing a class of graphs called fully covered. In addition, we examine other

ways in which graphs may be 2-crossing critical. This discussion classifies all

known examples of 3-connected, 2-crossing critical graphs with a V8 minor but

no V10 minor.
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Chapter 1

Introduction

The crossing number cr(G) of a graph G is the minimum number of pairwise

crossings of edges among all planar drawings of the graph. A graph G is k-

crossing critical if cr(G) ≥ k and cr(G\{e}) < k for every edge e ∈ E(G). In

fact, since vertices of degree 2 can have no effect on crossing number [3], we

can consider only graphs with minimum degree at least 3. By Kuratowski’s

Theorem, we know that the only minimal 1-crossing critical graphs are K5 and

K3,3.

There has been a great deal of work done on the problem of 2-crossing

critical graphs. The first such graphs were discovered by Bloom, Kennedy

and Quintas [1]. A family of graphs discovered by Širáň shows that there are

infinitely many such graphs [9]. The only 2-crossing critical graph with crossing

number greater than 2 is C3�C3, the Cartesian product of two 3-cycles, which

has crossing number three [15]. There is a complete characterization known

for cubic graphs [12].

The characterization for graphs that are not 3-connected can be found in

Section 14 of [3]. This characterization uses the easily seen fact that crossing

number is additive over blocks. We form the 2-crossing critical graphs that

are not 2-connected from two blocks, each of which is a subdivision of K3,3 or

K5. Each block has at most one subdivided edge, and any new vertex must

be the cut vertex of the graph. This gives 13 2-crossing critical graphs.

For the 2-crossing critical graphs that are 2-connected but not 3-connected,

we need a different way to decompose the graphs. We use Tutte’s decompo-

sition of a 2-connected graph into cleavage units. It can be shown with some

work that any such 2-crossing critical graph has at most three cleavage units,
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at most two of which are non-planar. If the graph has three cleavage units,

then one of them must be a 3- or 4-cycle connecting the other two, which are

non-planar. There are 16 2-crossing critical graphs with two cleavage units,

and 20 with three cleavage units.

The only remaining case to considered is when there is just one non-planar

cleavage unit C. Although not trivial, it can be shown that a 2-crossing critical

graph G can be obtained from C by replacing some edges of C with digonal

paths, that is, paths in which every edge is part of a parallel pair. If these edges

are replaced with parallel pairs instead of digonal paths, then the resulting

graph is both 3-connected and 2-crossing critical.

While Širáň’s graphs used multiple edges to achieve criticality, Kochol de-

fined a series of infinite families of simple graphs, G(n, k), where for each k ∈ N

G(n, k) is n-crossing critical [6]. Since we are working with 2-crossing critical

graphs, we will consider G(2, k).

The graph G(2, k) consists of 2k + 1 cycles of length five on the vertices

5i + 1, 5i + 2, ..., 5i + 5 for 0 ≤ i ≤ 2k. The jth cycle is connected by three

edges to each of the j − 1th and j + 1st cycle, modulo 2k + 1, as shown in

Figure 1.1. This is, in fact, a special case of a more general classification of

2-crossing critical graphs we will see in our discussion of tiles.

Figure 1.1: G(2, k)

There has been a lot of work on average degrees that can occur in infinite

families of k-crossing critical graphs. The basic question can be formulated as

follows. Let r be a rational number and let k be a positive integer. Determine

whether or not there is there an infinite set of simple, minimum degree at least

3, k-crossing critical graphs so that each one has average degree r.

Salazar did the first work on this problem, showing the existence of infinite

families of k-crossing critical graphs to satisfy 4 ≤ r < 6, for infinitely many

values of k [13]. Pinontoan and Richter expanded on this work by introducing
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tiles [11]. A tile is a triple T = (G,L,R) such that G is a graph, and L and R

are disjoint sequences of vertices of G. A tile drawing of a tile T = (G,L,R)

is a drawing of G in the unit square such that the vertices of L occur in order

along the line x = 0 and the vertices of R occur in order along the line y = 0.

We can use such drawings to consider the crossing number of the tile. The

tile crossing number of a tile T is the minimum number of pairwise crossings

of edges among all planar drawings of the graph. If the tile crossing number

is 0, then we say the tile is planar. A tile is perfect if: both G− L and G−R
are connected; for each v ∈ L (R), there is a path to R (L) disjoint from L

(R) apart from v; for each i 6= j, there are disjoint paths from Li to Ri and

from Lj to Rj.

Two tiles, S = (G,L,A) and T = (H,B,R) where A = (A1, A2, . . . , A|A|)

and B = (B1, B2, . . . , B|B|), are compatible if |A| = |B| and, for each 1 ≤ i, j ≤
|A|, AiAj ∈ E(G) if and only if BiBj ∈ E(H). To form the tile ST , we identify

Ai with Bi for each 1 ≤ i ≤ |A|.
If T is compatible with itself, then we form ◦(T ) by identifying B with R.

T n is defined inductively, as follows: T 1 = T , T n = T n−1T . The tile T̃ is T

with the sequence R reversed.

We define two tile combinations to help in finding crossing critical graphs

with a set average degree. Let T ./(m,n) = TmT̃ T n and T⊗(n) = ◦(T nT̃ ).

For a perfect planar tile T , there are integers n, m and M such that for

every n ≥ M , cr(T⊗(n)) = tcr(T ./(m,m)). Moreover, tcr(T ./(m,m)) is a

non-increasing sequence and so it is eventually constant. This allows us to

determine the crossing number of T⊗(n) for a given tile.

Let Th,s,m be the tile formed by the tile SsBm and h edges, the top one of

which is identified with the path formed by the bottom of SsBm, as shown in

Figure 1.3. The graph T⊗h,s,m(n) is
(
2h+3
2

)
-crossing critical when n is sufficiently

large [11].

Figure 1.2: The tiles S and B
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Figure 1.3: The tile Th,s,m

Moreover, T⊗h,s,m(n) had average degree 14s+12h+12m
4s+3h+3m

. For any r ∈ (3.5, 4)

and any positive integer h, there are infinitely many choices of s and m such

that T⊗h,s,m(n) has average degree r. This gives an infinite set of positive integers

k for which we have an infinite family of k-crossing critical graphs with average

degree r.

Bokal built from this work by introducing the zip product, which he com-

bined with the work done on tiles to find examples for 3 < r < 6 [2].

For the remaining classifications, we need to introduce a family of graphs.

The graph V2n consists of a cycle (v1, v2, ..., v2n, v1) on 2n vertices with a chord

between each pair of vertices vi and vj such that |i− j| = n. For each k ≥ 3,

it has been shown that all large 3-connected 2-crossing critical graphs contain

a V2k minor [5].

Let S be the set of tiles formed by placing one of the thirteen pictures in

Figure 1.4, either in the orientation shown or rotated 180◦, into one of the two

frames in Figure 1.5.
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Figure 1.4: Pictures to form the tiles of S

Figure 1.5: Frames to form the tiles of S

Let T be the sequence (T0, T̃1, T2, . . . , T̃2m−1, T2m), where each Ti ∈ S and

m ≥ 1. The set T (S) is the set of all graphs of the form ⊗T . Each of the

graphs in T (S) is 2-crossing critical, and all the V10-containing, 3-connected,

2-crossing critical graphs are contained in this set [3]. Kochol’s graph G(2, k)

as described above is also of this type, and can be constructed with the last

picture and first tile.

The 2-crossing critical graphs with no V8 minor are also known, and a finite

number of graphs remain to be found [3]. These remaining graphs are those

3-connected, 2-crossing critical graphs with a V8 minor but no V10 minor. This

work was begun by Isabel Urrutia-Schroeder in her Master’s essay [14] and

will be continued here. Oporowski developed a list of 531 2-crossing critical

graphs, 201 of which have a V8 minor but no V10 [10]. Clearly, any complete

characterization must include all of these graphs, and so this paper will seek

to explain the characteristics that make these 201 graphs 2-crossing critical.
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In Chapter 2, we examine the 1-drawings of a V8. We define the term fully

covered as a class of 2-crossing critical graphs. All possible single edges that

can be added to a V8 are considered and the effects they have on the possible

1-drawings of the resulting graph.

In Chapter 3, we will fully describe the 3-connected, 2-crossing critical

graphs with a V8 minor but no V10 minor that are fully covered. The first

section of this corresponds to the work done by Urrutia-Schroeder, and corrects

some inaccuracy in that work. The paper claims to find 326 non-isomorphic,

2-crossing critical graphs, but only 214 of those graphs were in fact 2-crossing

critical. With this error fixed, we extend the work to include some larger

structures not previously considered, giving a total of 312 graphs.

In Chapter 4, some other ways to achieve criticality in such 2-crossing

graphs will be discussed in lesser depth. Of Oporowski’s 201 graphs, all but 8

satisfy our definition of fully covered. These remaining graphs are critical for

three reasons, each of which will be examined.
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Chapter 2

Fully Covering a V8

The graph V8 is an 8-cycle with four chords joining the pairs of vertices at

distance 4 on the cycle, as shown in Figure 2.1. We call the 8-cycle the rim

and the four chords spokes. Each edge of the rim is a rim branch. As we add

structures to the V8, its edges may become subdivided. In this case, the spokes

and rim branches may be paths rather than edges, but they retain the same

designation. The (subdivisions of) 4-cycles created by consecutive spokes and

the two rim branches between them are quads.

Figure 2.1: V8

We will generally show graphs as drawn on the Möbius strip for ease of

representation.
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Figure 2.2: V8 embedded on a Möbius strip

It is from this base that we build our 2-crossing critical graphs by subdivid-

ing and adding edges. We are concerned with extending a V8 to a 2-crossing

critical graph without creating a V10.

To do this, we analyze 1-drawings of V8. We define all possible single-edge

additions and what possible crossings of the V8 they prevent. We examine

how these single-edge additions can interact to effect the possible crossings.

In doing this, we will check Urrutia-Schroeder’s work with small structures,

comparing it to our findings with those structures.

2.1 Working with a V8

It is easy to see that V8 has crossing number 1. A drawing of a graph G with at

most one pair of crossed edges is a 1-drawing of G. Since it has a K3,3 minor, V8

cannot be planar, but it does have 1-drawings, as shown in Figure 2.3. In this

section, we will show that these two 1-drawings are the only non-isomorphic

possible 1-drawings of V8.

Figure 2.3: Two 1-drawings of V8

Let us consider which pairs of edges in a graph can be crossed in a 1-

drawing. To determine this, we have two basic tools.
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Lemma 2.1. Disjoint cycles do not cross in a 1-drawing.

Proof Let Cα and Cβ be disjoint cycles in a graph G. Any two disjoint

cycles must cross an even number of times; for each time Cα crosses into Cβ, it

must also cross out. Since there are fewer than 2 crossings in any 1-drawing,

the cycles must intersect exactly zero times. Therefore, no edge in Cα can

cross any edge in Cβ.

Lemma 2.2. Let α be an edge in a graph G. If G\{α} has a K3,3 minor, then

α is not crossed in a 1-drawing of G.

Proof If α is crossed in a 1-drawing of G, then G\{α} is planar and so

contains no K3,3 minor.

With these two facts in mind, we can eliminate several pairs of edges from

being crossed 1-drawings of V8. The rim branch from i to i + 1 is denoted ri,

where all values of i are taken to be modulo 8. The spoke from j to j + 4 is

denoted sj, where all values of j are taken to be modulo 4. We indicate the

inclusion or exclusion of endpoints by using square or angle brackets, respec-

tively. For example, [0, r0, 1〉 indicates the rim branch from 0 to 1, including 0

and excluding 1.

Lemma 2.3. No spoke is crossed in a 1-drawing of a V8.

Proof The graph V8\sj is a subdivision of K3,3. Therefore, by Lemma 2.2,

the spoke cannot be crossed.

Lemma 2.4. If two rim branches ri and rj are crossed in a 1-drawing of a V8,

then |i− j| = 3 or 4.

Proof Suppose two adjacent rim branches, ri and ri+1, are crossed in a

1-drawing of a V8. Removing the spoke si+1 leaves a 1-drawing of K3,3 in which

the single crossing is one edge crossing itself. Since K3,3 has crossing number

1, there must be a crossing between two distinct edges, so such a drawing is

not possible. Thus, it is not possible to have a 1-drawing of the V8 in which

adjacent rim branches are crossed.

Two rim branches ri and ri+2 are on disjoint quads. By Lemma 2.1, they

cannot be crossed in a 1-drawing.
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Therefore any crossed rim branches must be at distance 3 or 4, as required.

Figure 2.3 shows the two non-isomorphic embeddings of V8: the left hand

one has ri crossing ri+4, while the right hand one has ri crossing ri+3. The two

embeddings are necessarily non-isomorphic, as the crossing in one is incident

with faces having 2, 2, 4 and 4 vertices, while the other’s crossing is incident

with faces having 2, 3, 3 and 3 vertices . We call the pairs of edges in opposite

or next to opposite rim branches crossing pairs, as they are the pairs of edges

that can be crossed in a 1-drawing.

2.2 Structures and Covering

In order to create 2-crossing critical graphs, we will add structures to the V8.

For our purposes, these structures are single edges with each endpoint on the

V8, possibly subdividing one of its edges. Each structure added can prevent

certain pairs of edges from crossing in a 1-drawing. We say that an edge on

the rim is covered if each crossing pair involving that edge is prevented in a

1-drawing by one or more structures.

A V8 is fully covered if all crossing pairs are eliminated. It is easy to see

that a fully covered V8 has crossing number at least 2, since there is no pair of

edges remaining whose crossing can yield a 1-drawing. Our goal in this work

is to find all 2-crossing critical graphs that have a fully covered V8. In this

section, we consider all possible single-edge additions to a V8 and what effect

they have on the possible crossings of the V8 in a 1-drawing of V8 plus the

addition. The following observation limits the amount of checking we need to

do.

Lemma 2.5. If five consecutive rim branches of a V8 in a graph G are covered,

then G is fully covered and has crossing number at least two.

Proof With five rim branches covered, any possible crossing pair must

consist of edges from the remaining three. These rim branches are consecutive

and so are at a distance of at most 2 from each other. But, by Lemma 2.4,

rim branches can only cross in a 1-drawing if they are at a distance of 3 or 4.

Then that V8 is fully covered. In particular, G has crossing number at least

2.
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What happens when we add a single edge to a V8? Depending on where

the edge is added, it will cover different sections of the rim. Note that it is not

possible for the new edge to be crossed in a 1-drawing, since any drawing must

have at least one crossing in the original V8 by virtue of V8 having crossing

number 1.

We divide the new structures added to the V8 into three categories: jumps,

slopes and bars. All possibilities are defined and pictured below. The dotted

lines in the figures show the sections of the rim covered by the added structure.

We define the span of a structure to be the section of rim between the endpoints

of that structure.

A jump is an edge with both endpoints on the rim of the V8. For k = 1, 2,

a k-jump has endpoints i and i+k, spanning k rim branches. For k = 0, 1, 2, a

k 1
2
-jump has one endpoint at i and the other on ri+k or ri−k−1, spanning k full

branches and part of another. For k = 1
2
, 1, 2, 3 an off k-jump has endpoints

on ri and rbi+kc, spanning k full rim branches and parts of two others or, in

the case of the off 1
2
-jump, spanning part of a single rim branch.

Figure 2.4: 1
2
-jump Figure 2.5: 1-jump

Figure 2.6: Off 1
2
-jump Figure 2.7: Off 1-jump

Jumps can also be placed on the spokes of the V8, in which case they are

denoted spoke jumps. These do not eliminate any crossings.
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Figure 2.8: 1
2
-spoke jump Figure 2.9: Spoke jump

Figure 2.10: Off spoke jump

A slope is an edge with one endpoint on the rim and the other on a spoke.

For k = 1, 2, a k-slope has one endpoint on si and the other at i+ k or i− k,

spanning k rim branches. For k = 0, 1, a k 1
2
-slope has one endpoint on si and

the other on ri+k or ri−k−1, spanning k rim branches and part of another.

Figure 2.11: 1
2
-slope Figure 2.12: 1-slope

An edge between two spokes is a bar. A bar has endpoints on si and si+1

and spans the two rim branches between these spokes. A 2-bar has endpoints

on si and si+2 and, since this can also be considered to be a bar from si+2 to

si, spans the entire rim.

Figure 2.13: Bar Figure 2.14: 2-bar
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It is more convenient to look at some of the larger jumps in a slightly

different way. A 3-jump can be drawn as a chord in a quad and is denoted

a diagonal. A 31
2
-jump is also an edge from a vertex i across a quad to ri+4,

called a semi-diagonal. The diagonal alone place no limits on crossings, and

the semi-diagonal only eliminates one crossing.

Figure 2.15: Diagonal Figure 2.16: Semi-diagonal

There are only a few other possible edges that could be added to the V8. A

jump of length 4 is a spoke jump. Any larger jumps are equivalent to smaller

ones. The only off jumps not given here are the off 4-jump, which would add a

fifth spoke and make a V10, and the off 2-jump, which we will show is equivalent

to the bar. Therefore, the 19 structures discussed here are the only possible

edges to add to the V8 in our context.

In order to find fully-covered graphs, we need to understand what coverage

is given by each of the structures.

Theorem 2.6. Consider a graph consisting of a V8 with some structure S

added.

1. (a) If S is a slope, a bar or a k-jump, with k ≤ 2, then it covers the

section of rim it spans.

(b) If S is a 21
2
-jump or off 3-jump, then it covers the two full rim

branches it spans.

2. (a) If S is a 11
2
-slope or 2-slope from si that spans ri, then it also covers

ri+2, ri+3, ri+5 and ri+6.

(b) If S is a 21
2
-jump or off 3-jump from ri that spans ri+1, then it also

covers ri+5 and, in the case of an off 3-jump, ri+6.

3. (a) If S is a 21
2
-jump from ri to i+ 3, then the section of ri spanned by

S can only cross ri+3. If S is an off 3-jump from ri to ri+3, then

the section of ri spanned by S can only cross ri+3 and the section of

ri+3 spanned by S can only cross ri.
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(b) If S is a semi-diagonal from i to ri+4, then the section of ri+4

spanned by S cannot cross ri+1.

Proof

1. If S is a jump or slope, delete the edges that we claim are covered by S. If

S is a bar from si from sj, then delete the rim from ri to rj−1. If deleting

these edges leaves one of the vertices k with degree 1, then delete sk.

Otherwise delete any spoke. In each case, we delete one spoke, leaving

a revised rim with three spokes; this is a subdivision of K3,3, which has

crossing number 1. By Lemma 2.2, none of the deleted edges can be

crossed in a 1-drawing of the graph. The remaining coverage caused by

the bars follows by symmetry.

2. (a) Let S be a slope with endpoints a and b on si and ri+1 or i + 1.

Define α to be the cycle (i + 4, a, b, i + 2, i + 3, i + 4) and β to be

(i, i + 1, i + 5, i + 6, i + 7, i). By Lemma 2.1, these disjoint cycles

guarantee the required coverage.

Figure 2.17: Extra coverage by 11
2
-slope (2(a) with i = 4)

Figure 2.18: Extra coverage by 2-slope (2(a) with i = 4)

(b) If S is a 21
2
-jump or off 3-jump, then removing the specified edges

as well as either ri+2 if S is a 21
2
-jump or si+2 if it is an off 3-jump,

leaves a subdivided K3,3.
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Figure 2.19: Extra coverage by 21
2
-jump (2(b) with i = 3)

Figure 2.20: Extra coverage by off 3-jump (2(b) with i = 3)

3. (a) Let α be the cycle formed by S and the section of rim it spans. Let

β be the cycle (i + 5, i + 6, i + 7, i, i + 4, i + 5). Then the cycles

are disjoint and Lemma 2.1 eliminates all crossing pairs involving

the partial rim branch or rim branches spanned by S except those

specified.

(b) Denote the endpoint of S on ri+4 by v. Let α be the cycle (i, i +

4, v, i) and β be the cycle (i+1, i+2, i+6, i+5, i+1). By Lemma 2.1,

the rim from i+ 4 to v cannot cross ri+1.

Clearly we can eliminate all spoke jumps and the diagonal from considera-

tion, since they do not eliminate any crossing pairs. This does not necessarily

prevent them from being in a 2-crossing critical graph (Figure 4.4, for exam-

ple, shows a 2-crossing critical graph with a diagonal), but the criticality would

have to achieved in some way other than full coverage as we have defined it

here.

Lemma 2.7. If G is a fully covered, 2-crossing critical V8 with an off 2-jump,

then G is also a fully covered, 2-crossing critical V8 with no off 2-jump.

Proof The transformation shown in Figure 2.21 eliminates an off 2-jump

by choosing a new V8 with a bar. We must show that this transformation

maintains coverage, and that it does not create any off 2-jumps.
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Figure 2.21: Transformation from an off 2-jump to a bar

Suppose there is a structure S with an endpoint at a. Then the length of

S will be increased by 1
2

after the transformation and so, checking the cases,

it is easy to see that the new structure prevents the same crossings unless it

is a 21
2
-jump, off 3-jump or 11

2
-slope to a spoke spanned by the off 2-jump. A

simple check shows that the off 3-jump gives a graph with crossing number 2

that is not critical. The other two are 2-crossing critical graphs in which we

can find a fully covered V8 with no off 2-jump, but an off 3-jump instead. By

symmetry, the same is true with an endpoint on b.

If S has an endpoint on 〈a, r4, 5], then that point will be on a spoke after

the transformation. After the transformation, S will prevent at least those

crossings that were prevented before unless its endpoint is on 〈a, r4, 5〉 and it

is a 21
2
-jump or off 3-jump, or a 11

2
-slope to a spoke within the off 2-slope.

However, by using the transformation in Figure 2.22, each of these can be

treated as a fully-covered V8 with no off 2-jump but an off 3-jump instead.

This also covers [6, r6, b〉, by symmetry.

Figure 2.22: Transformation from off 2-jump to off 3-jump with i = 4

If S has an endpoint on r5, then the graph cannot be fully covered and

2-crossing critical. Any other structures are unchanged by the transformation

and therefore eliminate the same crossings as in the original drawing.

The transformation in Figure 2.22 shows that the off 3-jump eliminates the

same crossing pairs as the off 2-slope or bar, so it is conceivable that we could

eliminate the off 3-jump from consideration as well. However, using the off

3-jump offers possibilities not given by the bar. The sections of rim we cover
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in order to get five in a row are equivalent for the two drawings. Covering from

b to 1 with the off 3-jump gives five in a row with the bar covering the first and

last. The only possible coverage of these rim branches with small structures

that does not translate to a covering using only bars and jumps of length 2 or

less is using a 2-jump. When we move to the bar representation, this becomes

a 3-jump, or diagonal, which generally does not give any coverage. In this way,

we can find more fully covered graphs with the off 3-jump than we can with

the bar alone.
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Chapter 3

Finding Fully Covered Graphs

Knowing the coverage provided by each structure, we can begin to place multi-

ple structures on a V8 in order to increase the crossing number of the resulting

graph to 2. Our goal is to find all combinations of these structures that yield

2-crossing critical graphs.

In order to facilitate this search, we build the graphs in three stages, de-

scribed individually in the first three sections of this chapter. Stage 1 deals

with the simplest of the structures – those that cover only the section of the

rim they span. Stages 2 and 3 add the larger jumps and slopes, respectively.

In the final section, we discuss the algorithm used to build these graphs.

3.1 Stage 1 – small and simple

In this section we treat the case of adding only structures that cover exactly

the section of rim they span. This contains the work by Urrutia-Schroeder.

These structures, which we will refer to as small structures, are as follows:

• 1
2
-jump

• 1-jump

• 11
2
-jump

• 2-jump

• off 1
2
-jump

• off 1-jump

• 1
2
-slope

• 1-slope

• bar

• 2-bar

We want to put these structures on a V8 in such a way that five consecutive
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rim branches are covered; by Lemma 2.5, this is equivalent to having a fully

covered graph. We will do this by placing structures on the rim branches

from 0 to 5 in all possible combinations. This will always guarantee a crossing

number of at least two, but we also need to determine which combinations

yield 2-crossing critical graphs.

Two structures S and S ′ are disjoint if the sections of the rim covered by

S and S ′ have no edge in common. The coverage considered is that provided

by Theorem 2.6.

Theorem 3.1. When covering 5 sequential rim branches with any combination

of bars, 2-bars and 1
2
-, 1, 11

2
, 2-, off 1

2
and off 1-jumps, the sections of rim

covered by the structures must be disjoint in order to have a 2-crossing critical

graph.

Proof First, we note that by choosing a different V8, H
′, which is the

same as the original, H, except for the edges defining a single rim branch, we

do not affect the other rim branches. That is, we can redefine the rim in one

area without changing which sections of rim are covered by disjoint structures.

Evidently, if any structure S covers only sections of the rim already covered

by other structures, then S can be removed without affecting the coverage. For

example, if a V8 has a 2-bar, then, since the 2-bar covers the entire rim, the

coverage from any other structure would be redundant, and so does not exist.

Likewise, we cannot have an off 1-jump whose span is contained in the span

of a bar or 1
2
-, 1-, 11

2
-, 2 or off 1-jump. The other instances of such an overlap

are a 1-jump occuring in the span of a bar, 11
2
-jump or 2-jump, an off 1-jump

in the span of a 11
2
-jump or 2-jump, or a 11

2
-jump in the span of a 2-jump.

Since we are looking for critical graphs, we can discount any such situation.

The remaining possibilities are outlined in Table 3.1, where J and S are

the overlapping structures, with the number of different ways they can overlap

indicated. S ′ is the structure found by redefining the rim of the V8 to go

through J and removing an edge. Given any pair of structures, if possible we

choose J to be as early as possible in the following list: off 1
2
-jump, 1

2
-jump,

1-jump, off 1-jump.

Case 1: J is an off 1
2
-jump, a 1

2
-jump or a 1-jump with endpoints a and

b, a structure S has an endpoint c in the span of J . Assume, without loss

of generality, that a is in the span of S. Then we can redefine the rim to go

through J . Deleting 〈a, c〉, the area of the rim that was covered by S and
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J S # possible S ′

off 1
2
-jump off 1

2
-jump 1 off 1

2
-jump

off 1
2
-jump 1

2
-jump 1 1

2
-jump

off 1
2
-jump off 1-jump 1 off 1-jump

off 1
2
-jump 11

2
-jump 1 11

2
-jump

1
2
-jump 1

2
-jump 1 1-jump

1
2
-jump 11

2
-jump 2 11

2
-jump or 2-jump

1
2
-jump off 1-jump 2 off 1-jump or 11

2
-jump

1-jump 11
2
-jump 1 2-jump

1-jump off 1-jump 1 11
2
-jump

off 1-jump off 1-jump 1 11
2
-slope

off 1-jump 11
2
-jump 2 11

2
-slope or 2-slope

off 1-jump 2-jump 1 2-slope

off 1-jump bar 1 bar

11
2
-jump 11

2
-jump 3 11

2
-slope or 2-slope or 2cc

11
2
-jump 2-jump 2 2-slope or 2cc

11
2
-jump bar 2 21

2
-jump or bar

2-jump 2-jump 1 2cc

2-jump bar 1 21
2
-jump

Table 3.1: Possible overlaps and results
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J is now covered by the single structure formed by S extended with 〈b, c〉.
Given that the only possibilities for S to overlap such a J without completely

covering it have length at most 11
2
, the extension of S is at most a 2 jump,

ensuring coverage. Since we can have the same coverage with an edge deleted,

the graph cannot be critical.

Figure 3.1: Alternate drawing of a 1-jump

Case 2: J is an off 1-jump with endpoints a in ri and b in ri+1 and a

structure S, either another off 1-jump, a 11
2
-jump, a 2-jump or a bar, has an

endpoint c in the span of J . Assume, without loss of generality, that a is in the

span of S. Then we can redefine the rim to go through J , extending the spoke

to include 〈s, b〉 and deleting the edge {a, c}. If the structure S is a jump, this

turns it into a 11
2
-slope or 2-slope, thereby covering a large portion of the rim,

including the area previous covered by S and J . If S is a bar, we redefine the

rim in the same way with the same edge deletion, leaving a bar that covers

the same area.

Figure 3.2: Alternate drawing of an off 1-jump

Case 3: Each of J and S is either a 2-jump or a 11
2
-jump in which the

partially covered rim branch is overlapped. When two 2-jumps overlap we can

remove the edge covered by both, resulting in the 2-crossing critical graph G,

shown in Figure 3.3. The subgraph G can be found in a similar way when

the rim branch partially covered by a 11
2
-jump is overlapped by a 11

2
-jump or

2-jump.
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Figure 3.3: The graph G

Case 4: J is a 11
2
-jump from i to a point a in ri+1, S is a 11

2
-jump, 2-jump

or bar with an endpoint x in the span of J , such that i is in the span of S.

We can redefine the rim to go through J and remove the section of rim from

i to either x if S is a jump, or i + 1 if S is a bar. This creates a bar if we

started with a bar, or a slope otherwise. The length of the slope will be 11
2

or

2, depending on whether the second endpoint of S is a main vertex of the V8

or on a rim branch.

Case 5: J is a 11
2
-jump or 2-jump from i to a vertex a on either ri+1 or

i+ 2, S is a bar from si+1 to si+2. We can redefine the rim to go through the

bar and eliminate 〈i + 1, ri+1, a〉 in order to create a 21
2
-jump that covers the

same sections of rim as the previous jump and bar combined.

We need not include the 1
2
-slope or 1-slope when counting the combinations

of small structures because we can transform them into an off 1-jump and 11
2
-

jump, respectively, using the transformations shown in Figures 3.4 and 3.5.

In order to eliminate them, we must ensure that the transformations do not

affect the coverage of the other rim branches. We will assume, in determining

this, that we begin with a 2-crossing critical graph, as otherwise the graph is

not relevant to the discussion.

Figure 3.4: Transformation from a 1
2
-slope to an off 1-jump

The only structures that will be affected by the transformations are those

with endpoints on 〈a, r4, 5, s1, b] for the 1
2
-slope and on 〈r4, 5, s1, a] for the 1-

slope. Let J be the slope in question and S be a structure affected by the
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transformation, having endpoints u and v. Without any loss of generality, we

take J to be positioned as shown in the figure.

Figure 3.5: Transformation from a 1-slope to a 11
2
-jump

Case 1: u is on 〈b, s1, 5〉. Then S must be a 1
2
-slope, 1-slope or bar, with

v on 〈5, r5, 6, s2, 2〉. Using the transformation, the slopes become small jumps,

covering the same edges. If S is a bar, then it becomes a 1-slope or 1
2
-slope.

Repeating the transformation on this new slope gives two overlapping small

jumps, which cannot happen in a critical graph by Theorem 3.1.

Case 2: u is 5. Then S must be either a jump with v on 〈5, r5, 6, r6, 7] or

a slope with v on s2. If S is a jump, the transformation makes a shorter jump

that covers the same edges. Otherwise, S must be a 1-slope and therefore

transforms into a 1
2
-slope. This leaves one fewer slope than the original graph,

so a repetition of the transformations can still eliminate all of them.

Case 3: u is in the span of J . The only such possibility with S a slope

is when both S and J are 1
2
-slopes. In that case, deleting the section of rim

that was covered by both slopes in the original graph turns the two slopes into

a 11
2
-slope which covers even more than the two slopes separately. When S

is a jump, deleting the doubly covered section of rim and transforming gives

a larger jump. This new jump covers the same area as the two structures,

unless S was a 11
2
-jump from 3. That combination, however, gives a 2-crossing

critical graph with no V8 after deleting s0, and so cannot occur in a critical

graph in our context.

The remainder of this section is devoted to further understanding restric-

tions on how the structures may combine in a 2-crossing critical example.

A 2-bar on a V8 gives the Petersen graph, which is 2-crossing critical. In

fact, the 2-bar spans the entire rim of the V8, therefore no other structure can

be on the V8 with a 2-bar. In this way, the Petersen graph is a fully covered

graph.

Since we only consider 3-connected graphs and no two structures overlap,

there can be at most one 1
2
-jump on any rim branch. If there was a rim
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branch ri with two 1
2
-jumps, then removing i and i + 1 would disconnect the

graph. Moreover, the only time there can be an off 1
2
-jump is when each of

its endpoints is adjacent to a point outside of the rim branch containing the

jump.

When placing the remaining structures, consider what happens when a

structure has one endpoint in the five rim branches to be covered and the

other endpoint outside that range. The only structures that can do this are

the 11
2
-jump, 2-jump and off 1-jump. Assume, without loss of generality, that

J spans 0 and the five covered rim branches are r0 through r4. If the structure

J going off the end has endpoints a on [7, r7, 0〉 and b on 〈0, r0, 1〉, as is the

case in Figure 3.6, then we can redefine the rim to go through that structure.

Removing 〈a, r7, 0〉 and redefining the spoke to be 〈b, r0, 0, s0, 4〉 leaves a fully

covered graph. Thus the graph is not 2-crossing critical.

Figure 3.6: A structure going off the end of the 5 covered rim branches

A 11
2
-jump from a vertex within the covered range to a rim branch outside

the range covers a full rim branch and maintains criticality.

A 2-jump with one endpoint inside the covered range and the other outside,

say from 7 to 1, covers a full rim branch outside of the range we need covered,

from 0 to 5. So, in any critical graph with such a jump, we must be unable

to remove the structures covering r4 without also uncovering r3. This means

there must also be a 2-jump from 3 to 5. Moreover, if there is a bar between

s2 and s3, then we have five consecutive rim branches covered from 6 to 3.

This allows us to remove any structures from the rim branches from 3 to 5,

meaning that the graph cannot be critical. Therefore, we can have a 2-jump

going off the end of the designated five rim branches, say from 7 to 1, only if

there is a 2-jump from 3 to 5 and no bar.

There are also restrictions on where we can place bars. Suppose there is a

bar on the second of the five sequential covered rim branches. Then the rim

branch directly following the five is also covered. This means that we need not
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cover the first of the five to have five in a row. We can, therefore, remove any

structure covering that first rim branch. Assuming no overlap with the bar,

any structure removed in this manner would not affect the coverage of the other

four sequential rim branches unless it was a bar. We can, therefore, eliminate

the bar from being on the second or, by symmetry, fourth rim branches of the

five in a row unless there is also a bar on the first or, symmetrically, fifth.

When we do have bars on sequential quads in this way, they cannot share

an endpoint. As shown in Figure 3.7, we can eliminate the undivided spoke

and choose a new V8 so that this configuration of bars turns into a 2-slope. If

we cover the rim from 6 to 0 or from 2 to 4 in order to have five sequential

covered rim branches using the bars, then we also form a 2-crossing graph

in the version with the 2-slope, but with one of the original edges removed.

Therefore the configuration in the first graph cannot yield a 2-crossing critical

graph.

Figure 3.7: Transforming two bars to a 2-slope

Furthermore, if we have bars on three consecutive quads, then the graph

has a V10 minor, as shown in Figure 3.8, and so does not fall into the category

of graphs we are considering. Other arrangements of bars will give different

slopes, but the same V10 minor.

Figure 3.8: Three bars

So we can find all the 2-crossing critical graphs that use only these struc-

tures by examining all combinations of five of the eight rim branch configura-

tions in Figure 3.9, as well as the 2-bar.
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Figure 3.9: The possible formations

The algorithm in Section 3.4 found exactly 231 non-isomorphic 2-crossing

critical graphs consisting of a V8 fully covered with these structures. This

should be almost equivalent to the work done in [14], since there the search

was limited to exactly the structures we have specified for this stage with the

exception of the 2-bar. After accounting for the non-critical graphs counted

in [14] and the one extra graph found here with a 2-bar, there remain 16 new

graphs. These 16 graphs all involve a structure going off the end of the five

consecutive covered rim branches. The previous paper does not allow for 2-

jumps to go off the end, and only allows for a 11
2
-jump off of one end at a

time.

3.2 Stage 2 – large jumps

In this section we extend the discussion to include the possibility of including

21
2
-jumps and off 3-jumps, as well as the short structures of the preceding

section. In doing this, our algorithm finds all fully covered V8’s with at least

one large jump. These large jumps, shown in Figure 3.10, cover a section

on the opposite side of the rim from where they are placed, as discussed in

Theorem 2.6. For the 21
2
-jump ab from a in r3 to b = 6, the only ways to

achieve full coverage are by covering the rim from 6 to 0, from 1 to 4 or from 2

to a and 6 to 7. For the off 3-jump ab with a in r3 and b in r6, covering either

from 6 to 0 or from 2 to 4 are the only ways to fully cover the V8. We may

cover from 3 to 4 and b to 0 in lieu of 6 to 0, or 6 to 7 and 2 to a in lieu of 2

to 4.
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Figure 3.10: Off 3-jump and 21
2
-jump

First let us consider covering the remaining sections with small structures,

and the possible overlap between a small structure and a large jump. Any

time one of these large jumps overlaps with a 2-jump, the resulting graph has

crossing number two. If the large jump ab specified above is an off 3-jump

and the 2-jump covers from 2 to 4 or 6 to 0, then the V8 is also fully covered.

However if ab is the 21
2
-jump, then ab does not overlap a 2-jump; otherwise

the two structures create a 2-crossing graph as will be discussed in Chapter 4.

Similarly, we cannot have a fully covered V8 in which a 11
2
-jump or off 1-jump

covers the endpoint of a 21
2
-jump or off 3-jump.

If there is a structure S from s3 to s0 or 〈a, r3, 4] (so S is a bar, or a 1
2
-slope

or a 1-slope), then we can choose a new V8, using the large jump as a spoke

and turning S into a 11
2
-slope or 2-slope. Since the large slope covers so much

more of the rim, we can eliminate at least one of the other structures from

original graph and still have a fully covered V8. This means that the original

graph could not have been 2-crossing critical. By symmetry, the same is true

for a structure from s3 to s2 or [6, r6, b〉 with an off 3-jump.

If we have a fully-covered V8 with a structure from s0 to [3, r3, a〉 in addition

to the off 3-jump or 21
2
-jump, then removing r1 leaves a graph with no V8 minor

that has crossing number 2. Thus, this combination of structures cannot occur

in a critical graph. If we have a jump from 3 to a vertex x on 〈a, r3, 4] and

a bar from s2 to s3, then removing the rim from a to x leaves a graph with

crossing number 2.

Suppose there is a structure S with endpoints x and y where x is on 〈a, r3, 4〉
and y is on 〈4, r4, 5]. Then we can redefine the rim to go through S, with a

spoke from 0, through 4, to x, and delete 〈4, r4, y〉. This leaves the large jump

intact and maintains the same coverage as the original graph.

If x = a, we do the same process, but this shortens the large jump. The 21
2
-

jump turns into a 2-jump. However the only time 〈a, r3, 4〉 would be covered

is if all the rim from 1 to 4 is covered, so we do not need the extra coverage on
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r0 originally provided by the large jump to have five consecutive rim branches

covered. The off 3-jump turns into a 21
2
-jump, so r1 is still covered, but r0

is not. There are two situations in which 〈a, r3, 4〉 may be covered. If we are

covering the rim from 2 to 4, then there is still coverage from 1 to 6, giving the

five rim branches needed. Otherwise 〈a, r3, 4] was covered in order to eliminate

the crossing pair with 〈6, r6, b〉. In this case, 〈3, r3, a〉 must also be covered and

it provides the covering needed to have the rim covered from 3 to 0, again

giving five rim branches.

If x is on 〈3, r3, a〉 and y on r4, then we redefine the rim to go through S

with a spoke from 0 through 4 and a to x, and delete 〈4, r4, y〉. This turns the

large jumps into slopes: the 21
2
-jump into a 2-slope and the off 3-jump into a

11
2
-slope. In any situation requiring 〈a, r3, 4〉 to be covered, 〈3, r3, a〉 would be

also be covered, and that section of the rim together with the newly formed

slope provides enough coverage to force a second crossing.

If we have a 21
2
-jump with r6 being covered by smaller structures, then any

overlap onto the rim covered by the 21
2
-jump will result in a variant of G if the

other endpoint is on 7. If the other endpoint is on r6 we can turn the 21
2
-jump

into a 11
2
-slope by removing an edge, and then the coverage of the remainder

of r6 ensures a crossing number of at least 2.

If there is a 1
2
-slope or 1-slope with an endpoint on s2 next to a 21

2
-jump,

we can transform it into a jump, making the 21
2
-jump a bar, and maintaining

coverage. So any such configuration is isomorphic to a graph found in stage 1.

Any small structure that overlaps a rim branch covered by a large jump

on the opposite side of the V8 from that jump must also cover another whole

rim branch. If it does not, then we can redefine the rim to go through that

structure and remove the section of rim that is doubly covered. However if

the overlapping structure does cover another rim branch as well, then we can

remove the section of rim that is doubly covered and have a 2-crossing critical

variant of G, also yielding a 2-crossing graph.

It is also possible to have two large jumps on a single V8. Some combinations

of two large jumps yield a 2-crossing critical variant of G, and therefore cannot

occur in a critical graph. Other combinations fully cover the V8 on their

own, and still others leave graphs with 1-drawings. Since there are no three

positioned large jumps for which any two yield a graph with crossing number

1, it is not possible to have more than two large jumps on a critical graph.
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Therefore we can complete the collection of fully covered V8’s with large slopes

by taking the pairs that give 1-drawings and completing the coverage with

small structures.

At this stage, we should also consider the semi-diagonal. It was not useful in

Stage 1, since by virtue of eliminating only one crossing pair the semi-diagonal

cannot be in a fully covered V8 with only small structures. If this were the case

with a semi-diagonal from i to ri+4, then the rim from i− 1 to i + 1 must be

covered by those structures in order for the semi-diagonal to be useful, forcing

the five sequential rim branches to be from i+ 4 to i+ 1. However given that

situation, we can remove si and use the semi-diagonal as a spoke. If there

is a structure with an endpoint v on si, then we remove 〈v, si, i + 4〉 instead,

thereby preserving coverage. The resulting graph will still be fully covered, so

the original graph was not 2-crossing critical.

Figure 3.11: Semi-diagonal, or 31
2
-jump

Since both the 21
2
-jump and the off 3-jump leave a section of rim with just

one possible crossing, a semi-diagonal could eliminate this crossing. However,

with the semi-diagonal placed as shown in the figure we can use it as a spoke

instead of s1 and maintain coverage without the original spoke, thereby forcing

any usage of the semi-diagonal to be non-critical.

After checking for isomorphism, there are 101 fully covered graphs with

large jumps, 69 of which are not isomorphic to the graphs found in Stage 1.

3.3 Stage 3 – large slopes

This section introduces the last two structures into the discussion: the 11
2
-

and 2-slopes. A single 2-slope completely covers six of the eight rim branches,

so to increase the crossing number to 2 we need only cover one of these two

remaining rim branches. The 11
2
-slope has a similar effect on the V8, as shown

in Figure 3.12. To get five sequential covered rim branches, we must cover
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either r0 or both 〈b, r5, 6〉 and r3. However, this coverage also places great

limits on the criticality of the resulting 2-crossing graph.

Figure 3.12: 11
2
-slope

First we will examine ways to cover the remaining full rim branches with

small structures. Any 1
2
-slope or 1-slope used can either be transformed into

an off 1-jump or 11
2
-jump without affecting the large slope, or we can remove

the section of spoke under the small slope and still have a graph with crossing

number 2. Consider three cases in covering a full rim branch: it is covered by

a 1-jump, it is covered by two structures or it is fully covered by a structure

that also covers another section of the rim. Covering with a 1-jump gives a

2-crossing critical graph. Suppose we cover one of the remaining rim branches

with two of the small structures, say S1 and S2, each covering half of the rim

branch. Then at least one of them, say S1, also covers part of an adjacent

rim branch R, otherwise the graph is either not critical or not 3-connected.

If we redefine the rim to go through S1 and delete R the rim branch is still

covered in the resulting graph and so the original was not 2-crossing critical.

The graph that results from this gives one of the other two cases.

The remaining case is when one of the rim branches is covered by a structure

that also covers a disjoint section R of the rim: a 11
2
-jump, 2-jump or bar. If

the structure is a 11
2
-jump or 2-jump, then deleting R leaves the 2-crossing

critical graph G. For a bar, deleting part of the spoke where the spoke and

bar meet gives a 2-crossing critical graph. For a bar covering r0, we delete

〈a, s0, 0〉 or, if the bar has an endpoint x on that part of the spoke, 〈x, s0, 0〉.
If the bar covers r3, we delete 〈a, s0, 4〉 or 〈x, s0, 4〉.

If the half rim branch is covered by a 2-jump, then this yields a 2-crossing

critical graph without needing to cover anything else. This type of criticality

will be considered in Section 4.2. If it is covered by a 1
2
-slope or 1-slope from

s2 to a point v on [5, r5, b〉 then removing 〈v, r5, b〉 leaves the Petersen graph.

With a 1
2
-slope or 1-slope from s1 to 〈b, r5, 6] we can remove 〈5, r5, b〉, leaving

a 11
2
-slope or 2-slope.
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Suppose there is a structure S with one endpoint, x, on 〈6, r6, 7] and the

other, y, on r5 (S is either an off 1-jump or a 11
2
-jump). Then we can redefine

the rim to go through S with a spoke from 2 through 6 to y and delete 〈6, r6, x〉.
If y is on [b, r5, 6〉, then this leaves a 11

2
-slope or 2-slope. Otherwise, y is on

〈5, r5, b〉 and the resulting graph is the Petersen graph, which is 2-crossing

critical.

Alternatively, suppose there is a structure with one endpoint, x, on [5, r5, b〉
and the other, y, on 〈b, r5, 6〉. Again, we redefine the rim to go through S, this

time deleting 〈y, r5, b〉. This leaves a 2-slope or 11
2
-slope.

This means that the only way to cover 〈b, r5, 6〉 and maintain criticality is

with a 1
2
-jump. The 11

2
-slope with such a 1

2
-jump then gives the same coverage

as a 2-slope.

We must also consider having two large slopes, or a large slope and large

jump, on a V8. Similarly to combining large jumps in Stage 2, we can have at

most 2 large structures and those pairs that give 1-crossing graphs can have

their coverage completed by small structures.

This gives a total of 19 non-isomorphic graphs, 12 of which were not found

in Stages 1 and 2.

3.4 The Algorithm

In this section, we describe the algorithm we programmed to do the computa-

tions. All programs were written in the C programming language, using the

graph structures of the nauty package as developed by Brenden McKay [7, 8].

The isomorphism test used is also from this package, and the planarity test

from Boyer and Myrvold [4].

For Stage 1, we will cover rim branches r0 through r4 with small structures.

There are 9 ways in which each of these rim branches can be covered: any of

the 8 ways shown in Figure 3.9, or covered by a 2-bar. To find all possible

combinations, we assign integers from 0 to 8 to each of the five rim branches,

rim[0] through rim[4]. These numbers indicate the structures used to cover

each rim branch, with 0 through 7 being the configurations shown in Figure 3.9

and 8 being a 2-bar.

Evidently, not all of these combinations will yield a 2-crossing critical graph,

or indeed a graph. Any rim branch with an open jump to the right, that is
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a value of 1, 3, 5 or 6, must be followed by a rim branch with an open jump

to the left, a value of 2, 4, 5 or 6. Otherwise we are left with a partial edge

having no second endpoint. A bar on r0 requires a bar to also be on r4, since

they are in the same quad. Moreover, if any rim branch is covered by a 2-bar,

then every other rim branch must also be covered by a 2-bar, as that structure

covers all rim branches.

To ensure criticality, we must also take into account the restrictions dis-

cussed in Section 3.1. This limits the cases in which we may allow an open

jump to the left on r0 or to the right on r4, thereby giving a structure that

goes off the end of the 5 covered rim branches, as well an indicating where the

second endpoint of such a jump can be placed. The placement of bars is also

affected, both to ensure that no three sequential rim branches have bars, and

to determine the placement of the endpoints of bars on adjacent quads.

Once these restrictions are observed, removing non-critical or impossible

sets of values, we can construct the graphs that correspond to the remaining

sets of values and check their criticality.

Stage 2 proceeds in a similar way after some initial setup. We first fix a large

jump on the V8. Small structures are used to cover the necessary remaining

rim branches. For the 21
2
-jump, there are three possible sets of additional rim

coverage to give a 2-crossing critical graph, and for the off 3-jump there are

two.

We use the same possible configurations to cover the required rim branches

as were used in Stage 1. In any rim branch ri with an endpoint of a large jump

v in its interior, we treat the two sections [i, ri, v] and [v, ri, i + 1] separately,

with each receiving its own value and configuration of covering structures.

Again, we must respect the restrictions found in Section 3.2 in choosing which

of these sets of values are valid.

It is also important to consider a possible interaction of two large jumps on

the same graph. To do this, we fix a jump on the V8 and consider all possible

placements of another jump on that V8. A check can easily show if each pair

of jumps gives 2-crossing critical graph that we can add to the list of critical

graphs, a non-critical graph with crossing number 2 that we can discard, or a

graph with a 1-drawing. For the few graphs of this final type, uncovered rim

branches can take a configuration from Stage 1.

We follow the same process for Stage 3. The restrictions on placing small

32



structures with a large slope are such that only two possibilities exist for each

slope, so those are easily constructed. We must then fix each slope and consider

all possible placements of a large jump or another large slope on the same V8.

As we did with the two large jumps, we check for criticality and cover other

rim branches with small structures as needed.
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Chapter 4

Other Ways to Achieve

Criticality

Fully covering a V8 is not the only way to achieve a crossing number of 2.

We have considered only the coverage caused by single structures, but the

interaction of two such structures can sometimes create more coverage than

the two structures individually, as the structures themselves can cross.

Oporowski found 201 2-crossing critical graphs with a V8 minor but no V10.

Of these, all but the eight shown in Figure 4.1 are among the list of 312 found

in Chapter 2. In examining these eight graphs, we can seek to understand the

other ways in which criticality may be achieved.
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Figure 4.1: Oporowski’s not fully covered graphs

In the first section, we examine the behaviour seen in the first four of these

graphs where two structures cross inside a quad. The second section discusses

graphs like the next three graphs, which have structures positioned so that the

sections of rim they span overlap each other. In the final section, as in the

final graph, we see an addition to the V8 that is distinct from the structures we

have previously discussed: a tree. In each of these sections, we provide a brief

discussion of why the graphs are 2-crossing critical, and give a new example

of a 2-crossing critical graph in that category.

4.1 Crossings in a Quad

In this section we consider pairings of structures that cross in a quad. Recall

that a quad is the cycle formed by two consecutive spokes and the rim branches

between them. Suppose we place two structures in a quad so that they cross,

such as the two diagonals in Figure 4.2. Consider a drawing of the resulting

graph in which no edge of the quad is crossed. Then the diagonals must be

crossed in the drawing. There must also be a crossing on the V8, since it is

non-planar, so the drawing has at least 2 crossings.

Therefore any 1-drawing of a V8 with structures crossed in a quad must

include in its crossing an edge from the rim that forms part of the quad. By

extension, this prevents all crossings involving the disjoint quad. We call the

rim edges of the quad the crossable edges. For example, the crossable edges

in Figure 4.2 are r1 and r5. Since any crossing must involve a crossable edge,

covering r1 also covers both r4 and r6.
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Figure 4.2: Crossed Diagonals

We must cover at least one of the crossable edges, otherwise we cannot

have five sequential covered rim branches. There are two ways in which we

can cover five in row: by covering three rim branches between the two covered

by the crossed structures, such as those from 0 to 3, or by covering both of the

crossable edges.

Let us explore in more detail the case of having two diagonals crossed in

a quad and the ways to cover the remaining rim branches. If we use small

structures to cover the required sections of rim and one of them overlaps the

area already covered by the crossed diagonals, then we can remove the section

of rim covered twice and still have a 2-crossing graph. In the case of an off

1-jump or 11
2

jump from a crossable edge to an adjacent edge, the remainder

of the crossable edge must also be covered. We can remove the section of rim

covered in the second edge and use the V8 shown in Figure 4.3 to yield a fully

covered graph. A 2-jump that covers one of the crossable edges gives a 2-

crossing graph without any other coverage, as will be discussed in Section 4.2.

This means that, among the small structures, the only one useful for fully

covering with crossed diagonals is a 1-jump.

Figure 4.3: Crossed Diagonals with an off 1-jump

Using large structures, we can achieve criticality by placing a 21
2
-jump, off

3-jump or 2-slope so that it covers both crossable edges thereby completing

coverage. Placing a second pair of crossed diagonals in the quad non-adjacent

to the first pair also gives critical full coverage, with each pair preventing all

crossing in the quad containing the other.
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Diagonals are not the only structures able to give this kind of crossing;

we can also consider semi-diagonals, bars, 1
2
-slopes and 1-slopes. Any two of

these crossed in a quad force any crossing in a 1-drawing to involve at least

one of the rim branches of that quad. We note, however, that some of these

structures also cover at least part of those rim branches. For example, any

crossing in a quad involving a bar must yield a 2-crossing graph since the bar

itself covers both crossable edges.

Figure 4.4: A new 2-crossing critical graph with a crossing in a quad

In fact, we can consider the 11
2
-slope and 2-slope as following the same

pattern if we consider it in conjunction with the spoke it crosses. Suppose

the slope has an endpoint on si and crosses si+1. If we have a drawing of

the graph in which the quad defined by those spokes is not crossed, then the

slope must be crossed with some edge. Since there must also be a crossing on

the V8, this gives a drawing with at least 2 crossings. This, together with the

slope covering the rim it spans, account for the coverage provided by the large

slopes.

4.2 Accessibility

In this section, we introduce and begin the analysis of the concept of accessi-

bility. The inside of a 1-drawing of a V8 is the area enclosed by the rim and

spokes, as shown by the shaded region in Figure 4.5. The remaining faces

are the outside. We say that a vertex u is accessible from a vertex v if, in a

1-drawing of the V8, we can place an edge {u, v} that crosses no other edge

and is entirely inside the V8.
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Figure 4.5: The inside and outside of a V8 drawing

When working with the V8 alone, and no restrictions on which edges can

be crossed, a vertex on the graph can access most others. The dotted lines and

open points in Figures 4.6 and 4.7 indicate the positions accessible from the

vertex x, represented by the diamond in the figures. This can easily be seen by

considering the finite number of possible drawings and the area accessible in

each. As we add structures, limiting crossings and creating possible obstacles

for new edges, the accessibility will change. It is worth noting here that any of

the structures we have defined can be drawn inside the V8 with the exception

of the off 2-jump, 2-jump and 2-slope. These structures must be outside the

V8 in any 1-drawing, although we can choose a new V8 to turn the off 2-jump

into a bar instead.

Figure 4.6: Inside access from a spoke

Figure 4.7: Inside access from a rim branch

Let us consider how a structure can change accessibility and possibly force

a second crossing in our graph. Suppose we have a 2-jump from i to i + 2.
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The 2-jump also covers the rim branches it spans, preventing all crossings

involving them. Moreover, we know that the 2-jump must be outside the V8,

so any structure with an endpoint on ri, i + 1, ri+1 or si+1 must be inside.

The access to a vertex on these edges is limited by the 2-jump, as shown in

Figures 4.8 and 4.9.

Figure 4.8: Inside access from a spoke

Figure 4.9: Inside access from a rim branch

We must note that a lack of access is not necessarily enough to force a

second crossing, since we must consider other possible V8’s. For example, if

there is an off 1-jump from a vertex u on ri+1 to v on ri+2, then consider the

V8 with a spoke from i+6 through i+2 to u, and a rim branch from v through

u to i + 3. This gives a V8 with a 2-slope and 1
2
-slope from one of its spokes,

which we know to have a 1-drawing. It is only with the V8 as originally defined

that the two structures are forced to cross.

Figure 4.10: A new 2-crossing critical graph with overlapping structures

Even if the original structure does not necessarily have to be on the outside

of the V8, it can cause a similar situation. A 11
2
-jump from i to ri+1 can be

drawn inside a V8, but only the section of ri+1 not spanned by the jump crosses
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ri+4. However, if the remainder of ri+1 is covered by some structure, then access

from vertices on ri, ri+1 and si+1 is limited in much the same way as it would

be if a 2-jump was placed there instead. In this way, the overlap of structures

can force a second crossing and possibly give a 2-crossing critical graph.

4.3 Trees

In this section, we consider adding a tree to a V8. Up to this point, the only

structures we have added to the V8 are single edges with both endpoints in the

V8. It is also possible to have vertices disjoint from the V8. One way in which

this can occur is by taking a small tree and identifying its leaves with vertices

on the V8. The simplest form of this is attaching a star, an example of which

can be seen in Figure 4.11.

Figure 4.11: A tree attached to a V8

Take any pair of leaves, u and v, of the tree being attached. Then the tree

must cover at least those sections of rim covered by a structure with endpoints

u and v. Therefore the tree in Figure 4.11 must cover the rim at least from 3

to u, since it forms a 2-jump from 3 to 5 and a 11
2
-jump from 5 to u. More than

this, however, it also covers from 0 to 2. These two rim branches are covered

for different reasons: r0 because all the rim branches it could have crossed are

covered, and r1 because crossing the remaining section it could have crossed,

from u to 7, forces a 11
2
-jump from 5 to u to be drawn inside, which cannot

happen while it is attached at v.

Figure 4.12: A new 2-crossing critical graph with a tree
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There are, of course, limits on where attaching such trees can be useful.

Any tree with leaves on rim branches ri and ri+4 creates a V10 minor, which

puts the graph outside our realm of exploration. A tree that attaches to spokes

si and si+2 creates a two bar with the path between those leaves, so any other

branches cause the graph to be non-critical.

As the number of leaves on the tree increases, so do the number of possible

layouts for the tree. A tree with 4 leaves may be in the form of a star, or

it may divide the leaves into two pairs attached to vertices v and v′, with an

additional edge between these two new vertices.
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Chapter 5

Conclusion

The problem of classifying all 2-crossing critical graphs remains unsolved, but

the class of unknown graphs is getting smaller. Using our definition of a fully

covered V8, we have found 312 non-isomorphic 2-crossing critical graphs. It

remains to find the 2-crossing critical graphs with a V8 minor, but no V10 minor,

that are not fully covered.

The structures of the remaining known graphs are a part of the classes

discussed in Chapter 4. Clearly Oporowski’s are not the only graphs to fit into

these classes, as we have seen other examples. These classes need to be more

thoroughly examined in order to provide an exhaustive list.

Moreover, it remains to be shown whether or not these are the only classes

of 2-crossing critical graphs with a V8 minor but no V10. All graphs we en-

countered fit into one of the classes, but that is far from a conclusive proof.

42



Bibliography

[1] G. S. Bloom, J. W. Kennedy, L. V. Quintas, “On crossing numbers and

linguistic structures.” Lecture Notes in Math 1018 (1983): 14–22.

[2] D. Bokal, “Infinite families of crossing-critical graphs with prescribed av-

erage degree and crossing number.” J. Graph Theory 65 (2010): 139-162.

[3] D. Bokal, B. Oporowski, R. B. Richter, G. Salazar, “Characterizing 3-

connected, 2-crossing-critical graphs.” unpublished.

[4] J. M. Boyer and W. J. Myrvold, “On the cutting edge: simplified O(n)

planarity by edge addition.” J. Graph Algorithms Appl. 8.3 (2004): 241273

(electronic).

[5] G. Ding, B. Oporowski, R. Thomas, and D. Vertigan, “Large nonplanar

graphs and an application to crossing-critical graphs.” J. Combin. Theory

Ser. B. 101.2 (2011): 111–121.

[6] M. Kochol, “Construction of crossing-critical graphs.” Discrete Math. 66

(1987): 311-313.

[7] B. McKay, “Isomorph-free exhaustive generation.” J. Algorithms 26.2

(1998): 306324.

[8] B. McKay, nauty available via his homepage http://cs.anu.edu.au/ bdm/
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